#!/usr/bin/env python3
-import logging
import argparse
+import csv
import heapq
-import sys
+import json
+import logging
import os
-from glob import glob
import sqlite3
-import json
-import csv
-from typing import Optional, Union
+import sys
from collections.abc import Iterator, Sequence
+from glob import glob
+from typing import Any, Optional, Union
try:
import git
logger = logging.getLogger("compare-llama-bench")
# All llama-bench SQL fields
-DB_FIELDS = [
+LLAMA_BENCH_DB_FIELDS = [
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
]
-DB_TYPES = [
+LLAMA_BENCH_DB_TYPES = [
"TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
"TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
]
-assert len(DB_FIELDS) == len(DB_TYPES)
-# Properties by which to differentiate results per commit:
-KEY_PROPERTIES = [
+# All test-backend-ops SQL fields
+TEST_BACKEND_OPS_DB_FIELDS = [
+ "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode",
+ "supported", "passed", "error_message", "time_us", "flops", "bandwidth_gb_s",
+ "memory_kb", "n_runs"
+]
+
+TEST_BACKEND_OPS_DB_TYPES = [
+ "TEXT", "TEXT", "TEXT", "TEXT", "TEXT", "TEXT",
+ "INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
+ "INTEGER", "INTEGER"
+]
+
+assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
+assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
+
+# Properties by which to differentiate results per commit for llama-bench:
+LLAMA_BENCH_KEY_PROPERTIES = [
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
]
+# Properties by which to differentiate results per commit for test-backend-ops:
+TEST_BACKEND_OPS_KEY_PROPERTIES = [
+ "backend_name", "op_name", "op_params", "test_mode"
+]
+
# Properties that are boolean and are converted to Yes/No for the table:
-BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
+LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
+TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
-# Header names for the table:
-PRETTY_NAMES = {
+# Header names for the table (llama-bench):
+LLAMA_BENCH_PRETTY_NAMES = {
"cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
"tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
"model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
"flash_attn": "FlashAttention",
}
-DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
-DEFAULT_HIDE = ["model_filename"] # Always hide these properties by default.
+# Header names for the table (test-backend-ops):
+TEST_BACKEND_OPS_PRETTY_NAMES = {
+ "backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
+ "supported": "Supported", "passed": "Passed", "error_message": "Error",
+ "flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
+}
+
+DEFAULT_SHOW_LLAMA_BENCH = ["model_type"] # Always show these properties by default.
+DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"] # Always hide these properties by default.
+
+DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default.
+DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default.
+
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
-DESCRIPTION = """Creates tables from llama-bench data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
+DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
+For llama-bench:
$ git checkout master
-$ make clean && make llama-bench
+$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ git checkout some_branch
-$ make clean && make llama-bench
+$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ ./scripts/compare-llama-bench.py
+For test-backend-ops:
+$ git checkout master
+$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
+$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
+$ git checkout some_branch
+$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
+$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
+$ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
+
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
"""
"Defaults to the non-master commit for which llama-bench was run most recently."
)
parser.add_argument("-c", "--compare", help=help_c)
+help_t = (
+ "The tool whose data is being compared. "
+ "Either 'llama-bench' or 'test-backend-ops'. "
+ "This determines the database schema and comparison logic used. "
+ "If left unspecified, try to determine from the input file."
