+++ /dev/null
-#define CUB_IGNORE_DEPRECATED_CPP_DIALECT
-#include "whisper-mel-cuda.hpp"
-#include "whisper.h"
-
-#include <ggml-backend.h>
-
-#include <cuda.h>
-#include <cuda_runtime.h>
-#include <cufft.h>
-#include <cublas_v2.h>
-#include <cuComplex.h>
-#include <cub/device/device_reduce.cuh>
-#include <device_launch_parameters.h>
-
-#include <algorithm>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4324) // added padding
-#endif
-
-namespace {
-
-static const char* cufftGetErrorString(cufftResult_t res) {
- switch (res) {
- case CUFFT_SUCCESS: return "The cuFFT operation was successful";
- case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle";
- case CUFFT_ALLOC_FAILED: return "cuFFT failed to allocate GPU or CPU memory";
- case CUFFT_INVALID_TYPE: return "No longer used";
- case CUFFT_INVALID_VALUE: return "User specified an invalid pointer or parameter";
- case CUFFT_INTERNAL_ERROR: return "Driver or internal cuFFT library error";
- case CUFFT_EXEC_FAILED: return "Failed to execute an FFT on the GPU";
- case CUFFT_SETUP_FAILED: return "The cuFFT library failed to initialize";
- case CUFFT_INVALID_SIZE: return "User specified an invalid transform size";
- case CUFFT_UNALIGNED_DATA: return "No longer used";
- case CUFFT_INCOMPLETE_PARAMETER_LIST: return "Missing parameters in call";
- case CUFFT_INVALID_DEVICE: return "Execution of a plan was on different GPU than plan creation";
- case CUFFT_PARSE_ERROR: return "Internal plan database error";
- case CUFFT_NO_WORKSPACE: return "No workspace has been provided prior to plan execution";
- case CUFFT_NOT_IMPLEMENTED: return "Function does not implement functionality for parameters given.";
- case CUFFT_LICENSE_ERROR: return "Used in previous versions.";
- case CUFFT_NOT_SUPPORTED: return "Operation is not supported for parameters given.";
- default: return "Unknown error";
- }
-}
-
-#define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString)
-
-__global__ void k_fill_stft_input(
- const float * padded_samples,
- const int n_frames,
- const float * hann_window,
- float * stft_in
-) {
- auto y = blockIdx.y * blockDim.y + threadIdx.y;
- // if (y >= n_frames) return;
- auto x = blockIdx.x * blockDim.x + threadIdx.x;
- // if (x >= WHISPER_N_FFT) return;
-
- auto line = padded_samples + y * WHISPER_HOP_LENGTH;
- auto outLine = stft_in + y * WHISPER_N_FFT;
-
- outLine[x] = line[x] * hann_window[x];
-}
-
-__global__ void k_calc_magnitudes(
- const cuComplex * stft_out,
- const int n_frames,
- float * magnitudes
-) {
- auto y = blockIdx.y * blockDim.y + threadIdx.y;
- // if (y >= n_frames) return;
- auto x = blockIdx.x * blockDim.x + threadIdx.x;
- // if (x >= WHISPER_N_FFT_HALF) return;
-
- auto idx = y * WHISPER_N_FFT_HALF + x;
-
- auto r = stft_out[idx].x;
- auto i = stft_out[idx].y;
- magnitudes[idx] = r * r + i * i;
-}
-
-__global__ void k_calc_log_mel(
- const float * mel_data,
- const int n_mel,
- const float * max_val,
- float * log_mel
-) {
- auto x = blockIdx.x * blockDim.x + threadIdx.x;
- if (x >= n_mel) return;
-
- float val = mel_data[x];
-
- constexpr float e = 1e-10f;
- if (val < e) val = e;
-
- val = log10(val);
-
- const float max = log10(*max_val) - 8.f;
- if (val < max) val = max;
-
- log_mel[x] = (val + 4) / 4;
-}
-
-static void fill_stft_input(
- const float * padded_samples,
- int n_frames,
- const float * hann_window,
- float * stft_in,
- cudaStream_t stream
-) {
- dim3 block(WHISPER_N_FFT, 1);
- dim3 grid(1, n_frames);
-
- k_fill_stft_input<<<grid, block, 0, stream>>>(padded_samples, n_frames, hann_window, stft_in);
-}
-
-static void calc_magnitudes(
- const cuComplex * stft_out,
- int n_frames,
- float * magnitudes,
- cudaStream_t stream
-) {
- dim3 block(WHISPER_N_FFT_HALF, 1);
- dim3 grid(1, n_frames);
- k_calc_magnitudes<<<grid, block, 0, stream>>>(stft_out, n_frames, magnitudes);
-}
-
-constexpr auto LOG_MEL_PREFIX_SIZE = 256;
