]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
stablelm : StableLM support (#3586)
authorGalunid <redacted>
Tue, 14 Nov 2023 10:17:12 +0000 (11:17 +0100)
committerGitHub <redacted>
Tue, 14 Nov 2023 10:17:12 +0000 (11:17 +0100)
* Add support for stablelm-3b-4e1t
* Supports GPU offloading of (n-1) layers

README.md
convert-hf-to-gguf.py
gguf-py/gguf/constants.py
llama.cpp
models/ggml-vocab-stablelm-3b-4e1t.gguf [new file with mode: 0644]
tests/CMakeLists.txt

index c7d23277845bc3c20a14ace3b84b06506f1ba415..4de06476569f928d1df1043e419572c8523ffd6e 100644 (file)
--- a/README.md
+++ b/README.md
@@ -93,6 +93,7 @@ as the main playground for developing new features for the [ggml](https://github
 - [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
 - [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
 - [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
+- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
 
 
 **Bindings:**
index f7fe29fd4262acc2a9420143872159953b21d939..e7db7591260af82ddd5d826181147ff4a1c4f7b3 100755 (executable)
@@ -150,8 +150,6 @@ class Model:
 
     @staticmethod
     def from_model_architecture(model_architecture):
-        if model_architecture == "StableLMEpochForCausalLM":
-            return StableLMModel
         if model_architecture == "GPTNeoXForCausalLM":
             return GPTNeoXModel
         if model_architecture == "BloomForCausalLM":
@@ -168,6 +166,8 @@ class Model:
             return RefactModel
         if model_architecture == "PersimmonForCausalLM":
             return PersimmonModel
+        if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
+            return StableLMModel
         return Model
 
     def _is_model_safetensors(self) -> bool:
@@ -201,6 +201,8 @@ class Model:
             return gguf.MODEL_ARCH.REFACT
         if arch == "PersimmonForCausalLM":
             return gguf.MODEL_ARCH.PERSIMMON
+        if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
+            return gguf.MODEL_ARCH.STABLELM
 
         raise NotImplementedError(f'Architecture "{arch}" not supported!')
 
@@ -294,15 +296,6 @@ class Model:
         special_vocab.add_to_gguf(self.gguf_writer)
 
 
-class StableLMModel(Model):
-    def set_gguf_parameters(self):
-        super().set_gguf_parameters()
-        self.gguf_writer.add_rope_dimension_count(
-            int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
-        )
-        self.gguf_writer.add_layer_norm_eps(1e-5)
-
-
 class GPTNeoXModel(Model):
     def set_gguf_parameters(self):
         block_count = self.hparams["num_hidden_layers"]
@@ -824,6 +817,21 @@ class PersimmonModel(Model):
             self.gguf_writer.add_tensor(new_name, data)
 
 
+class StableLMModel(Model):
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_name(dir_model.name)
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"]*(hparams["hidden_size"] // hparams["num_attention_heads"])))
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+
 ###### CONVERSION LOGIC ######
 
 def parse_args() -> argparse.Namespace:
index bf1ccf66922d0fec3f50aa3c6379115e7b4af160..7f63361bd32bc3bc1b82e4bb04b805577b1efc9c 100644 (file)
@@ -90,6 +90,7 @@ class MODEL_ARCH(IntEnum):
     REFACT    = auto()
     BERT      = auto()
     BLOOM     = auto()
+    STABLELM  = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -129,6 +130,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.REFACT:         "refact",
     MODEL_ARCH.BERT:           "bert",
     MODEL_ARCH.BLOOM:          "bloom",
+    MODEL_ARCH.STABLELM:       "stablelm",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -299,6 +301,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.STABLELM: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     MODEL_ARCH.GPT2: [
         # TODO
     ],
index 76ee4ea2300e86e96e3a97a97efc0e9befe556d5..01522fdb4e74f225017f29b104f4ea358ea4a74e 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -192,6 +192,7 @@ enum llm_arch {
     LLM_ARCH_PERSIMMON,
     LLM_ARCH_REFACT,
     LLM_ARCH_BLOOM,
+    LLM_ARCH_STABLELM,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -207,6 +208,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
     { LLM_ARCH_PERSIMMON,       "persimmon" },
     { LLM_ARCH_REFACT,          "refact"    },
     { LLM_ARCH_BLOOM,           "bloom"     },
+    { LLM_ARCH_STABLELM,        "stablelm"  },
 };
 