+)
+parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
help_i = (
"JSON/JSONL/SQLite/CSV files for comparing commits. "
"Specify multiple times to use multiple input files (JSON/CSV only). "
help_s = (
"Columns to add to the table. "
"Accepts a comma-separated list of values. "
- f"Legal values: {', '.join(KEY_PROPERTIES[:-3])}. "
+ f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
+ f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
"plus any column where not all data points are the same. "
"If the columns are manually specified, then the results for each unique combination of the "
sys.exit(1)
input_file = known_args.input
-if not input_file and os.path.exists("./llama-bench.sqlite"):
- input_file = ["llama-bench.sqlite"]
+tool = known_args.tool
+
+if not input_file:
+ if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
+ input_file = ["llama-bench.sqlite"]
+ elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
+ input_file = ["test-backend-ops.sqlite"]
+
if not input_file:
sqlite_files = glob("*.sqlite")
if len(sqlite_files) == 1:
build_len_max: int
build_len: int = 8
builds: list[str] = []
- check_keys = set(KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
+ tool: str = "llama-bench" # Tool type: "llama-bench" or "test-backend-ops"
- def __init__(self):
+ def __init__(self, tool: str = "llama-bench"):
+ self.tool = tool
try:
self.repo = git.Repo(".", search_parent_directories=True)
except git.InvalidGitRepositoryError:
self.repo = None
+ # Set schema-specific properties based on tool
+ if self.tool == "llama-bench":
+ self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
+ elif self.tool == "test-backend-ops":
+ self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
+ else:
+ assert False
+
def _builds_init(self):
self.build_len = self.build_len_min
class LlamaBenchDataSQLite3(LlamaBenchData):
connection: sqlite3.Connection
cursor: sqlite3.Cursor
+ table_name: str
- def __init__(self):
- super().__init__()
+ def __init__(self, tool: str = "llama-bench"):
+ super().__init__(tool)
self.connection = sqlite3.connect(":memory:")
self.cursor = self.connection.cursor()
- self.cursor.execute(f"CREATE TABLE test({', '.join(' '.join(x) for x in zip(DB_FIELDS, DB_TYPES))});")
+
+ # Set table name and schema based on tool
+ if self.tool == "llama-bench":
+ self.table_name = "test"
+ db_fields = LLAMA_BENCH_DB_FIELDS
+ db_types = LLAMA_BENCH_DB_TYPES
+ elif self.tool == "test-backend-ops":
+ self.table_name = "test_backend_ops"
+ db_fields = TEST_BACKEND_OPS_DB_FIELDS
+ db_types = TEST_BACKEND_OPS_DB_TYPES
+ else:
+ assert False
+
+ self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
def _builds_init(self):
if self.connection:
- self.build_len_min = self.cursor.execute("SELECT MIN(LENGTH(build_commit)) from test;").fetchone()[0]
- self.build_len_max = self.cursor.execute("SELECT MAX(LENGTH(build_commit)) from test;").fetchone()[0]
+ self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
+ self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
if self.build_len_min != self.build_len_max:
logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
"Try purging the the database of old commits.")
- self.cursor.execute(f"UPDATE test SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
+ self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
- builds = self.cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
+ builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
super()._builds_init()
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
data = self.cursor.execute(
- "SELECT build_commit, test_time FROM test ORDER BY test_time;").fetchall()
+ f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
return reversed(data) if reverse else data
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
+ if self.tool == "llama-bench":
+ return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
+ elif self.tool == "test-backend-ops":
+ return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
+ else:
+ assert False
+
+ def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
select_string = ", ".join(
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
equal_string = " AND ".join(
- [f"tb.{p} = tc.{p}" for p in KEY_PROPERTIES] + [
+ [f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
)
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
- query = (f"SELECT {select_string} FROM test tb JOIN test tc ON {equal_string} "
+ query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
+ f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
+ return self.cursor.execute(query).fetchall()
+
+ def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
+ # For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
+ select_string = ", ".join(
+ [f"tb.{p}" for p in properties] + [
+ "AVG(tb.flops)", "AVG(tc.flops)",
+ "AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
+ ])
+ equal_string = " AND ".join(
+ [f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
+ f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