-
-static void calc_log_mel(
- const float * mel_data,
- int n_mel,
- void * tempStorage,
- int tempStorageSize,
- float * log_mel,
- cudaStream_t stream
-) {
- float * max_val = reinterpret_cast<float *>(tempStorage);
- void * maxTemp = reinterpret_cast<char*>(tempStorage) + LOG_MEL_PREFIX_SIZE;
-
- size_t nbytes = size_t(tempStorageSize - LOG_MEL_PREFIX_SIZE);
- cub::DeviceReduce::Max(maxTemp, nbytes, mel_data, max_val, n_mel, stream);
-
- int block = 256;
- int grid = (n_mel + block - 1) / block;
-
- k_calc_log_mel<<<grid, block, 0, stream>>>(mel_data, n_mel, max_val, log_mel);
-}
-
-class mel_calc_cuda : public whisper_mel_calc {
- const int m_n_mel;
-
- ggml_backend_t m_backend = nullptr;
- int m_device = -1;
-
- cudaStream_t m_stream = nullptr;
- cublasHandle_t m_cublas_handle = nullptr;
-
- float * m_hann_window = nullptr;
-
- float * m_filters = nullptr;
-
- // max samples for which we have allocated memory for the temp working areas below (cufft, log_mel)
- int m_n_max_samples = 0;
-
- size_t m_cufft_workspace_size = 0;
- void * m_cufft_workspace = nullptr;
-
- size_t m_log_mel_temp_storage_size = 0;
- void * m_log_mel_temp_storage = nullptr;
-public:
- mel_calc_cuda(ggml_backend_t backend, const whisper_filters & filters)
- : m_n_mel(filters.n_mel)
- , m_backend(backend)
- {
- ggml_backend_cuda_context* cuda_ctx = (ggml_backend_cuda_context*)m_backend->context;
- m_device = cuda_ctx->device;
-
- if (ggml_cuda_info().devices[m_device].cc < 600) {
- // we've only tesed on 6.0 and higher and we've had reports of crashes on 5.0:
- // https://github.com/ggerganov/whisper.cpp/issues/2230
- // to be safe forbid anything below 6.0
- throw std::runtime_error("CUDA compute capability 6.0 or higher is required");
- }
-
- ggml_cuda_set_device(m_device);
-
- if (filters.n_fft != WHISPER_N_FFT_HALF) {
- throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF");
- }
- assert(filters.data.size() == filters.n_mel * WHISPER_N_FFT_HALF);
-
- CUDA_CHECK(cudaStreamCreate(&m_stream));
- CUBLAS_CHECK(cublasCreate(&m_cublas_handle));
- CUBLAS_CHECK(cublasSetMathMode(m_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH));
- CUBLAS_CHECK(cublasSetStream(m_cublas_handle, m_stream));
-
- // create Hann window
- {
- auto hw = whisper_mel_calc::hann_window();
- CUDA_CHECK(cudaMallocAsync(&m_hann_window, hw.len * sizeof(float), m_stream));
- CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
- }
-
- // fill filters
- {
- auto& f = filters.data;
- CUDA_CHECK(cudaMallocAsync(&m_filters, f.size() * sizeof(float), m_stream));
- CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
- }
-
- // preallocate working areas enough for the most common cases (<= 30s)
- ensure_working_areas(WHISPER_N_SAMPLES);
- }
-
- ~mel_calc_cuda() {
- ggml_cuda_set_device(m_device);
- CUDA_CHECK(cudaStreamSynchronize(m_stream));
- CUDA_CHECK(cudaStreamDestroy(m_stream));
- CUDA_CHECK(cudaFree(m_hann_window));
- CUDA_CHECK(cudaFree(m_cufft_workspace));
- CUDA_CHECK(cudaFree(m_filters));
- CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
- }
-
- void ensure_working_areas(int n_samples) {
- if (n_samples <= m_n_max_samples) {
- return;
- }
-
- const auto max_padded_samples = n_samples + WHISPER_N_SAMPLES + WHISPER_N_FFT;
- const auto max_frames = 1 + (max_padded_samples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
-
- // cufft workspace
- {
- if (m_cufft_workspace) {
- CUDA_CHECK(cudaFree(m_cufft_workspace));
- m_cufft_workspace_size = 0;
- m_cufft_workspace = nullptr;
- }
- CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, max_frames, &m_cufft_workspace_size));
- CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
- }
-
- // device reduce working area
- {
- if (m_log_mel_temp_storage) {
- CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
- m_log_mel_temp_storage_size = 0;
- m_log_mel_temp_storage = nullptr;
