LLM_ARCH_PERSIMMON,
LLM_ARCH_REFACT,
LLM_ARCH_BLOOM,
+ LLM_ARCH_STABLELM,
LLM_ARCH_UNKNOWN,
};
{ LLM_ARCH_PERSIMMON, "persimmon" },
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BLOOM, "bloom" },
+ { LLM_ARCH_STABLELM, "stablelm" },
};
enum llm_kv {
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
+ {
+ LLM_ARCH_STABLELM,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+
{
LLM_ARCH_UNKNOWN,
{
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_STABLELM:
+ {
+ GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
+
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+
default: (void)0;
}
}
}
} break;
+ case LLM_ARCH_STABLELM:
+ {
+ model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+
+ // output
+ {
+ ggml_backend_type backend_norm;
+ ggml_backend_type backend_output;
+
+ if (n_gpu_layers > int(n_layer)) {
+ // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
+ // on Windows however this is detrimental unless everything is on the GPU
+#ifndef _WIN32
+ backend_norm = llama_backend_offload;
+#else
+ backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
+#endif // _WIN32
+
+ backend_output = llama_backend_offload_split;
+ } else {
+ backend_norm = GGML_BACKEND_CPU;
+ backend_output = GGML_BACKEND_CPU;
+ }
+
+ model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
+ model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
+ model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
+
+ if (backend_norm == GGML_BACKEND_GPU) {
+ vram_weights += ggml_nbytes(model.output_norm);
+ }
+ if (backend_output == GGML_BACKEND_GPU_SPLIT) {
+ vram_weights += ggml_nbytes(model.output);
+ }
+ }
+
+ const uint32_t n_ff = hparams.n_ff;
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
+
+ model.layers.resize(n_layer);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ /*
+ llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ]
+ */
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
+ layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
+
+ layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
+ layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+
+ layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
+ layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
+
+ layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
+ layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
+ layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
+
+ if (backend == GGML_BACKEND_GPU) {
+ vram_weights +=
+ ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
+ ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
+ ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
+ }
+ }
+ } break;
+
default:
throw std::runtime_error("unknown architecture");
}
return gf;
}
+
+ struct ggml_cgraph * build_stablelm() {
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
+ cb(inpL, "inp_embd", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ cb(inp_pos, "inp_pos", -1);
+
+ // KQ_scale
+ struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ cb(KQ_scale, "KQ_scale", -1);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
+ cb(KQ_mask, "KQ_mask", -1);
+
+ // shift the entire K-cache if needed
+ if (do_rope_shift) {
+ llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, hparams.n_rot, freq_base, freq_scale, cb);
+ }
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(tmpq, "tmpq", il);
+
+ struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(tmpk, "tmpk", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ // RoPE the first n_rot of q/k, pass the other half, and concat.
+ struct ggml_tensor * qrot = ggml_cont(ctx0, ggml_view_3d(
+ ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
+ ggml_element_size(tmpq) * n_embd_head,
+ ggml_element_size(tmpq) * n_embd_head * n_head,
+ 0
+ ));
+ cb(qrot, "qrot", il);
+
+ struct ggml_tensor * krot = ggml_cont(ctx0, ggml_view_3d(
+ ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
+ ggml_element_size(tmpk) * n_embd_head,
+ ggml_element_size(tmpk) * n_embd_head * n_head_kv,
+ 0
+ ));
+ cb(krot, "krot", il);
+
+ // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
+ struct ggml_tensor * qpass = ggml_view_3d(
+ ctx0, tmpq, (n_embd_head - hparams.n_rot), n_head, n_tokens,
+ ggml_element_size(tmpq) * n_embd_head,
+ ggml_element_size(tmpq) * n_embd_head * n_head,
+ ggml_element_size(tmpq) * hparams.n_rot
+ );
+ cb(qpass, "qpass", il);
+
+ struct ggml_tensor * kpass = ggml_view_3d(
+ ctx0, tmpk, (n_embd_head - hparams.n_rot), n_head_kv, n_tokens,
+ ggml_element_size(tmpk) * (n_embd_head),
+ ggml_element_size(tmpk) * (n_embd_head) * n_head_kv,
+ ggml_element_size(tmpk) * hparams.n_rot
+ );
+ cb(kpass, "kpass", il);
+
+ struct ggml_tensor * qrotated = ggml_rope_custom(
+ ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(qrotated, "qrotated", il);
+
+ struct ggml_tensor * krotated = ggml_rope_custom(
+ ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(krotated, "krotated", il);
+
+ // ggml currently only supports concatenation on dim=2
+ // so we need to permute qrot, qpass, concat, then permute back.
+ qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
+ cb(qrotated, "qrotated", il);
+
+ krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
+ cb(krotated, "krotated", il);
+
+ qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
+ cb(qpass, "qpass", il);
+
+ kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
+ cb(kpass, "kpass", il);
+
+ struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
+ cb(Q, "Q", il);
+
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
+ cb(Kcur, "Kcur", il);
+
+ llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
+
+ cur = llm_build_kqv(ctx0, hparams, kv_self,
+ model.layers[il].wo, NULL,
+ Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
+ cb(cur, "kqv_out", il);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
};
//
{
result = llm.build_mpt();
} break;
+ case LLM_ARCH_STABLELM:
+ {
+ result = llm.build_stablelm();
+ } break;
default:
GGML_ASSERT(false);
}
model.arch == LLM_ARCH_FALCON ||
model.arch == LLM_ARCH_REFACT ||
model.arch == LLM_ARCH_MPT ||
- model.arch == LLM_ARCH_STARCODER;
+ model.arch == LLM_ARCH_STARCODER ||
+ model.arch == LLM_ARCH_STABLELM;
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {