--- /dev/null
+ARG UBUNTU_VERSION=22.04
+# This needs to generally match the container host's environment.
+ARG CUDA_VERSION=11.7.1
+# Target the CUDA build image
+ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
+# Target the CUDA runtime image
+ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
+
+FROM ${BASE_CUDA_DEV_CONTAINER} as build
+
+# Unless otherwise specified, we make a fat build.
+ARG CUDA_DOCKER_ARCH=all
+
+RUN apt-get update && \
+ apt-get install -y build-essential git
+
+WORKDIR /app
+
+COPY . .
+
+# Set nvcc architecture
+ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
+# Enable cuBLAS
+ENV LLAMA_CUBLAS=1
+
+RUN make
+
+FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
+
+COPY --from=build /app/server /server
+
+ENTRYPOINT [ "/server" ]
--- /dev/null
+ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
+ARG UBUNTU_VERSION=22.04
+
+FROM intel/hpckit:$ONEAPI_VERSION as build
+
+RUN apt-get update && \
+ apt-get install -y git
+
+WORKDIR /app
+
+COPY . .
+
+# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
+RUN mkdir build && \
+ cd build && \
+ cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
+ cmake --build . --config Release --target main server
+
+FROM ubuntu:$UBUNTU_VERSION as runtime
+
+COPY --from=build /app/build/bin/server /server
+
+ENV LC_ALL=C.utf8
+
+ENTRYPOINT [ "/server" ]
--- /dev/null
+ARG UBUNTU_VERSION=22.04
+
+# This needs to generally match the container host's environment.
+ARG ROCM_VERSION=5.6
+
+# Target the CUDA build image
+ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
+
+FROM ${BASE_ROCM_DEV_CONTAINER} as build
+
+# Unless otherwise specified, we make a fat build.
+# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
+# This is mostly tied to rocBLAS supported archs.
+ARG ROCM_DOCKER_ARCH=\
+ gfx803 \
+ gfx900 \
+ gfx906 \
+ gfx908 \
+ gfx90a \
+ gfx1010 \
+ gfx1030 \
+ gfx1100 \
+ gfx1101 \
+ gfx1102
+
+COPY requirements.txt requirements.txt
+COPY requirements requirements
+
+RUN pip install --upgrade pip setuptools wheel \
+ && pip install -r requirements.txt
+
+WORKDIR /app
+
+COPY . .
+
+# Set nvcc architecture
+ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
+# Enable ROCm
+ENV LLAMA_HIPBLAS=1
+ENV CC=/opt/rocm/llvm/bin/clang
+ENV CXX=/opt/rocm/llvm/bin/clang++
+
+RUN make
+
+ENTRYPOINT [ "/app/server" ]
--- /dev/null
+ARG UBUNTU_VERSION=22.04
+
+FROM ubuntu:$UBUNTU_VERSION as build
+
+RUN apt-get update && \
+ apt-get install -y build-essential git
+
+WORKDIR /app
+
+COPY . .
+
+RUN make
+
+FROM ubuntu:$UBUNTU_VERSION as runtime
+
+COPY --from=build /app/server /server
+
+ENV LC_ALL=C.utf8
+
+ENTRYPOINT [ "/server" ]
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
+ - { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
+ - { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
+ - { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
+ - { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
* Create a folder to store big models & intermediate files (ex. /llama/models)
#### Images
-We have two Docker images available for this project:
+We have three Docker images available for this project:
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
+3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executabhle file. (platforms: `linux/amd64`, `linux/arm64`)
Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
+- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
+- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
+or with a server image:
+
+```bash
+docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
+```
+
### Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
+docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
+3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
#### Usage
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
+docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```
### Contributing
The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
+### Docker:
+```bash
+docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
+
+# or, with CUDA:
+docker run -p 8080:8080 -v /path/to/models:/models --gpus all ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
+```
+
## Testing with CURL
Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.