]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
opencl: optimize mxfp4 kernels (#16037)
authorShawn Gu <redacted>
Thu, 18 Sep 2025 19:03:34 +0000 (12:03 -0700)
committerGitHub <redacted>
Thu, 18 Sep 2025 19:03:34 +0000 (12:03 -0700)
- flatten mxfp4 and packed fp4->fp16 bit-wise convert function (replace lut)
- MoE kernel optimizations

---------

Co-authored-by: Li He <redacted>
ggml/src/ggml-opencl/CMakeLists.txt
ggml/src/ggml-opencl/ggml-opencl.cpp
ggml/src/ggml-opencl/kernels/cvt.cl
ggml/src/ggml-opencl/kernels/mul_mv_id_mxfp4_f32_flat.cl [new file with mode: 0644]
ggml/src/ggml-opencl/kernels/mul_mv_mxfp4_f32_flat.cl [new file with mode: 0644]

index 9a7ccbcff0605b78a551d21954f9abfd0b314836..1c06aa138bf07cc894e4c0c35b069c035b5fb43e 100644 (file)
@@ -83,8 +83,10 @@ set(GGML_OPENCL_KERNELS
     mul_mv_q4_0_f32_1d_16x_flat
     mul_mv_q6_k
     mul_mv_mxfp4_f32
+    mul_mv_mxfp4_f32_flat
     mul_mv_id_q4_0_f32_8x_flat
     mul_mv_id_mxfp4_f32
+    mul_mv_id_mxfp4_f32_flat
     mul_mm_f32_f32_l4_lm
     mul_mm_f16_f32_l4_lm
     mul
index b4ae2f882bf1b19868d5cae5e02f482ba0f79d40..2cb838b7139c9e91740345c77d725ec75f915311 100644 (file)
@@ -368,6 +368,7 @@ struct ggml_backend_opencl_context {
     cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
     cl_program program_mul_mv_q6_K;
     cl_program program_mul_mv_mxfp4_f32;
+    cl_program program_mul_mv_mxfp4_f32_flat;
     cl_program program_mul_mv_f16_f16;
     cl_program program_mul_mv_f16_f32_1row;
     cl_program program_mul_mv_f16_f32_l4;
@@ -402,6 +403,7 @@ struct ggml_backend_opencl_context {
     cl_program program_tsembd;
     cl_program program_mul_mv_id_q4_0_f32_8x_flat;
     cl_program program_mul_mv_id_mxfp4_f32;
+    cl_program program_mul_mv_id_mxfp4_f32_flat;
     cl_program program_mul_mm_f32_f32_l4_lm;
     cl_program program_mul_mm_f16_f32_l4_lm;
 
@@ -447,11 +449,12 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_mul_mat_f16_f32_tiled;
     cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
     cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
+    cl_kernel kernel_convert_block_mxfp4, kernel_restore_block_mxfp4;
     cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
     cl_kernel kernel_convert_block_q4_0_noshuffle;
     cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
     cl_kernel kernel_mul_mv_q6_K_f32;
-    cl_kernel kernel_mul_mv_mxfp4_f32;
+    cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
     cl_kernel kernel_im2col_f32, kernel_im2col_f16;
     cl_kernel kernel_argsort_f32_i32;
     cl_kernel kernel_sum_rows_f32;
@@ -469,6 +472,7 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_timestep_embedding;
     cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
     cl_kernel kernel_mul_mv_id_mxfp4_f32;
+    cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
     cl_kernel kernel_mul_mm_f32_f32_l4_lm;
     cl_kernel kernel_mul_mm_f16_f32_l4_lm;
 
@@ -765,6 +769,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
         CL_CHECK((backend_ctx->kernel_convert_block_q4_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
         CL_CHECK((backend_ctx->kernel_restore_block_q4_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
+        CL_CHECK((backend_ctx->kernel_convert_block_mxfp4  = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
+        CL_CHECK((backend_ctx->kernel_restore_block_mxfp4  = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
         GGML_LOG_CONT(".");
     }
 
