--- /dev/null
+#include "conv-transpose-1d.cuh"
+
+static __global__ void conv_transpose_1d_kernel(
+ const int s0, const int p0, const int d0, const int output_size,
+ const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
+ const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
+ const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
+ const float * src0, const float * src1, float * dst) {
+ int global_index = threadIdx.x + blockIdx.x * blockDim.x;
+ if (global_index >= output_size) {
+ return;
+ }
+
+ int out_index = global_index / dst_ne0;
+
+ float accumulator = 0;
+
+ for (int c = 0; c < src0_ne2; c++) {
+ int idx = global_index % dst_ne0;
+
+ int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0);
+ int input_offset = src1_ne0 * c;
+
+ for (int i = 0; i < src1_ne0; i++) {
+ if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) {
+ continue;
+ }
+ int weight_idx = idx - i*s0;
+
+ float kernel_weight = src0[kernel_offset + weight_idx];
+ float input_value = src1[input_offset+i];
+
+ accumulator += kernel_weight * input_value;
+ }
+ }
+ dst[global_index] = accumulator;
+}
+
+static void conv_transpose_1d_f32_f32_cuda(
+ const int s0, const int p0, const int d0, const int output_size,
+ const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
+ const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
+ const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
+ const float * src0, const float * src1, float * dst,
+ cudaStream_t stream) {
+
+ const int num_blocks = (output_size + CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE;
+ conv_transpose_1d_kernel<<<num_blocks,CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE, 0, stream>>>(
+ s0,p0,d0,output_size,
+ src0_ne0, src0_ne1, src0_ne2, src0_ne3,
+ src1_ne0, src1_ne1, src1_ne2, src1_ne3,
+ dst_ne0, dst_ne1, dst_ne2, dst_ne3,
+ src0,src1, dst);
+}
+
+void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src1_d = (const float *)src1->data;
+
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+
+ const int s0 = opts[0];
+ const int p0 = 0;//opts[3];
+ const int d0 = 1;//opts[4];
+
+ const int64_t kernel_size = ggml_nelements(src0);
+ const int64_t input_size = ggml_nelements(src1);
+ const int64_t output_size = ggml_nelements(dst);
+
+ conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size,
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+ src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
+ src0_d, src1_d, dst_d, stream);
+}