 enum llm_kv {
@@ -495,6 +497,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
         },
     },
+    {
+        LLM_ARCH_STABLELM,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
+
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -2216,6 +2237,16 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_STABLELM:
+            {
+                GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
+
+                switch (hparams.n_layer) {
+                    case 32: model.type = e_model::MODEL_3B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+               }
+            } break;
+
         default: (void)0;
     }
 
@@ -3087,6 +3118,81 @@ static void llm_load_tensors(
                         }
                     }
                 } break;
+            case LLM_ARCH_STABLELM:
+                {
+                    model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+
+                    // output
+                    {
+                        ggml_backend_type backend_norm;
+                        ggml_backend_type backend_output;
+
+                        if (n_gpu_layers > int(n_layer)) {
+                            // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
+                            // on Windows however this is detrimental unless everything is on the GPU
+#ifndef _WIN32
+                            backend_norm = llama_backend_offload;
+#else
+                            backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
+#endif // _WIN32
+
+                            backend_output = llama_backend_offload_split;
+                        } else {
+                            backend_norm   = GGML_BACKEND_CPU;
+                            backend_output = GGML_BACKEND_CPU;
+                        }
+
+                        model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd},          backend_norm);
+                        model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd},          backend_norm);
+                        model.output      = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, backend_output);
+
+                        if (backend_norm == GGML_BACKEND_GPU) {
+                            vram_weights += ggml_nbytes(model.output_norm);
+                        }
+                        if (backend_output == GGML_BACKEND_GPU_SPLIT) {
+                            vram_weights += ggml_nbytes(model.output);
+                        }
+                    }
+
+                    const uint32_t n_ff = hparams.n_ff;
+
+                    const int i_gpu_start = n_layer - n_gpu_layers;
+
+                    model.layers.resize(n_layer);
+
+                    for (uint32_t i = 0; i < n_layer; ++i) {
+                        /*
+                        llama_model_loader: - tensor    4:         blk.0.attn_output.weight f16      [  2560,  2560,     1,     1 ]
+                        */
+                        const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+                        const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
+                        layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
+
+                        layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd},     backend_split);
+                        layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, backend_split);
+                        layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, backend_split);
+                        layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd},     backend_split);
+
+                        layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
+                        layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
+
+                        layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, backend_split);
+                        layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, backend_split);
+                        layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, backend_split);
+
+                        if (backend == GGML_BACKEND_GPU) {
+                            vram_weights +=
+                                ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq)       + ggml_nbytes(layer.wk)       +
+                                ggml_nbytes(layer.wv)        + ggml_nbytes(layer.wo)       + ggml_nbytes(layer.ffn_norm) +
+                                ggml_nbytes(layer.ffn_gate)  + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
+                        }
+                    }
+                } break;
+
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -4565,6 +4671,177 @@ struct llm_build_context {
 