@@ -1002,6 +1008,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         GGML_LOG_CONT(".");
     }
 
+    // mul_mv_mxfp4_f32_flat
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_mxfp4_f32_flat.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
+#endif
+        backend_ctx->program_mul_mv_mxfp4_f32_flat =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
     // mul_mv_f16_f16
     {
 #ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1727,6 +1749,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         GGML_LOG_CONT(".");
     }
 
+    // mul_mv_id_mxfp4_f32_flat
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_id_mxfp4_f32_flat.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
+#endif
+        backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
     // Adreno kernels
 #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
     // transpose
@@ -2391,6 +2429,51 @@ struct ggml_tensor_extra_cl_q4_0 {
     }
 };
 
+struct ggml_tensor_extra_cl_mxfp4 {
+    // Quantized values.
+    cl_mem q = nullptr;
+    // Quantized values in image1d_buffer_t.
+    cl_mem q_img = nullptr;
+    // Scales in E8M0.
+    cl_mem e = nullptr;
+    // Scales in image1d_buffer_t.
+    cl_mem e_img = nullptr;
+    // Size of quantized values.
+    size_t size_q = 0;
+    // Size of scales.
+    size_t size_e = 0;
+
+    ~ggml_tensor_extra_cl_mxfp4() {
+        reset();
+    }
+
+    void reset() {
+        // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
+        // They must be properly released so that the original buffer can be
+        // properly released to avoid memory leak.
+        if (q != nullptr) {
+            CL_CHECK(clReleaseMemObject(q));
+            q = nullptr;
+        }
+        if (e != nullptr) {
+            CL_CHECK(clReleaseMemObject(e));
+            e = nullptr;
+        }
+        if (q != nullptr) {
+            CL_CHECK(clReleaseMemObject(q_img));
+            q = nullptr;
+        }
+        // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
+        // enabled. They point to the images in ggml_backend_opencl_buffer_context.
+        // So, there is no need to release them here.
+        // TODO: initialize them for non SMALL_PATH path, or remove them.
+        q_img = nullptr;
+        e_img = nullptr;
+        size_q = 0;
+        size_e = 0;
+    }
+};
+
 //------------------------------------------------------------------------------
 // Backend API
 //------------------------------------------------------------------------------
@@ -2894,6 +2977,12 @@ struct ggml_backend_opencl_buffer_context {
         for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
             delete e;
         }
+        for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
+            delete e;
+        }
+        for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
+            delete e;
+        }
     }
 
     ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
@@ -2926,6 +3015,21 @@ struct ggml_backend_opencl_buffer_context {
         return extra;
     }
 
+    ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
+        ggml_tensor_extra_cl_mxfp4 * extra;
+        if (temp_tensor_extras_mxfp4.empty()) {
+            extra = new ggml_tensor_extra_cl_mxfp4();
+        } else {
+            extra = temp_tensor_extras_mxfp4.back();
+            temp_tensor_extras_mxfp4.pop_back();
+        }
+
+        temp_tensor_extras_mxfp4_in_use.push_back(extra);
+
+        extra->reset();
+        return extra;
+    }
+
     void reset() {
         for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
             temp_tensor_extras.push_back(e);
@@ -2936,6 +3040,11 @@ struct ggml_backend_opencl_buffer_context {
             temp_tensor_extras_q4_0.push_back(e);
         }
         temp_tensor_extras_q4_0_in_use.clear();
+
+        for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
+            temp_tensor_extras_mxfp4.push_back(e);
+        }
+        temp_tensor_extras_mxfp4_in_use.clear();
     }
 
     // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
@@ -2947,6 +3056,8 @@ struct ggml_backend_opencl_buffer_context {
     std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
     std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
     std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
+    std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
+    std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
 
     // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
     // before any tensor is initialized (at the beginning of alloc_tensor_range).
@@ -3289,6 +3400,76 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
         }
     #endif // GGML_OPENCL_USE_ADRENO_KERNELS
 