- }
-
- const auto max_mels = 160;
-
- size_t nbytes = 0;
- float* temp = nullptr;
- cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, max_frames * max_mels);
- m_log_mel_temp_storage_size = nbytes + LOG_MEL_PREFIX_SIZE;
-
- CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
- }
-
- m_n_max_samples = n_samples;
- }
-
- virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) override {
- ggml_cuda_set_device(m_device);
- ensure_working_areas(samples.len);
-
- const size_t mirror_pad = WHISPER_N_FFT / 2;
- const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
-
- // pad
- std::vector<float> padded_samples(padded_size);
- std::reverse_copy(samples.data + 1, samples.data + 1 + mirror_pad, padded_samples.begin()); // reflect
- std::copy(samples.data, samples.data + samples.len, padded_samples.begin() + mirror_pad); // copy
-
- // fill the rest of the data
- // it should canonically be mirrored at the end as well,
- // but we just assume the last MEL_FRAME_SIZE/2 samples are zeros
- std::fill(padded_samples.begin() + mirror_pad + samples.len, padded_samples.end(), 0.f);
-
- const auto n_frames = 1 + (padded_samples.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
-
- float * cu_padded_samples = nullptr;
- CUDA_CHECK(cudaMallocAsync(&cu_padded_samples, padded_samples.size() * sizeof(float), m_stream));
- CUDA_CHECK(cudaMemcpyAsync(cu_padded_samples, padded_samples.data(), padded_samples.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
-
- float * stft_in = nullptr; // contiguous buffer for stft input
- CUDA_CHECK(cudaMallocAsync(&stft_in, n_frames * WHISPER_N_FFT * sizeof(float), m_stream));
-
- fill_stft_input(cu_padded_samples, int(n_frames), m_hann_window, stft_in, m_stream);
-
- cufftComplex* stft_out;
- CUDA_CHECK(cudaMallocAsync(&stft_out, n_frames * WHISPER_N_FFT_HALF * sizeof(cufftComplex), m_stream));
-
- cufftHandle plan;
- CUFFT_CHECK(cufftCreate(&plan));
- CUFFT_CHECK(cufftSetAutoAllocation(plan, 0));
- {
- size_t waSize;
- CUFFT_CHECK(cufftMakePlan1d(plan, WHISPER_N_FFT, CUFFT_R2C, int(n_frames), &waSize));
- assert(waSize <= m_cufft_workspace_size);
- CUFFT_CHECK(cufftSetWorkArea(plan, m_cufft_workspace));
- CUFFT_CHECK(cufftSetStream(plan, m_stream));
- }
- CUFFT_CHECK(cufftExecR2C(plan, stft_in, stft_out));
-
- const auto n_mag_frames = n_frames - 1; // drop last frame
- float * magnitudes;
- CUDA_CHECK(cudaMallocAsync(&magnitudes, n_mag_frames * WHISPER_N_FFT_HALF * sizeof(float), m_stream));
- calc_magnitudes(stft_out, int(n_mag_frames), magnitudes, m_stream);
-
- float * mel_data = nullptr;
- CUDA_CHECK(cudaMallocAsync(&mel_data, m_n_mel * n_mag_frames * sizeof(float), m_stream));
-
- const float fone = 1.0f, fzero = 0.0f;
- CUBLAS_CHECK(cublasSgemm(m_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N,
- int(n_mag_frames), m_n_mel, WHISPER_N_FFT_HALF,
- &fone,
- magnitudes, WHISPER_N_FFT_HALF,
- m_filters, WHISPER_N_FFT_HALF,
- &fzero,
- mel_data, int(n_mag_frames)));
-
- whisper_mel ret;
- // Calculate semi-padded sample length to ensure compatibility
- int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
- whisper_mel_init(ret, m_backend, int(n_mag_frames), n_len_org, m_n_mel);
- assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float));
-
- float* log_mels = reinterpret_cast<float*>(ret.tensor->data);
-
- calc_log_mel(
- mel_data, int(m_n_mel * n_mag_frames),
- m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
- log_mels, m_stream);
-
- CUDA_CHECK(cudaStreamSynchronize(m_stream));
-
- // cleanup
- CUFFT_CHECK(cufftDestroy(plan));
- CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
- CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
- CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
- CUDA_CHECK(cudaFreeAsync(stft_in, m_stream));
- CUDA_CHECK(cudaFreeAsync(cu_padded_samples, m_stream));
-
- return ret;
- }
-};
-
-}
-
-whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) {
- try {
- return new mel_calc_cuda(backend, filters);
- }
- catch (...) {
- // TODO: log error (but for this we would have to expose the log state to be accessible here)
- return nullptr;
- }
-}
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
-#include "whisper-mel-cuda.hpp"
#endif
#ifdef GGML_USE_SYCL
#include "ggml-alloc.h"
#include "ggml-backend.h"
-#include "whisper-mel.hpp"
-
#include <atomic>
#include <algorithm>
#include <cassert>
static std::vector<uint32_t> get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int32_t n_text_layer, int32_t n_head);
+struct whisper_mel {
+ int n_len;
+ int n_len_org;
+ int n_mel;
+
+ std::vector<float> data;
+};
+
+struct whisper_filters {
+ int32_t n_mel;
+ int32_t n_fft;
+
+ std::vector<float> data;
+};
+
struct whisper_vocab {
using id = int32_t;
using token = std::string;
whisper_kv_cache kv_pad;
whisper_mel mel;
- whisper_mel_calc * mel_calc = nullptr;
- whisper_mel_calc * mel_calc_fallback = nullptr;
whisper_batch batch;
struct ggml_tensor * embd_enc = nullptr;
// helpers for GPU offloading
+ std::vector<float> inp_mel;
std::vector<float> inp_mask;
// decode output (2-dimensional array: [n_tokens][n_vocab])
static struct ggml_cgraph * whisper_build_graph_conv(
whisper_context & wctx,
- whisper_state & wstate,
- const int mel_offset) {
+ whisper_state & wstate) {
const auto & model = wctx.model;
const auto & hparams = model.hparams;
ggml_cgraph * gf = ggml_new_graph(ctx0);
- GGML_ASSERT(wstate.mel.tensor);
-
- ggml_tensor * mel_inp = wstate.mel.tensor;
- ggml_set_input(mel_inp);
-
- ggml_tensor * mel;
- if (ggml_nelements(mel_inp) > 0) {
- const int n_len = int(mel_inp->ne[0]);
- const int out_s = 2 * n_ctx;
- const int i0 = std::min(mel_offset, n_len);
- const int i1 = std::min(mel_offset + out_s, n_len);
- const int mel_s = i1 - i0;
-
- assert(mel_inp->type == GGML_TYPE_F32);
- assert(mel_inp->ne[1] == n_mels);
-
- ggml_tensor * cur = ggml_view_2d(ctx0, mel_inp, out_s, n_mels, mel_inp->nb[1], ggml_row_size(mel_inp->type, i0));
-
- if (mel_s < out_s) {
- mel = ggml_pad(ctx0, cur, out_s - mel_s, 0, 0, 0);
- } else {
- mel = ggml_cont(ctx0, cur);
- }
- } else {
- // empty mel - just create a dummy tensor with the correct size
- mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
- }
-
+ struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
ggml_set_name(mel, "mel");
+ ggml_set_input(mel);
struct ggml_tensor * cur = nullptr;
{
auto & sched = wstate.sched_conv.sched;
- ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate, mel_offset);
+ ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
// should never happen as we pre-allocate the memory
return false;
}
- if (!ggml_graph_compute_helper(sched, gf, n_threads)) {
- return false;
+ struct ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
+
+ // set the input
+ {
+ const auto & mel_inp = wstate.mel;
+ const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : wctx.model.hparams.n_audio_ctx;
+
+ assert(mel->type == GGML_TYPE_F32);
+ assert(mel_inp.n_mel == wctx.model.hparams.n_mels);
+
+ wstate.inp_mel.resize(ggml_nelements(mel));
+
+ float * dst = wstate.inp_mel.data();
+ memset(dst, 0, ggml_nbytes(mel));
+
+ const int i0 = std::min(mel_offset, mel_inp.n_len);
+ const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
+
+ for (int j = 0; j < mel_inp.n_mel; ++j) {
+ for (int i = i0; i < i1; ++i) {
+ dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
+ }
+ }
+
+ ggml_backend_tensor_set(mel, wstate.inp_mel.data(), 0, ggml_nelements(mel)*sizeof(float));
}
- if (whisper_encode_external(wstate)) {
- ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
- assert(mel->ne[1] == wctx.model.hparams.n_mels);
- GGML_UNUSED(mel);
+ if (!whisper_encode_external(wstate)) {
+ if (!ggml_graph_compute_helper(sched, gf, n_threads)) {
+ return false;
+ }
+ } else {
#if defined(WHISPER_USE_COREML)
whisper_coreml_encode(wstate.ctx_coreml, mel->ne[0], mel->ne[1], (float *) mel->data, (float *) wstate.embd_enc->data);
#elif defined(WHISPER_USE_OPENVINO)
} global_cache;
}
-// Mel spectrogram
-
-void whisper_mel_init(whisper_mel & mel, ggml_backend_t backend, int n_len, int n_len_org, int n_mel) {
- //WHISPER_LOG_INFO("%s: n_len = %d, n_len_org = %d, n_mel = %d\n", __func__, n_len, n_len_org, n_mel);
- mel.n_len_org = n_len_org;
- assert(!mel.ctx);
- mel.ctx = ggml_init({ggml_tensor_overhead(), nullptr, true});
- mel.tensor = ggml_new_tensor_2d(mel.ctx, GGML_TYPE_F32, n_len, n_mel);
- mel.buffer = ggml_backend_alloc_buffer(backend, ggml_nbytes(mel.tensor) + ggml_backend_get_alignment(backend));
- auto alloc = ggml_tallocr_new(mel.buffer);
- ggml_tallocr_alloc(&alloc, mel.tensor);
-}
-
-void whisper_mel_free(whisper_mel & mel) {
- ggml_free(mel.ctx);
- ggml_backend_buffer_free(mel.buffer);
-
- mel.n_len_org = 0;
- mel.ctx = nullptr;
- mel.tensor = nullptr;
- mel.buffer = nullptr;
-}
-
-whisper_mel_calc::~whisper_mel_calc() = default; // export vtable
-
-whisper_span<const float> whisper_mel_calc::hann_window() {
- return {global_cache.hann_window, WHISPER_N_FFT};
-}
-
// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
}
}
-namespace {
-
-struct whisper_mel_data {
- int n_len;
- int n_len_org;
- int n_mel;
- float * data;
-};
-
-void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
- int n_samples, int n_threads,
- const whisper_filters & filters, whisper_mel_data & mel) {
- const auto frame_size = WHISPER_N_FFT;
- const auto frame_step = WHISPER_HOP_LENGTH;
+static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
+ int n_samples, int frame_size, int frame_step, int n_threads,
+ const whisper_filters & filters, whisper_mel & mel) {
std::vector<float> fft_in(frame_size * 2, 0.0);
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
+
int n_fft = filters.n_fft;
int i = ith;
for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
fft_in[j] = hann[j] * samples[offset + j];
}
+
// fill the rest with zeros
if (n_samples - offset < frame_size) {
std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
// mel spectrogram
for (int j = 0; j < mel.n_mel; j++) {
double sum = 0.0;
-
// unroll loop (suggested by GH user @lunixbochs)
int k = 0;
for (k = 0; k < n_fft - 3; k += 4) {
fft_out[k + 2] * filters.data[j * n_fft + k + 2] +
fft_out[k + 3] * filters.data[j * n_fft + k + 3];
}
-
// handle n_fft remainder
for (; k < n_fft; k++) {
sum += fft_out[k] * filters.data[j * n_fft + k];
}
-
sum = log10(std::max(sum, 1e-10));
-
mel.data[j * mel.n_len + i] = sum;
}
}
}
}
-struct mel_calc_cpu : public whisper_mel_calc {
- ggml_backend_t m_backend;
- const whisper_filters & m_filters;
- mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {}
-
- // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
- whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) override {
- // Hann window
- const float * hann = global_cache.hann_window;
-
- // Calculate the length of padding
- int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
- int64_t stage_2_pad = WHISPER_N_FFT / 2;
+// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
+static bool log_mel_spectrogram(
+ whisper_state & wstate,
+ const float * samples,
+ const int n_samples,
+ const int /*sample_rate*/,
+ const int frame_size,
+ const int frame_step,
+ const int n_mel,
+ const int n_threads,
+ const whisper_filters & filters,
+ const bool debug,
+ whisper_mel & mel) {
+ const int64_t t_start_us = ggml_time_us();
- const int n_samples = int(ssamples.len);
- const float * samples = ssamples.data;
+ // Hann window
+ WHISPER_ASSERT(frame_size == WHISPER_N_FFT && "Unsupported frame_size");
+ const float * hann = global_cache.hann_window;
- // Initialize a vector and copy data from C array to it.
