logits[it->first] += it->second;
}
+ if (ctx_cfg) {
+ float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
+ llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
+ }
+
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
- if (ctx_cfg) {
- llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
- }
-
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
}
}
+void llama_sample_apply_guidance(
+ struct llama_context * ctx,
+ float * logits,
+ float * logits_guidance,
+ float scale) {
+ GGML_ASSERT(ctx);
+
+ const auto t_start_sample_us = ggml_time_us();
+ const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
+
+ llama_log_softmax(logits, n_vocab);
+ llama_log_softmax(logits_guidance, n_vocab);
+
+ for (int i = 0; i < n_vocab; ++i) {
+ auto & l = logits[i];
+ const auto & g = logits_guidance[i];
+
+ l = scale * (l - g) + g;
+ }
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+}
+
void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale) {
- int64_t t_start_sample_us = ggml_time_us();
-
GGML_ASSERT(ctx);
+ int64_t t_start_sample_us;
- auto n_vocab = llama_n_vocab(llama_get_model(ctx));
+ t_start_sample_us = ggml_time_us();
+ const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
- GGML_ASSERT(n_vocab == (int)candidates->size);
+ GGML_ASSERT(n_vocab == candidates->size);
GGML_ASSERT(!candidates->sorted);
- std::vector<float> logits_base;
- logits_base.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- logits_base.push_back(candidates->data[i].logit);
+ std::vector<float> logits_base(n_vocab);
+ for (size_t i = 0; i < n_vocab; ++i) {
+ logits_base[i] = candidates->data[i].logit;
}
- llama_log_softmax(logits_base.data(), candidates->size);
- float* logits_guidance = llama_get_logits(guidance_ctx);
- llama_log_softmax(logits_guidance, n_vocab);
+ float * logits_guidance = llama_get_logits(guidance_ctx);
- for (int i = 0; i < n_vocab; ++i) {
- float logit_guidance = logits_guidance[i];
- float logit_base = logits_base[i];
- candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
- }
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
+ t_start_sample_us = ggml_time_us();
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ for (size_t i = 0; i < n_vocab; ++i) {
+ candidates->data[i].logit = logits_base[i];
}
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
float penalty_present);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
- /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
- /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
- LLAMA_API void llama_sample_classifier_free_guidance(
+ /// @param logits Logits extracted from the original generation context.
+ /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
+ /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
+ LLAMA_API void llama_sample_apply_guidance(
+ struct llama_context * ctx,
+ float * logits,
+ float * logits_guidance,
+ float scale);
+
+ LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
- float scale);
+ float scale),
+ "use llama_sample_apply_guidance() instead");
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(