### Hot topics
+- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
**Devs should become familiar with the new API**
- Local Falcon 180B inference on Mac Studio
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
- uint32_t n_ctx; // text context
- uint32_t n_batch; // prompt processing batch size
+ uint32_t n_ctx; // text context, 0 = from model
+ uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
- float rope_freq_base; // RoPE base frequency
- float rope_freq_scale; // RoPE frequency scaling factor
+ float rope_freq_base; // RoPE base frequency, 0 = from model
+ float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
- bool f16_kv; // use fp16 for KV cache
+ bool f16_kv; // use fp16 for KV cache, fp32 otherwise
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool embedding; // embedding mode only
};