+        return;
+
+    }
+    if (tensor->type == GGML_TYPE_MXFP4) {
+        ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
+        GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
+
+        // Allocate the new extra and create aliases from the original.
+        ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+        ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
+
+        size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
+        size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
+        GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
+
+        cl_int err;
+        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
+            ggml_nbytes(tensor), NULL, &err);
+        CL_CHECK(err);
+        CL_CHECK(clEnqueueWriteBuffer(
+            queue, data_device, CL_TRUE, 0,
+            ggml_nbytes(tensor), data, 0, NULL, NULL));
+
+        // The original tensor memory is divided into scales and quants, i.e.,
+        // we first store scales, then quants.
+        cl_buffer_region region;
+
+        // Create subbuffer for scales.
+        region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
+        region.size = size_e;
+        extra->e = clCreateSubBuffer(
+            extra_orig->data_device, CL_MEM_READ_WRITE,
+            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
+        CL_CHECK(err);
+        auto previous_origin = region.origin;
+
+        // Create subbuffer for quants.
+        region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
+        region.size = size_q;
+        extra->q = clCreateSubBuffer(
+            extra_orig->data_device, CL_MEM_READ_WRITE,
+            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
+        CL_CHECK(err);
+
+        cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
+
+        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
+        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
+        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
+
+        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
+        size_t local_work_size[] = {64, 1, 1};
+
+        cl_event evt;
+        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+        CL_CHECK(clWaitForEvents(1, &evt));
+        CL_CHECK(clReleaseMemObject(data_device));
+
+        // Create image for Q
+        cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
+        cl_image_desc img_desc_q = {
+            CL_MEM_OBJECT_IMAGE1D_BUFFER,
+            static_cast<size_t>(ggml_nelements(tensor)/32*2),
+            0, 0, 0, 0, 0, 0, 0,
+            { extra->q }
+        };
+        extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
+
+        tensor->extra = extra;
+
         return;
     }
 #endif // GGML_OPENCL_SOA_Q
@@ -3337,6 +3518,31 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
         size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
         size_t local_work_size[] = {1, 1, 1};
 
+        cl_event evt;
+        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
+            global_work_size, local_work_size, 0, NULL, &evt));
+        CL_CHECK(clWaitForEvents(1, &evt));
+        CL_CHECK(clEnqueueReadBuffer(
+            queue, data_device, CL_TRUE, offset,
+            size, data, 0, NULL, NULL));
+        CL_CHECK(clReleaseMemObject(data_device));
+        return;
+    } else if (tensor->type == GGML_TYPE_MXFP4) {
+        ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
+
+        cl_int err;
+        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
+            ggml_nbytes(tensor), NULL, &err);
+        CL_CHECK(err);
+
+        cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
+        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
+        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
+        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
+
+        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
+        size_t local_work_size[] = {1, 1, 1};
+
         cl_event evt;
         CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
             global_work_size, local_work_size, 0, NULL, &evt));
@@ -3658,6 +3864,19 @@ static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tenso
         CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
         CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
         CL_CHECK(clFinish(queue));
+    } else if (tensor->type == GGML_TYPE_MXFP4) {
+        ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
+        GGML_ASSERT(extra);
+
+        size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
+        size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
+        GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
+        buf_q = malloc(size_q);
+        buf_d = malloc(size_e);
+
+        CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
+        CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
+        CL_CHECK(clFinish(queue));
     } else {
         // Read out the tensor from GPU memory.
         ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
@@ -6048,6 +6267,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
 
