--- /dev/null
+#!/usr/bin/env python3
+
+import argparse
+import os
+import importlib
+import sys
+import torch
+import numpy as np
+
+from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
+from pathlib import Path
+
+unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
+
+parser = argparse.ArgumentParser(description='Process model with specified path')
+parser.add_argument('--model-path', '-m', help='Path to the model')
+args = parser.parse_args()
+
+model_path = os.environ.get('MODEL_PATH', args.model_path)
+if model_path is None:
+ parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
+
+config = AutoConfig.from_pretrained(model_path)
+
+print("Model type: ", config.model_type)
+print("Vocab size: ", config.vocab_size)
+print("Hidden size: ", config.hidden_size)
+print("Number of layers: ", config.num_hidden_layers)
+print("BOS token id: ", config.bos_token_id)
+print("EOS token id: ", config.eos_token_id)
+
+print("Loading model and tokenizer using AutoTokenizer:", model_path)
+tokenizer = AutoTokenizer.from_pretrained(model_path)
+
+if unreleased_model_name:
+ model_name_lower = unreleased_model_name.lower()
+ unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
+ class_name = f"{unreleased_model_name}ForCausalLM"
+ print(f"Importing unreleased model module: {unreleased_module_path}")
+
+ try:
+ model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
+ model = model_class.from_pretrained(model_path)
+ except (ImportError, AttributeError) as e:
+ print(f"Failed to import or load model: {e}")
+else:
+ model = AutoModelForCausalLM.from_pretrained(model_path)
+print(f"Model class: {type(model)}")
+#print(f"Model file: {type(model).__module__}")
+
+model_name = os.path.basename(model_path)
+print(f"Model name: {model_name}")
+
+prompt = "Hello world today"
+input_ids = tokenizer(prompt, return_tensors="pt").input_ids
+print(f"Input tokens: {input_ids}")
+print(f"Input text: {repr(prompt)}")
+print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
+
+with torch.no_grad():
+ outputs = model(input_ids, output_hidden_states=True)
+
+ # Extract hidden states from the last layer
+ # outputs.hidden_states is a tuple of (num_layers + 1) tensors
+ # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
+ last_hidden_states = outputs.hidden_states[-1]
+
+ # Get embeddings for all tokens
+ token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
+
+ print(f"Hidden states shape: {last_hidden_states.shape}")
+ print(f"Token embeddings shape: {token_embeddings.shape}")
+ print(f"Hidden dimension: {token_embeddings.shape[-1]}")
+ print(f"Number of tokens: {token_embeddings.shape[0]}")
+
+ # Save raw token embeddings
+ data_dir = Path("data")
+ data_dir.mkdir(exist_ok=True)
+ bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
+ txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
+
+ # Save all token embeddings as binary
+ print(token_embeddings)
+ token_embeddings.astype(np.float32).tofile(bin_filename)
+
+ # Save as text for inspection
+ with open(txt_filename, "w") as f:
+ for i, embedding in enumerate(token_embeddings):
+ for j, val in enumerate(embedding):
+ f.write(f"{i} {j} {val:.6f}\n")
+
+ # Print embeddings per token in the requested format
+ print("\nToken embeddings:")
+ tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
+ for i, embedding in enumerate(token_embeddings):
+ # Format: show first few values, ..., then last few values
+ if len(embedding) > 10:
+ # Show first 3 and last 3 values with ... in between
+ first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
+ last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
+ print(f"embedding {i}: {first_vals} ... {last_vals}")
+ else:
+ # If embedding is short, show all values
+ vals = " ".join(f"{val:8.6f}" for val in embedding)
+ print(f"embedding {i}: {vals}")
+
+ # Also show token info for reference
+ print(f"\nToken reference:")
+ for i, token in enumerate(tokens):
+ print(f" Token {i}: {repr(token)}")
+
+ print(f"Saved bin logits to: {bin_filename}")
+ print(f"Saved txt logist to: {txt_filename}")
+++ /dev/null
-#!/usr/bin/env python3
-
-import argparse
-import os
-import importlib
-import sys
-import torch
-import numpy as np
-
-from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
-from pathlib import Path
-
-unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
-
-parser = argparse.ArgumentParser(description='Process model with specified path')
-parser.add_argument('--model-path', '-m', help='Path to the model')
-args = parser.parse_args()
-
-model_path = os.environ.get('MODEL_PATH', args.model_path)
-if model_path is None:
- parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
-
-config = AutoConfig.from_pretrained(model_path)
-
-print("Model type: ", config.model_type)
-print("Vocab size: ", config.vocab_size)
-print("Hidden size: ", config.hidden_size)
-print("Number of layers: ", config.num_hidden_layers)
-print("BOS token id: ", config.bos_token_id)
-print("EOS token id: ", config.eos_token_id)
-
-print("Loading model and tokenizer using AutoTokenizer:", model_path)
-tokenizer = AutoTokenizer.from_pretrained(model_path)
-
-if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- class_name = f"{unreleased_model_name}ForCausalLM"
- print(f"Importing unreleased model module: {unreleased_module_path}")
-
- try:
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path)
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
-else:
- model = AutoModelForCausalLM.from_pretrained(model_path)
-print(f"Model class: {type(model)}")
-#print(f"Model file: {type(model).__module__}")
-
-model_name = os.path.basename(model_path)
-print(f"Model name: {model_name}")
-
-prompt = "Hello world today"
-input_ids = tokenizer(prompt, return_tensors="pt").input_ids
-print(f"Input tokens: {input_ids}")
-print(f"Input text: {repr(prompt)}")
-print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
-
-with torch.no_grad():
- outputs = model(input_ids, output_hidden_states=True)
-
- # Extract hidden states from the last layer
- # outputs.hidden_states is a tuple of (num_layers + 1) tensors
- # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
- last_hidden_states = outputs.hidden_states[-1]
-
- # Get embeddings for all tokens
- token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
-
- print(f"Hidden states shape: {last_hidden_states.shape}")
- print(f"Token embeddings shape: {token_embeddings.shape}")
- print(f"Hidden dimension: {token_embeddings.shape[-1]}")
- print(f"Number of tokens: {token_embeddings.shape[0]}")
-
- # Save raw token embeddings
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
- txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
-
- # Save all token embeddings as binary
- print(token_embeddings)
- token_embeddings.astype(np.float32).tofile(bin_filename)
-
- # Save as text for inspection
- with open(txt_filename, "w") as f:
- for i, embedding in enumerate(token_embeddings):
- for j, val in enumerate(embedding):
- f.write(f"{i} {j} {val:.6f}\n")
-
- # Print embeddings per token in the requested format
- print("\nToken embeddings:")
- tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
- for i, embedding in enumerate(token_embeddings):
- # Format: show first few values, ..., then last few values
- if len(embedding) > 10:
- # Show first 3 and last 3 values with ... in between
- first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
- last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
- print(f"embedding {i}: {first_vals} ... {last_vals}")
- else:
- # If embedding is short, show all values
- vals = " ".join(f"{val:8.6f}" for val in embedding)
- print(f"embedding {i}: {vals}")
-
- # Also show token info for reference
- print(f"\nToken reference:")
- for i, token in enumerate(tokens):
- print(f" Token {i}: {repr(token)}")
-
- print(f"Saved bin logits to: {bin_filename}")
- print(f"Saved txt logist to: {txt_filename}")