+ "tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"] # Only compare successful tests
+ )
+ group_order_string = ", ".join([f"tb.{p}" for p in properties])
+ query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
return self.cursor.execute(query).fetchall()
class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
- def __init__(self, data_file: str):
- super().__init__()
+ def __init__(self, data_file: str, tool: Any):
+ super().__init__(tool)
self.connection.close()
self.connection = sqlite3.connect(data_file)
self.cursor = self.connection.cursor()
+
+ # Check which table exists in the database
+ tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
+ table_names = [table[0] for table in tables]
+
+ # Tool selection logic
+ if tool is None:
+ if "test" in table_names:
+ self.table_name = "test"
+ self.tool = "llama-bench"
+ elif "test_backend_ops" in table_names:
+ self.table_name = "test_backend_ops"
+ self.tool = "test-backend-ops"
+ else:
+ raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
+ elif tool == "llama-bench":
+ if "test" in table_names:
+ self.table_name = "test"
+ self.tool = "llama-bench"
+ else:
+ raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
+ elif tool == "test-backend-ops":
+ if "test_backend_ops" in table_names:
+ self.table_name = "test_backend_ops"
+ self.tool = "test-backend-ops"
+ else:
+ raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
+ else:
+ raise RuntimeError(f"Unknown tool: {tool}")
+
self._builds_init()
@staticmethod
class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
- def __init__(self, data_file: str):
- super().__init__()
+ def __init__(self, data_file: str, tool: str = "llama-bench"):
+ super().__init__(tool)
+
+ # Get the appropriate field list based on tool
+ db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
with open(data_file, "r", encoding="utf-8") as fp:
for i, line in enumerate(fp):
parsed = json.loads(line)
- for k in parsed.keys() - set(DB_FIELDS):
+ for k in parsed.keys() - set(db_fields):
del parsed[k]
if (missing_keys := self._check_keys(parsed.keys())):
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
+ self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
self._builds_init()
class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
- def __init__(self, data_files: list[str]):
- super().__init__()
+ def __init__(self, data_files: list[str], tool: str = "llama-bench"):
+ super().__init__(tool)
+
+ # Get the appropriate field list based on tool
+ db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
for data_file in data_files:
with open(data_file, "r", encoding="utf-8") as fp:
parsed = json.load(fp)
for i, entry in enumerate(parsed):
- for k in entry.keys() - set(DB_FIELDS):
+ for k in entry.keys() - set(db_fields):
del entry[k]
if (missing_keys := self._check_keys(entry.keys())):
raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO test({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
+ self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
self._builds_init()
class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
- def __init__(self, data_files: list[str]):
- super().__init__()
+ def __init__(self, data_files: list[str], tool: str = "llama-bench"):
+ super().__init__(tool)
+
+ # Get the appropriate field list based on tool
+ db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
for data_file in data_files:
with open(data_file, "r", encoding="utf-8") as fp:
for i, parsed in enumerate(csv.DictReader(fp)):
keys = set(parsed.keys())
- for k in keys - set(DB_FIELDS):
+ for k in keys - set(db_fields):
del parsed[k]
if (missing_keys := self._check_keys(keys)):
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
+ self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
self._builds_init()
return True
+def format_flops(flops_value: float) -> str:
+ """Format FLOPS values with appropriate units for better readability."""
+ if flops_value == 0:
+ return "0.00"
+
+ # Define unit thresholds and names
+ units = [
+ (1e12, "T"), # TeraFLOPS
+ (1e9, "G"), # GigaFLOPS
+ (1e6, "M"), # MegaFLOPS
+ (1e3, "k"), # kiloFLOPS
+ (1, "") # FLOPS
+ ]
+
+ for threshold, unit in units:
+ if abs(flops_value) >= threshold:
+ formatted_value = flops_value / threshold
+ if formatted_value >= 100:
+ return f"{formatted_value:.1f}{unit}"
+ else:
+ return f"{formatted_value:.2f}{unit}"
+
+ # Fallback for very small values
+ return f"{flops_value:.2f}"
+
+
+def format_flops_for_table(flops_value: float, target_unit: str) -> str:
+ """Format FLOPS values for table display without unit suffix (since unit is in header)."""
+ if flops_value == 0:
+ return "0.00"
+
+ # Define unit thresholds based on target unit
+ unit_divisors = {
+ "TFLOPS": 1e12,
+ "GFLOPS": 1e9,
+ "MFLOPS": 1e6,
+ "kFLOPS": 1e3,
+ "FLOPS": 1
+ }
+
+ divisor = unit_divisors.get(target_unit, 1)
+ formatted_value = flops_value / divisor
+
+ if formatted_value >= 100:
+ return f"{formatted_value:.1f}"
+ else:
+ return f"{formatted_value:.2f}"
+
+
+def get_flops_unit_name(flops_values: list) -> str:
+ """Determine the best FLOPS unit name based on the magnitude of values."""