 #ifdef GGML_OPENCL_SOA_Q
     ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
+    ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
 #endif
 
     const int  ne00 = src0 ? src0->ne[0] : 0;
@@ -6752,6 +6972,45 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
             CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &r3));
             break;
         case GGML_TYPE_MXFP4: {
+#ifdef GGML_OPENCL_SOA_Q
+            kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
+
+            cl_mem q;
+            if (backend_ctx->gpu_family == INTEL) {
+                nth0 = 16;
+                nth1 = 2;
+                ndst = nth1*2;
+
+                q = extra0_mxfp4->q;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                nth0 = 64;
+                nth1 = 2;
+                ndst = nth1*2;
+
+                q = extra0_mxfp4->q_img;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &q));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_mxfp4->e));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb03));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne1));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &r2));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &r3));
+#else
             kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
 
             if (backend_ctx->gpu_family == INTEL) {
@@ -6785,6 +7044,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
             CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &r2));
             CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &r3));
             CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
+#endif
             break;
         }
         default:
@@ -6850,8 +7110,11 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
     cl_ulong offset2 = extra2->offset + src2->view_offs;
     cl_ulong offsetd = extrad->offset + dst->view_offs;
 
+    GGML_UNUSED(offset0);
+
 #ifdef GGML_OPENCL_SOA_Q
     ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
+    ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
 #endif
 
     const int ne00 = src0->ne[0];
@@ -6940,6 +7203,51 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
             break;
         }
         case GGML_TYPE_MXFP4: {
+#ifdef GGML_OPENCL_SOA_Q
+            kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
+
+            cl_mem q;
+            if (backend_ctx->gpu_family == INTEL) {
+                sgs  = 16;
+                nsg  = 2;
+                ndst = 2;
+
+                q = extra0_mxfp4->q;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                sgs  = 64;
+                nsg  = 1;
+                ndst = 4;
+
+                q = extra0_mxfp4->q_img;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &q));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_mxfp4->e));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extra2->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offset2));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne11));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne20));
+            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int),      &ne21));
+            CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
+            CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int),      &ne1));
+            CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &r2));
+            CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &r3));
+#else // GGML_OPENCL_SOA_Q
             kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
 
