scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+ if vocab_size > len(tokens):
+ pad_count = vocab_size - len(tokens)
+ print(
+ f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
+ )
+ for i in range(1, pad_count + 1):
+ tokens.append(f"[PAD{i}]")
+ scores.append(-1000.0)
+ toktypes.append(SentencePieceTokenTypes.UNUSED)
+
assert len(tokens) == vocab_size
self.gguf_writer.add_tokenizer_model("llama")
class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2
+ def set_vocab(self):
+ try:
+ self._set_vocab_sentencepiece()
+ except FileNotFoundError:
+ self._set_vocab_gpt2()
+
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):