IQ3_S = 21
IQ2_S = 22
IQ4_XS = 23
+ I8 = 24
+ I16 = 25
+ I32 = 26
class GGUFEndian(IntEnum):
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
+ GGMLQuantizationType.I8: (1, 1),
+ GGMLQuantizationType.I16: (1, 2),
+ GGMLQuantizationType.I32: (1, 4),
}
elif ggml_type == GGMLQuantizationType.F16:
item_count = n_elems
item_type = np.float16
+ elif ggml_type == GGMLQuantizationType.I8:
+ item_count = n_elems
+ item_type = np.int8
+ elif ggml_type == GGMLQuantizationType.I16:
+ item_count = n_elems
+ item_type = np.int16
+ elif ggml_type == GGMLQuantizationType.I32:
+ item_count = n_elems
+ item_type = np.int32
else:
item_count = n_bytes
item_type = np.uint8
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
- if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
- raise ValueError("Only F32 and F16 tensors are supported for now")
-
encoded_name = name.encode("utf8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
for i in range(n_dims):
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
- dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
+ if tensor_shape == np.float32:
+ dtype = GGMLQuantizationType.F32
+ elif tensor_dtype == np.float16:
+ dtype = GGMLQuantizationType.F16
+ elif tensor_dtype == np.int8:
+ dtype = GGMLQuantizationType.I8
+ elif tensor_dtype == np.int16:
+ dtype = GGMLQuantizationType.I16
+ elif tensor_dtype == np.int32:
+ dtype = GGMLQuantizationType.I32
+ else:
+ raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
else:
dtype = raw_dtype
self.ti_data += self._pack("I", dtype)