             if (backend_ctx->gpu_family == INTEL) {
@@ -6979,7 +7287,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
             CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int),      &r2));
             CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int),      &r3));
             CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
-
+#endif // GGML_OPENCL_SOA_Q
             break;
         }
         default:
index fe7975e3dbfc3d4dd402c9f198c85dd1cd004b48..3440ff50796c9570b1b6022cd14075afea87d706 100644 (file)
@@ -116,3 +116,49 @@ kernel void kernel_convert_block_q4_0_noshuffle(
 #endif
     }
 }
+
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+#define QK_MXFP4 32
+struct block_mxfp4 {
+    uchar e; // E8M0
+    uchar qs[QK_MXFP4 / 2];
+};
+
+//------------------------------------------------------------------------------
+// kernel_convert_block_mxfp4
+// Convert the block_mxfp4 format to 2 separate arrays (AOS -> SOA).
+// This kernel does not deshuffle the bits.
+//------------------------------------------------------------------------------
+kernel void kernel_convert_block_mxfp4(
+    global struct block_mxfp4 * src0,
+    global uchar * dst_q,
+    global uchar * dst_e
+) {
+    global struct block_mxfp4 * b = (global struct block_mxfp4 *) src0 + get_global_id(0);
+    global uchar * q = (global uchar *) dst_q + QK_MXFP4 / 2 * get_global_id(0);
+    global uchar * e = (global uchar *) dst_e + get_global_id(0);
+
+    *e = b->e;
+
+    for (int i = 0; i < QK_MXFP4 / 2; ++i) {
+        q[i] = b->qs[i];
+    }
+}
+
+kernel void kernel_restore_block_mxfp4(
+    global uchar * src_q,
+    global half  * src_e,
+    global struct block_mxfp4 * dst
+) {
+    global struct block_mxfp4 * b = (global struct block_mxfp4 *) dst + get_global_id(0);
+    global uchar * q = (global uchar *) src_q + QK_MXFP4 / 2 * get_global_id(0);
+    global uchar * e = (global uchar *) src_e + get_global_id(0);
+
+    b->e = *e;
+    for (int i = 0; i < QK_MXFP4 / 2; ++i) {
+        b->qs[i] = q[i];
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_id_mxfp4_f32_flat.cl b/ggml/src/ggml-opencl/kernels/mul_mv_id_mxfp4_f32_flat.cl
new file mode 100644 (file)
index 0000000..f65e86e
--- /dev/null
@@ -0,0 +1,176 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK_MXFP4 32
+
+static inline half4 mxfp4_to_fp16_packed(ushort fp4x4) {
+    ushort2 fp16_packed_a, fp16_packed_b, bias_a, bias_b, sign_a, sign_b;
+    fp16_packed_a.lo = (fp4x4 << 9) & 0x0E00;
+    fp16_packed_a.hi = (fp4x4 << 5) & 0x0E00;
+    fp16_packed_b.lo = (fp4x4 << 1) & 0x0E00;
+    fp16_packed_b.hi = (fp4x4 >> 3) & 0x0E00;
+
+    bias_a.lo = (fp16_packed_a.lo == 0) ? 0x0 : 0x3800;
+    bias_a.hi = (fp16_packed_a.hi == 0) ? 0x0 : 0x3800;
+    bias_b.lo = (fp16_packed_b.lo == 0) ? 0x0 : 0x3800;
+    bias_b.hi = (fp16_packed_b.hi == 0) ? 0x0 : 0x3800;
+
+    fp16_packed_a.lo = (fp16_packed_a.lo == 0x0200) ? 0x0 : fp16_packed_a.lo;
+    fp16_packed_a.hi = (fp16_packed_a.hi == 0x0200) ? 0x0 : fp16_packed_a.hi;
+    fp16_packed_b.lo = (fp16_packed_b.lo == 0x0200) ? 0x0 : fp16_packed_b.lo;
+    fp16_packed_b.hi = (fp16_packed_b.hi == 0x0200) ? 0x0 : fp16_packed_b.hi;
+
+    sign_a.lo = (fp4x4 << 12) & 0x8000;
+    sign_a.hi = (fp4x4 << 8) & 0x8000;
+    sign_b.lo = (fp4x4 << 4) & 0x8000;
+    sign_b.hi = fp4x4 & 0x8000;
+
+    fp16_packed_a = sign_a + bias_a + fp16_packed_a;
+    fp16_packed_b = sign_b + bias_b + fp16_packed_b;
+
+    return as_half4((ushort4)(fp16_packed_a, fp16_packed_b));
+}
+
+static inline float e8m0_to_fp32(uchar x) {
+    int bits;
+    bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
+    return as_float(bits);
+}
+
+#ifdef INTEL_GPU
+#define N_R0_MXFP4 2 // number of rows each subgroup works on
+#define N_SG_MXFP4 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_MXFP4 4
+#define N_SG_MXFP4 1
+#define N_SIMDWIDTH 64
+#define SRC0Q_IMG
+#endif
+
+kernel void kernel_mul_mv_id_mxfp4_f32_flat(
+#ifdef SRC0Q_IMG
+    __read_only image1d_buffer_t src0_q,
+#else
+    global uchar * src0_q,
+#endif
+    global uchar * src0_e,
+    global uchar * src1,
+    ulong         offset1,
+    global uchar * src2,
+    ulong         offset2,
+    global uchar * dst,
+    ulong         offsetd,
+    int           ne00,
+    ulong         nb01,
+    ulong         nb02,
+    ulong         nb03,
+    int           ne11,
+    int           ne12,
+    ulong         nb11,
+    ulong         nb12,
+    ulong         nb13,
+    int           ne20,
+    int           ne21,
+    ulong         nb21,
+    int           ne0,
+    int           ne1,
+    int           r2,
+    int           r3
+) {
+    dst  = dst  + offsetd;
+
+    const int iid1 = get_group_id(2) / ne20;
+    const int idx  = get_group_id(2) % ne20;
+
+    uint i02 = ((global uint *) (src2 + offset2 + iid1 * nb21))[idx];
+
+    int i11 = idx % ne11;
+
+    int nb = ne00 / QK_MXFP4;
+
+    uint src0_off = i02*nb02;
+    src0_off /= 17; // 17 = sizeof(block_mxfp4)
+
+    src0_e = src0_e + src0_off;
+
+    dst = dst + (idx * ne0 + iid1 * ne1 * ne0) * sizeof(float);
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+
+    int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
+
+    uint offset_src0 = first_row*nb01;
+    offset_src0 /= 17; // 17 = sizeof(block_mxfp4)
+#ifdef SRC0Q_IMG
+    ulong offset_q = src0_off + offset_src0;
+#else
+    src0_q = src0_q + src0_off*16;
+    global uchar16 * x_q = (global uchar16 *)(src0_q) + offset_src0;
+#endif
+    global uchar * x_e = src0_e + offset_src0;
+
+    const short ix = get_sub_group_local_id() >> 1;
+    const short it = get_sub_group_local_id() & 1;
+
+    float sumf[N_R0_MXFP4] = {0.f};
+
+    src1 = src1 + offset1 + i11 * nb11 + iid1 * nb12;
+    global float * y   = (global float *) (src1 + r1 * nb11);
+    global float * yb = y + ix * QK_MXFP4 + it * 8;
+
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH / 2) {
+        global float4 * y4 = (global float4 *)yb;
+
+        #pragma unroll
+        for (short row = 0; row < N_R0_MXFP4; row++) {
+            uchar xb_e = x_e[row * nb + ib];
+#ifdef SRC0Q_IMG
+            ushort4 xb_q = as_ushort4(read_imageui(src0_q, (offset_q + row * nb + ib) * 2 + it).xy);
+#else
+            ushort4 xb_q = vload4(0, (global ushort *)((global uchar *)(x_q + row * nb + ib) + 8 * it));
+#endif
+
+            half4 fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s0);
+            half4 fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s1);
+            float4 acc1 = y4[0] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
+            acc1 += y4[4] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
+
+            fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s2);
+            fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s3);
+            acc1 += y4[1] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
+            acc1 += y4[5] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
+
+            sumf[row] += e8m0_to_fp32(xb_e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
+        }
+
+        yb += (N_SIMDWIDTH / 2) * QK_MXFP4;
+    }
+
+    global float * dst_f32 = (global float *)dst + (ulong)r1 * ne0;
+
+    for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
+        float sum_all = sub_group_reduce_add(sumf[row]);
+        if (get_sub_group_local_id() == 0) {
+            dst_f32[first_row + row] = sum_all;
+        }
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_mxfp4_f32_flat.cl b/ggml/src/ggml-opencl/kernels/mul_mv_mxfp4_f32_flat.cl
new file mode 100644 (file)
index 0000000..3d5a923
--- /dev/null
@@ -0,0 +1,167 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK_MXFP4 32
+
+static inline half4 mxfp4_to_fp16_packed(ushort fp4x4) {
+    ushort2 fp16_packed_a, fp16_packed_b, bias_a, bias_b, sign_a, sign_b;
+    fp16_packed_a.lo = (fp4x4 << 9) & 0x0E00;
+    fp16_packed_a.hi = (fp4x4 << 5) & 0x0E00;
+    fp16_packed_b.lo = (fp4x4 << 1) & 0x0E00;
+    fp16_packed_b.hi = (fp4x4 >> 3) & 0x0E00;
+
+    bias_a.lo = (fp16_packed_a.lo == 0) ? 0x0 : 0x3800;
+    bias_a.hi = (fp16_packed_a.hi == 0) ? 0x0 : 0x3800;
+    bias_b.lo = (fp16_packed_b.lo == 0) ? 0x0 : 0x3800;
