]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
ggml-cpu : "align corners" for bilinear upscale/downscale (ggml/1285)
authorAcly <redacted>
Tue, 1 Jul 2025 07:11:00 +0000 (09:11 +0200)
committerGeorgi Gerganov <redacted>
Tue, 1 Jul 2025 08:06:39 +0000 (11:06 +0300)
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners

ggml/include/ggml.h
ggml/src/ggml-cpu/ops.cpp
ggml/src/ggml.c
tests/test-backend-ops.cpp

index 8bd3ca929285c65e108d5e9cfb2ec2d1aaaf5567..f8238f3159b9f5f32dc281efff63329262a7d634 100644 (file)
@@ -1867,6 +1867,12 @@ extern "C" {
     enum ggml_scale_mode {
         GGML_SCALE_MODE_NEAREST  = 0,
         GGML_SCALE_MODE_BILINEAR = 1,
+
+        GGML_SCALE_MODE_COUNT
+    };
+
+    enum ggml_scale_flag {
+        GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
     };
 
     // interpolate
@@ -1879,14 +1885,26 @@ extern "C" {
 
     // interpolate
     // interpolate scale to specified dimensions
-    GGML_API struct ggml_tensor * ggml_upscale_ext(
+    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             int                   ne0,
             int                   ne1,
             int                   ne2,
             int                   ne3,
-            enum ggml_scale_mode  mode);
+            enum ggml_scale_mode  mode),
+        "use ggml_interpolate instead");
+
+    // Up- or downsamples the input to the specified size.
+    // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
+    GGML_API struct ggml_tensor * ggml_interpolate(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int64_t               ne0,
+            int64_t               ne1,
+            int64_t               ne2,
+            int64_t               ne3,
+            uint32_t              mode); // ggml_scale_mode [ | ggml_scale_flag...]
 
     // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
     GGML_API struct ggml_tensor * ggml_pad(
index 6948c00b44a19c08879a8b22836fed72fbfdec4d..dd83efde7141a4fab1a23c809bec7e108f2eb658 100644 (file)
@@ -7276,12 +7276,13 @@ static void ggml_compute_forward_upscale_f32(
 
     GGML_TENSOR_UNARY_OP_LOCALS
 
-    const float sf0 = (float)ne0/src0->ne[0];
-    const float sf1 = (float)ne1/src0->ne[1];
-    const float sf2 = (float)ne2/src0->ne[2];
-    const float sf3 = (float)ne3/src0->ne[3];
+    float sf0 = (float)ne0/src0->ne[0];
+    float sf1 = (float)ne1/src0->ne[1];
+    float sf2 = (float)ne2/src0->ne[2];
+    float sf3 = (float)ne3/src0->ne[3];
 
-    const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
+    const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
+    const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
 
     if (mode == GGML_SCALE_MODE_NEAREST) {
         for (int64_t i3 = 0; i3 < ne3; i3++) {
@@ -7302,8 +7303,12 @@ static void ggml_compute_forward_upscale_f32(
             }
         }
     } else if (mode == GGML_SCALE_MODE_BILINEAR) {
-        // setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
-        const float pixel_offset = 0.5f;
+        float pixel_offset = 0.5f;
+        if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
+            pixel_offset = 0.0f;
+            sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
+            sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
+        }
 
         for (int64_t i3 = 0; i3 < ne3; i3++) {
             const int64_t i03 = i3 / sf3;
index 47fe37b13e07d238ef49d145c234c59c7f76b543..b499f3785656c080b5c252a126ab517792cd76b6 100644 (file)
@@ -4447,24 +4447,21 @@ struct ggml_tensor * ggml_pool_2d_back(
     return result;
 }
 
-// ggml_upscale
+// ggml_upscale / ggml_interpolate
 
-static struct ggml_tensor * ggml_upscale_impl(
+static struct ggml_tensor * ggml_interpolate_impl(
         struct ggml_context * ctx,
         struct ggml_tensor  * a,
-        int                   ne0,
-        int                   ne1,
-        int                   ne2,
-        int                   ne3,
-        enum ggml_scale_mode  mode) {
-    GGML_ASSERT(a->ne[0] <= ne0);
-    GGML_ASSERT(a->ne[1] <= ne1);
-    GGML_ASSERT(a->ne[2] <= ne2);
-    GGML_ASSERT(a->ne[3] <= ne3);
-
+        int64_t               ne0,
+        int64_t               ne1,
+        int64_t               ne2,
+        int64_t               ne3,
+        uint32_t              mode) {
+    GGML_ASSERT((mode & 0xFF) < GGML_SCALE_MODE_COUNT);
+    
     struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
 
-    ggml_set_op_params_i32(result, 0, mode);
+    ggml_set_op_params_i32(result, 0, (int32_t)mode);
 
     result->op     = GGML_OP_UPSCALE;
     result->src[0] = a;
@@ -4477,7 +4474,8 @@ struct ggml_tensor * ggml_upscale(
         struct ggml_tensor  * a,
         int                   scale_factor,
         enum ggml_scale_mode  mode) {
-    return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3], mode);
+    GGML_ASSERT(scale_factor > 1);
+    return ggml_interpolate_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3], mode);
 }
 
 struct ggml_tensor * ggml_upscale_ext(
@@ -4488,7 +4486,18 @@ struct ggml_tensor * ggml_upscale_ext(
         int                   ne2,
         int                   ne3,
         enum ggml_scale_mode  mode) {
-    return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
+    return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
+}
+
+struct ggml_tensor * ggml_interpolate(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        int64_t               ne0,
+        int64_t               ne1,
+        int64_t               ne2,
+        int64_t               ne3,
+        uint32_t              mode) {
+    return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
 }
 
 // ggml_pad
index dd2dfcc0a817c6571891cc944218f84dd40da31e..43be1e92874d9b92e9a8c5b511891e0ff4e04348 100644 (file)
@@ -3296,28 +3296,28 @@ struct test_upscale : public test_case {
     }
 };
 
-// GGML_OP_UPSCALE (ext)
-struct test_upscale_ext : public test_case {
+// GGML_OP_UPSCALE (via ggml_interpolate)
+struct test_interpolate : public test_case {
     const ggml_type type;
     const std::array<int64_t, 4> ne;
     const std::array<int64_t, 4> ne_tgt;
-    const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
+    const uint32_t mode = GGML_SCALE_MODE_NEAREST;
 
     std::string vars() override {
         return VARS_TO_STR4(type, ne, ne_tgt, mode);
     }
 
-    test_upscale_ext(ggml_type type = GGML_TYPE_F32,
+    test_interpolate(ggml_type type = GGML_TYPE_F32,
             std::array<int64_t, 4> ne     = {2, 5,  7, 11},
             std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
-            ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST)
+            uint32_t mode = GGML_SCALE_MODE_NEAREST)
         : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
 
     ggml_tensor * build_graph(ggml_context * ctx) override {
         ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
         ggml_set_name(a, "a");
 
-        ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
+        ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
         ggml_set_name(out, "out");
 
         return out;
@@ -4799,8 +4799,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
     for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
         test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
         test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
-        test_cases.emplace_back(new test_upscale_ext(GGML_TYPE_F32, {2, 5,  7, 11}, {5, 7, 11, 13}, mode));
+        test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5,  7, 11}, {5, 7, 11, 13}, mode));
+        test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5,  7, 11}, mode));
     }
+    test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5,  7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
 
     test_cases.emplace_back(new test_sum());
     test_cases.emplace_back(new test_sum_rows());