import argparse
import os
import importlib
-import sys
import torch
import numpy as np
-from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
+from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from pathlib import Path
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
model = model_class.from_pretrained(model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
+ print("Falling back to AutoModelForCausalLM")
+ model = AutoModelForCausalLM.from_pretrained(model_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
print(f"Model class: {type(model)}")
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
- with safe_open(file_path, framework="pt") as f:
+ with safe_open(file_path, framework="pt") as f: # type: ignore
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
# Single file model (original behavior)
print("Single-file model detected")
- with safe_open(single_file_path, framework="pt") as f:
+ with safe_open(single_file_path, framework="pt") as f: # type: ignore
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):