+    bias_b.hi = (fp16_packed_b.hi == 0) ? 0x0 : 0x3800;
+
+    fp16_packed_a.lo = (fp16_packed_a.lo == 0x0200) ? 0x0 : fp16_packed_a.lo;
+    fp16_packed_a.hi = (fp16_packed_a.hi == 0x0200) ? 0x0 : fp16_packed_a.hi;
+    fp16_packed_b.lo = (fp16_packed_b.lo == 0x0200) ? 0x0 : fp16_packed_b.lo;
+    fp16_packed_b.hi = (fp16_packed_b.hi == 0x0200) ? 0x0 : fp16_packed_b.hi;
+
+    sign_a.lo = (fp4x4 << 12) & 0x8000;
+    sign_a.hi = (fp4x4 << 8) & 0x8000;
+    sign_b.lo = (fp4x4 << 4) & 0x8000;
+    sign_b.hi = fp4x4 & 0x8000;
+
+    fp16_packed_a = sign_a + bias_a + fp16_packed_a;
+    fp16_packed_b = sign_b + bias_b + fp16_packed_b;
+
+    return as_half4((ushort4)(fp16_packed_a, fp16_packed_b));
+}
+
+static inline float e8m0_to_fp32(uchar x) {
+    int bits;
+    bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
+    return as_float(bits);
+}
+
+#ifdef INTEL_GPU
+#define N_R0_MXFP4 2 // number of rows each subgroup works on
+#define N_SG_MXFP4 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_MXFP4 2
+#define N_SG_MXFP4 2
+#define N_SIMDWIDTH 64
+#define SRC0Q_IMG
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_mxfp4_f32_flat(
+#ifdef SRC0Q_IMG
+    __read_only image1d_buffer_t src0_q,
+#else
+    global uchar * src0_q,
+#endif
+    global uchar * src0_e,
+    global uchar * src1,
+    ulong          offset1,
+    global uchar * dst,
+    ulong          offsetd,
+    int ne00,
+    ulong nb01,
+    ulong nb02,
+    ulong nb03,
+    int ne12,
+    ulong nb11,
+    ulong nb12,
+    ulong nb13,
+    int ne0,
+    int ne1,
+    int r2,
+    int r3
+) {
+    src1 = src1 + offset1;
+    dst = dst + offsetd;
+
+    int nb = ne00 / QK_MXFP4;
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+    int im = get_group_id(2);
+
+    int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
+
+    uint i12 = im % ne12;
+    uint i13 = im / ne12;
+
+    uint offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+    // 17 = sizeof(block_mxfp4)
+    offset_src0 /= 17;
+#ifdef SRC0Q_IMG
+    ulong offset_q = offset_src0;
+#else
+    global uchar16 * x_q = (global uchar16 *)(src0_q) + offset_src0;
+#endif
+    global uchar * x_e = src0_e + offset_src0;
+
+    ulong offset_src1 = r1 * nb11 + i12 * nb12 + i13 * nb13;
+    global float * y = (global float *)(src1 + offset_src1);
+
+    const short ix = get_sub_group_local_id() >> 1;  // 0...15
+    const short it = get_sub_group_local_id() & 1;  // 0 or 1
+
+    float sumf[N_R0_MXFP4] = {0.f};
+
+    global float * yb = y + ix * QK_MXFP4 + it * 8;
+
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+        global float4 * y4 = (global float4 *)yb;
+
+        #pragma unroll
+        for (short row = 0; row < N_R0_MXFP4; row++) {
+            uchar xb_e = x_e[row * nb + ib];
+#ifdef SRC0Q_IMG
+            ushort4 xb_q = as_ushort4(read_imageui(src0_q, (offset_q + row * nb + ib) * 2 + it).xy);
+#else
+            ushort4 xb_q = vload4(0, (global ushort *)((global uchar *)(x_q + row * nb + ib) + 8 * it));
+#endif
+
+            half4 fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s0);
+            half4 fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s1);
+            float4 acc1 = y4[0] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
+            acc1 += y4[4] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
+
+            fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s2);
+            fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s3);
+            acc1 += y4[1] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
+            acc1 += y4[5] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
+
+            sumf[row] += e8m0_to_fp32(xb_e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
+        }
+
+        yb += (N_SIMDWIDTH/2) * QK_MXFP4;
+    }
+
+    global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
+
+    for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
+        float sum_all = sub_group_reduce_add(sumf[row]);
+        if (get_sub_group_local_id() == 0) {
+            dst_f32[first_row + row] = sum_all;
+        }
+    }
+}