- std::vector<float> samples_padded;
- samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
- std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
+ // Calculate the length of padding
+ int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
+ int64_t stage_2_pad = frame_size / 2;
- // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
- std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
+ // Initialize a vector and copy data from C array to it.
+ std::vector<float> samples_padded;
+ samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
+ std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
- // reflective pad 200 samples at the beginning of audio
- std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
+ // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
+ std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
- whisper_mel_data mel;
- mel.n_mel = m_filters.n_mel;
- // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
- // Calculate number of frames + remove the last frame
- mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
- // Calculate semi-padded sample length to ensure compatibility
- mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
+ // reflective pad 200 samples at the beginning of audio
+ std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
- std::vector<float> host_mel_data;
+ mel.n_mel = n_mel;
+ // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
+ // Calculate number of frames + remove the last frame
+ mel.n_len = (samples_padded.size() - frame_size) / frame_step;
+ // Calculate semi-padded sample length to ensure compatibility
+ mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
+ mel.data.resize(mel.n_mel * mel.n_len);
- whisper_mel ret;
- whisper_mel_init(ret, m_backend, mel.n_len, mel.n_len_org, mel.n_mel);
- if (ggml_backend_buffer_is_host(ret.buffer)) {
- mel.data = reinterpret_cast<float*>(ret.tensor->data);
- } else {
- host_mel_data.resize(mel.n_len * mel.n_mel);
- mel.data = host_mel_data.data();
+ {
+ std::vector<std::thread> workers(n_threads - 1);
+ for (int iw = 0; iw < n_threads - 1; ++iw) {
+ workers[iw] = std::thread(
+ log_mel_spectrogram_worker_thread, iw + 1, hann, samples_padded,
+ n_samples + stage_2_pad, frame_size, frame_step, n_threads,
+ std::cref(filters), std::ref(mel));
}
- {
- std::vector<std::thread> workers(n_threads - 1);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw] = std::thread(
- log_mel_spectrogram_worker_thread, iw + 1, hann, samples_padded,
- n_samples + stage_2_pad, n_threads,
- std::cref(m_filters), std::ref(mel));
- }
-
- // main thread
- log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, n_threads, m_filters, mel);
+ // main thread
+ log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw].join();
- }
+ for (int iw = 0; iw < n_threads - 1; ++iw) {
+ workers[iw].join();
}
+ }
- // clamping and normalization
- double mmax = -1e20;
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] > mmax) {
- mmax = mel.data[i];
- }
+ // clamping and normalization
+ double mmax = -1e20;
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] > mmax) {
+ mmax = mel.data[i];
}
+ }
- mmax -= 8.0;
-
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] < mmax) {
- mel.data[i] = mmax;
- }
-
- mel.data[i] = (mel.data[i] + 4.0)/4.0;
- }
+ mmax -= 8.0;
- if (!host_mel_data.empty()) {
- // the ret buffer is not host-accessible so we used this temporary buffer and now we need to upload it
- ggml_backend_tensor_set(ret.tensor, host_mel_data.data(), 0, ggml_nbytes(ret.tensor));
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] < mmax) {
+ mel.data[i] = mmax;
}
- return ret;
+ mel.data[i] = (mel.data[i] + 4.0)/4.0;
}
-};
-}
-static whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper_filters & filters) {
-// TODO: disabled because it relies on ggml internals that are no longer accessible (ggml-backend-impl.h, ggml-cuda/common.cuh, ..)