+ if not flops_values or all(v == 0 for v in flops_values):
+ return "FLOPS"
+
+ # Find the maximum absolute value to determine appropriate unit
+ max_flops = max(abs(v) for v in flops_values if v != 0)
+
+ if max_flops >= 1e12:
+ return "TFLOPS"
+ elif max_flops >= 1e9:
+ return "GFLOPS"
+ elif max_flops >= 1e6:
+ return "MFLOPS"
+ elif max_flops >= 1e3:
+ return "kFLOPS"
+ else:
+ return "FLOPS"
+
+
bench_data = None
if len(input_file) == 1:
if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
- bench_data = LlamaBenchDataSQLite3File(input_file[0])
+ bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
elif LlamaBenchDataJSON.valid_format(input_file):
- bench_data = LlamaBenchDataJSON(input_file)
+ bench_data = LlamaBenchDataJSON(input_file, tool)
elif LlamaBenchDataJSONL.valid_format(input_file[0]):
- bench_data = LlamaBenchDataJSONL(input_file[0])
+ bench_data = LlamaBenchDataJSONL(input_file[0], tool)
elif LlamaBenchDataCSV.valid_format(input_file):
- bench_data = LlamaBenchDataCSV(input_file)
+ bench_data = LlamaBenchDataCSV(input_file, tool)
else:
if LlamaBenchDataJSON.valid_format(input_file):
- bench_data = LlamaBenchDataJSON(input_file)
+ bench_data = LlamaBenchDataJSON(input_file, tool)
elif LlamaBenchDataCSV.valid_format(input_file):
- bench_data = LlamaBenchDataCSV(input_file)
+ bench_data = LlamaBenchDataCSV(input_file, tool)
if not bench_data:
raise RuntimeError("No valid (or some invalid) input files found.")
name_compare = bench_data.get_commit_name(hexsha8_compare)
+# Get tool-specific configuration
+if tool == "llama-bench":
+ key_properties = LLAMA_BENCH_KEY_PROPERTIES
+ bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
+ pretty_names = LLAMA_BENCH_PRETTY_NAMES
+ default_show = DEFAULT_SHOW_LLAMA_BENCH
+ default_hide = DEFAULT_HIDE_LLAMA_BENCH
+elif tool == "test-backend-ops":
+ key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
+ bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
+ pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
+ default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
+ default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
+else:
+ assert False
+
# If the user provided columns to group the results by, use them:
if known_args.show is not None:
show = known_args.show.split(",")
unknown_cols = []
for prop in show:
- if prop not in KEY_PROPERTIES[:-3]: # Last three values are n_prompt, n_gen, n_depth.
+ valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3] # Exclude n_prompt, n_gen, n_depth for llama-bench
+ if prop not in valid_props:
unknown_cols.append(prop)
if unknown_cols:
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
# Otherwise, select those columns where the values are not all the same:
else:
- rows_full = bench_data.get_rows(KEY_PROPERTIES, hexsha8_baseline, hexsha8_compare)
+ rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
properties_different = []
- for i, kp_i in enumerate(KEY_PROPERTIES):
- if kp_i in DEFAULT_SHOW or kp_i in ["n_prompt", "n_gen", "n_depth"]:
- continue
- for row_full in rows_full:
- if row_full[i] != rows_full[0][i]:
- properties_different.append(kp_i)
- break
+
+ if tool == "llama-bench":
+ # For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
+ check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
+ for i, kp_i in enumerate(key_properties):
+ if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
+ continue
+ for row_full in rows_full:
+ if row_full[i] != rows_full[0][i]:
+ properties_different.append(kp_i)
+ break
+ elif tool == "test-backend-ops":
+ # For test-backend-ops, check all key properties
+ for i, kp_i in enumerate(key_properties):
+ if kp_i in default_show:
+ continue
+ for row_full in rows_full:
+ if row_full[i] != rows_full[0][i]:
+ properties_different.append(kp_i)
+ break
+ else:
+ assert False
show = []
- # Show CPU and/or GPU by default even if the hardware for all results is the same:
