size_t max_size;
bool measure;
int parse_seq[GGML_MAX_NODES];
- bool has_parse_seq;
+ int parse_seq_len;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
}
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
- int pos = 0;
for (int i = 0; i < n; i++) {
- if (list[i] != -1) {
- alloc->parse_seq[pos] = list[i];
- pos++;
- }
+ alloc->parse_seq[i] = list[i];
}
- alloc->has_parse_seq = true;
+ alloc->parse_seq_len = n;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
- /*.has_parse_seq = */ false,
+ /*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
/*.max_size = */ 0,
/*.measure = */ true,
/*.parse_seq = */ {0},
- /*.has_parse_seq = */ false,
+ /*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->data = parent->data;
+ return;
}
- return;
}
}
}
allocate_node(alloc, input);
}
}
- for (int ind = 0; ind < gf->n_nodes; ind++) {
- int i;
- if (alloc->has_parse_seq) {
- i = alloc->parse_seq[ind];
- } else {
- i = ind;
- }
- struct ggml_tensor * node = gf->nodes[i];
-
- // allocate parents (leafs)
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
+ // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
+ int last_barrier_pos = 0;
+ int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
+
+ for (int ind = 0; ind < n_nodes; ind++) {
+ // allocate a node if there is no parse_seq or this is not a barrier
+ if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
+ int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
+ struct ggml_tensor * node = gf->nodes[i];
+
+ // allocate parents (leafs)
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ allocate_node(alloc, parent);
}
- allocate_node(alloc, parent);
- }
- // allocate node
- allocate_node(alloc, node);
+ // allocate node
+ allocate_node(alloc, node);
- AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- AT_PRINTF("%s", parent->name);
- if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
- AT_PRINTF(", ");
+ AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ AT_PRINTF("%s", parent->name);
+ if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
+ AT_PRINTF(", ");
+ }
}
+ AT_PRINTF("\n");
}
- AT_PRINTF("\n");
+
// update parents
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- struct hash_node * p_hn = hash_get(ht, parent);
- p_hn->n_children -= 1;
-
- //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
-
- if (p_hn->n_children == 0 && p_hn->n_views == 0) {
- if (ggml_is_view(parent)) {
- struct ggml_tensor * view_src = get_view_source(parent);
- struct hash_node * view_src_hn = hash_get(ht, view_src);
- view_src_hn->n_views -= 1;
- AT_PRINTF("view_src %s\n", view_src->name);
- if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
- ggml_allocator_free_tensor(alloc, view_src);
+ // update immediately if there is no parse_seq
+ // update only at barriers if there is parse_seq
+ if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
+ int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
+ int update_end = alloc->parse_seq_len ? ind : ind + 1;
+ for (int i = update_start; i < update_end; i++) {
+ int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
+ struct ggml_tensor * node = gf->nodes[node_i];
+
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
}
- }
- else {
- if (parent->data != node->data) {
- ggml_allocator_free_tensor(alloc, parent);
+ struct hash_node * p_hn = hash_get(ht, parent);
+ p_hn->n_children -= 1;
+
+ //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
+
+ if (p_hn->n_children == 0 && p_hn->n_views == 0) {
+ if (ggml_is_view(parent)) {
+ struct ggml_tensor * view_src = get_view_source(parent);
+ struct hash_node * view_src_hn = hash_get(ht, view_src);
+ view_src_hn->n_views -= 1;
+ AT_PRINTF("view_src %s\n", view_src->name);
+ if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
+ ggml_allocator_free_tensor(alloc, view_src);
+ }
+ }
+ else {
+ if (parent->data != node->data) {
+ ggml_allocator_free_tensor(alloc, parent);
+ }
+ }
}
}
}
+ AT_PRINTF("\n");
+ if (alloc->parse_seq_len) {
+ last_barrier_pos = ind + 1;
+ }
}
- AT_PRINTF("\n");
}
// free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) {