-//#if defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
-#if 0
- if (ggml_backend_is_cuda(backend)) {
- auto ret = whisper_mel_calc_create_cuda(backend, filters);
- if (ret) {
- // run a warmup to avoid the first kernel launch overhead (thus we get the best perf even on the first run)
- const float warmup[256] = { 0 };
- ret->calculate({ warmup, 256 }, 1);
- return ret;
+ wstate.t_mel_us += ggml_time_us() - t_start_us;
+
+ // Dump log_mel_spectrogram
+ if (debug) {
+ std::ofstream outFile("log_mel_spectrogram.json");
+ outFile << "[";
+ for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
+ outFile << mel.data[i] << ", ";
}
+ outFile << mel.data[mel.data.size() - 1] << "]";
+ outFile.close();
}
-#endif
- // a specialized mel_calc could not be created
- // fall back to CPU
- return new mel_calc_cpu(backend, filters);
+ return true;
}
// split text into tokens
return nullptr;
}
- state->mel_calc = whisper_mel_calc_create(state->backends[0], ctx->model.filters);
-
- // init 60s of random mel data
- {
- const int n_len = 2*100*WHISPER_CHUNK_SIZE;
- const int n_mel = ctx->model.filters.n_mel;
-
- whisper_mel_free(state->mel);
- whisper_mel_init(state->mel, state->backends[0], n_len, n_len, n_mel);
- }
-
// at this point, we don't know yet how many decoders will be used
// later during decoding, if more decoders are used, we will recreate the KV cache respectively
state->kv_self_n_dec = 1;
{
bool ok = whisper_sched_graph_init(state->sched_conv, state->backends,
[&]() {
- return whisper_build_graph_conv(*ctx, *state, 0);
+ return whisper_build_graph_conv(*ctx, *state);
});
if (!ok) {
whisper_kv_cache_free(state->kv_cross);
whisper_kv_cache_free(state->kv_pad);
- whisper_mel_free(state->mel);
-
- delete state->mel_calc;
- state->mel_calc = nullptr;
- delete state->mel_calc_fallback;
- state->mel_calc_fallback = nullptr;
-
#ifdef WHISPER_USE_COREML
if (state->ctx_coreml != nullptr) {
whisper_coreml_free(state->ctx_coreml);
}
int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
- const int64_t t_start_us = ggml_time_us();
-
- whisper_mel_free(state->mel);
- if (n_samples <= 5 * 60 * WHISPER_SAMPLE_RATE) {
- // calculate mel spectrogram for lengths up to 5 minutes on the most optimal mel calculator
- state->mel = state->mel_calc->calculate({samples, n_samples}, n_threads);
- } else {
- // calcuate mel spectrogram for longer audios on the CPU
- // 1. gpu calculations may use hundreds of megabytes of memory for longer audios so we're being conservative
- // with our gpu demands
- // 2. the time to transcribe audios this long will be dominated by the decoding time, so the mel calculation
- // taking longer is not a major concern
- if (!state->mel_calc_fallback) {
- state->mel_calc_fallback = new mel_calc_cpu(state->backends[0], ctx->model.filters);
- }
- state->mel = state->mel_calc_fallback->calculate({samples, n_samples}, n_threads);
+ if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, ctx->model.filters.n_mel, n_threads, ctx->model.filters, false, state->mel)) {
+ WHISPER_LOG_ERROR("%s: failed to compute mel spectrogram\n", __func__);
+ return -1;
}
- state->t_mel_us += ggml_time_us() - t_start_us;
-
- // Dump log_mel_spectrogram
- //{
- // auto& mel = state->mel;
- // std::ofstream outFile("log_mel_spectrogram.json");
- // outFile << "[";
- // for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
- // outFile << mel.data[i] << ", ";
- // }
- // outFile << mel.data[mel.data.size() - 1] << "]";
- // outFile.close();
- //}
return 0;
}
return -1;
}
- whisper_mel_free(state->mel);
- whisper_mel_init(state->mel, state->backends[0], n_len, n_len, n_mel);
+ state->mel.n_len = n_len;
+ state->mel.n_len_org = n_len;
+ state->mel.n_mel = n_mel;
- ggml_backend_tensor_set(state->mel.tensor, data, 0, ggml_nbytes(state->mel.tensor));
+ state->mel.data.resize(n_len*n_mel);
+ memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float));
return 0;
}