- if rows_full and "n_gpu_layers" not in properties_different:
- ngl = int(rows_full[0][KEY_PROPERTIES.index("n_gpu_layers")])
- if ngl != 99 and "cpu_info" not in properties_different:
- show.append("cpu_info")
+ if tool == "llama-bench":
+ # Show CPU and/or GPU by default even if the hardware for all results is the same:
+ if rows_full and "n_gpu_layers" not in properties_different:
+ ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
- show += properties_different
+ if ngl != 99 and "cpu_info" not in properties_different:
+ show.append("cpu_info")
- index_default = 0
- for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
- if prop in show:
- index_default += 1
- show = show[:index_default] + DEFAULT_SHOW + show[index_default:]
- for prop in DEFAULT_HIDE:
+ show += properties_different
+
+ index_default = 0
+ for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
+ if prop in show:
+ index_default += 1
+ show = show[:index_default] + default_show + show[index_default:]
+ elif tool == "test-backend-ops":
+ show = default_show + properties_different
+ else:
+ assert False
+
+ for prop in default_hide:
try:
show.remove(prop)
except ValueError:
# Add plot_x parameter to parameters to show if it's not already present:
if known_args.plot:
- for k, v in PRETTY_NAMES.items():
+ for k, v in pretty_names.items():
if v == known_args.plot_x and k not in show:
show.append(k)
break
sys.exit(1)
table = []
-for row in rows_show:
- n_prompt = int(row[-5])
- n_gen = int(row[-4])
- n_depth = int(row[-3])
- if n_prompt != 0 and n_gen == 0:
- test_name = f"pp{n_prompt}"
- elif n_prompt == 0 and n_gen != 0:
- test_name = f"tg{n_gen}"
- else:
- test_name = f"pp{n_prompt}+tg{n_gen}"
- if n_depth != 0:
- test_name = f"{test_name}@d{n_depth}"
- # Regular columns test name avg t/s values Speedup
- # VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
- table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
+primary_metric = "FLOPS" # Default to FLOPS for test-backend-ops
+
+if tool == "llama-bench":
+ # For llama-bench, create test names and compare avg_ts values
+ for row in rows_show:
+ n_prompt = int(row[-5])
+ n_gen = int(row[-4])
+ n_depth = int(row[-3])
+ if n_prompt != 0 and n_gen == 0:
+ test_name = f"pp{n_prompt}"
+ elif n_prompt == 0 and n_gen != 0:
+ test_name = f"tg{n_gen}"
+ else:
+ test_name = f"pp{n_prompt}+tg{n_gen}"
+ if n_depth != 0:
+ test_name = f"{test_name}@d{n_depth}"
+ # Regular columns test name avg t/s values Speedup
+ # VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
+ table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
+elif tool == "test-backend-ops":
+ # Determine the primary metric by checking rows until we find one with valid data
+ if rows_show:
+ primary_metric = "FLOPS" # Default to FLOPS
+ flops_values = []
+
+ # Collect all FLOPS values to determine the best unit
+ for sample_row in rows_show:
+ baseline_flops = float(sample_row[-4])
+ compare_flops = float(sample_row[-3])
+ baseline_bandwidth = float(sample_row[-2])
+
+ if baseline_flops > 0:
+ flops_values.extend([baseline_flops, compare_flops])
+ elif baseline_bandwidth > 0 and not flops_values:
+ primary_metric = "Bandwidth (GB/s)"
+
+ # If we have FLOPS data, determine the appropriate unit
+ if flops_values:
+ primary_metric = get_flops_unit_name(flops_values)
+
+ # For test-backend-ops, prioritize FLOPS > bandwidth for comparison
+ for row in rows_show:
+ # Extract metrics: flops, bandwidth_gb_s (baseline and compare)
+ baseline_flops = float(row[-4])
+ compare_flops = float(row[-3])
+ baseline_bandwidth = float(row[-2])
+ compare_bandwidth = float(row[-1])
+
+ # Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
+ if baseline_flops > 0 and compare_flops > 0:
+ # Use FLOPS comparison (higher is better)
+ speedup = compare_flops / baseline_flops
+ baseline_str = format_flops_for_table(baseline_flops, primary_metric)
+ compare_str = format_flops_for_table(compare_flops, primary_metric)