         return gf;
     }
+
+    struct ggml_cgraph * build_stablelm() {
+        struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
+        cb(inpL, "inp_embd", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_scale
+        struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+        cb(KQ_scale, "KQ_scale", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, hparams.n_rot, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(tmpq, "tmpq", il);
+
+                struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(tmpk, "tmpk", il);
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                // RoPE the first n_rot of q/k, pass the other half, and concat.
+                struct ggml_tensor * qrot = ggml_cont(ctx0, ggml_view_3d(
+                        ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
+                        ggml_element_size(tmpq) * n_embd_head,
+                        ggml_element_size(tmpq) * n_embd_head * n_head,
+                        0
+                        ));
+                cb(qrot, "qrot", il);
+
+                struct ggml_tensor * krot = ggml_cont(ctx0, ggml_view_3d(
+                        ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
+                        ggml_element_size(tmpk) * n_embd_head,
+                        ggml_element_size(tmpk) * n_embd_head * n_head_kv,
+                        0
+                        ));
+                cb(krot, "krot", il);
+
+                // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
+                struct ggml_tensor * qpass = ggml_view_3d(
+                        ctx0, tmpq, (n_embd_head - hparams.n_rot), n_head, n_tokens,
+                        ggml_element_size(tmpq) * n_embd_head,
+                        ggml_element_size(tmpq) * n_embd_head * n_head,
+                        ggml_element_size(tmpq) * hparams.n_rot
+                        );
+                cb(qpass, "qpass", il);
+
+                struct ggml_tensor * kpass = ggml_view_3d(
+                        ctx0, tmpk, (n_embd_head - hparams.n_rot), n_head_kv, n_tokens,
+                        ggml_element_size(tmpk) * (n_embd_head),
+                        ggml_element_size(tmpk) * (n_embd_head) * n_head_kv,
+                        ggml_element_size(tmpk) * hparams.n_rot
+                        );
+                cb(kpass, "kpass", il);
+
+                struct ggml_tensor * qrotated = ggml_rope_custom(
+                    ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(qrotated, "qrotated", il);
+
+                struct ggml_tensor * krotated = ggml_rope_custom(
+                    ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(krotated, "krotated", il);
+
+                // ggml currently only supports concatenation on dim=2
+                // so we need to permute qrot, qpass, concat, then permute back.
+                qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
+                cb(qrotated, "qrotated", il);
+
+                krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
+                cb(krotated, "krotated", il);
+
+                qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
+                cb(qpass, "qpass", il);
+
+                kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
+                cb(kpass, "kpass", il);
+
+                struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
+                cb(Q, "Q", il);
+
+                Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
+                cb(Kcur, "Kcur", il);
+
+                llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
+
+                cur = llm_build_kqv(ctx0, hparams, kv_self,
+                        model.layers[il].wo, NULL,
+                        Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
+                cb(cur, "kqv_out", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, cur,
+                        model.layers[il].ffn_up,   NULL,
+                        model.layers[il].ffn_gate, NULL,
+                        model.layers[il].ffn_down, NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
 };
 
 //
@@ -5034,6 +5311,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_mpt();
             } break;
+         case LLM_ARCH_STABLELM:
+            {
+                result = llm.build_stablelm();
+            } break;
         default:
             GGML_ASSERT(false);
     }
@@ -5209,7 +5490,8 @@ static int llama_decode_internal(
         model.arch == LLM_ARCH_FALCON     ||
         model.arch == LLM_ARCH_REFACT     ||
         model.arch == LLM_ARCH_MPT        ||
-        model.arch == LLM_ARCH_STARCODER;
+        model.arch == LLM_ARCH_STARCODER  ||
+        model.arch == LLM_ARCH_STABLELM;
 
     const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
     if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
diff --git a/models/ggml-vocab-stablelm-3b-4e1t.gguf b/models/ggml-vocab-stablelm-3b-4e1t.gguf
new file mode 100644 (file)
index 0000000..ebb0cdb
Binary files /dev/null and b/models/ggml-vocab-stablelm-3b-4e1t.gguf differ
index 6757ad1cca1a23998a56bfcb461841ded0f74bc9..c8b4bc254f4c643d520e0275a847eadcd7a0e417 100644 (file)
@@ -33,9 +33,11 @@ llama_build_executable(test-tokenizer-1-bpe.cpp)
 llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
 llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
 llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
+llama_test_executable(test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
 llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
 llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
 llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
+# llama_test_executable(test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
 llama_build_and_test_executable(test-grammar-parser.cpp)
 llama_build_and_test_executable(test-llama-grammar.cpp)
 llama_build_and_test_executable(test-grad0.cpp) # SLOW