+ elif baseline_bandwidth > 0 and compare_bandwidth > 0:
+ # Use bandwidth comparison (higher is better)
+ speedup = compare_bandwidth / baseline_bandwidth
+ baseline_str = f"{baseline_bandwidth:.2f}"
+ compare_str = f"{compare_bandwidth:.2f}"
+ else:
+ # Fallback if no valid data is available
+ baseline_str = "N/A"
+ compare_str = "N/A"
+ from math import nan
+ speedup = nan
+
+ table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
+else:
+ assert False
# Some a-posteriori fixes to make the table contents prettier:
-for bool_property in BOOL_PROPERTIES:
+for bool_property in bool_properties:
if bool_property in show:
ip = show.index(bool_property)
for row_table in table:
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
-if "model_type" in show:
- ip = show.index("model_type")
- for (old, new) in MODEL_SUFFIX_REPLACE.items():
- for row_table in table:
- row_table[ip] = row_table[ip].replace(old, new)
-
-if "model_size" in show:
- ip = show.index("model_size")
- for row_table in table:
- row_table[ip] = float(row_table[ip]) / 1024 ** 3
-
-if "gpu_info" in show:
- ip = show.index("gpu_info")
- for row_table in table:
- for gns in GPU_NAME_STRIP:
- row_table[ip] = row_table[ip].replace(gns, "")
+if tool == "llama-bench":
+ if "model_type" in show:
+ ip = show.index("model_type")
+ for (old, new) in MODEL_SUFFIX_REPLACE.items():
+ for row_table in table:
+ row_table[ip] = row_table[ip].replace(old, new)
- gpu_names = row_table[ip].split(", ")
- num_gpus = len(gpu_names)
- all_names_the_same = len(set(gpu_names)) == 1
- if len(gpu_names) >= 2 and all_names_the_same:
- row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
+ if "model_size" in show:
+ ip = show.index("model_size")
+ for row_table in table:
+ row_table[ip] = float(row_table[ip]) / 1024 ** 3
-headers = [PRETTY_NAMES[p] for p in show]
-headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
+ if "gpu_info" in show:
+ ip = show.index("gpu_info")
+ for row_table in table:
+ for gns in GPU_NAME_STRIP:
+ row_table[ip] = row_table[ip].replace(gns, "")
+
+ gpu_names = row_table[ip].split(", ")
+ num_gpus = len(gpu_names)
+ all_names_the_same = len(set(gpu_names)) == 1
+ if len(gpu_names) >= 2 and all_names_the_same:
+ row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
+
+headers = [pretty_names.get(p, p) for p in show]
+if tool == "llama-bench":
+ headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
+elif tool == "test-backend-ops":
+ headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
+else:
+ assert False
if known_args.plot:
- def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
+ def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
try:
- import matplotlib.pyplot as plt
import matplotlib
+ import matplotlib.pyplot as plt
matplotlib.use('Agg')
except ImportError as e:
logger.error("matplotlib is required for --plot.")
plot_x_label = plot_x_param
if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
- pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
+ pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
if pretty_name in data_headers:
plot_x_index = data_headers.index(pretty_name)
plot_x_label = pretty_name
title = ', '.join(title_parts) if title_parts else "Performance comparison"
+ # Determine y-axis label based on tool type
+ if tool_type == "llama-bench":
+ y_label = "Tokens per second (t/s)"
+ elif tool_type == "test-backend-ops":
+ y_label = metric_name
+ else:
+ assert False
+
ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
- ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
+ ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
ax.set_title(title, fontsize=12, fontweight='bold')
ax.legend(loc='best', fontsize=10)
ax.grid(True, alpha=0.3)
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()
- create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)
+ create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
print(tabulate( # noqa: NP100
table,