struct ggml_tensor * mm_4_w = nullptr;
struct ggml_tensor * mm_4_b = nullptr;
- //GLMV-Edge projection
+ // GLMV-Edge projection
struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
+ struct ggml_tensor * mm_glm_tok_boi = nullptr;
+ struct ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection
struct ggml_tensor * mm_model_mlp_1_w = nullptr;
embeddings = ggml_mul(ctx0, embeddings,x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
+ // arrangement of BOI/EOI token embeddings
+ // note: these embeddings are not present in text model, hence we cannot process them as text tokens
+ // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
+ {
+ embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
+ embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
+ }
}
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
{
vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
- vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
- vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
- vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
- vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
- vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
- vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
+ vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
+ vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
+ vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
+ vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
+ vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
+ vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
+ vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
+ vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
n_patches /= 4;
+ n_patches += 2; // for BOI and EOI token embeddings
} else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
if (ctx->minicpmv_version == 2) {
n_patches = 96;
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
- } else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- // <|begin_of_image|> ... (image embeddings) ... <|end_of_image|>
- marker_modified = "<|begin_of_image|>" + ctx->image_marker + "<|end_of_image|>";
- string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
-
} else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
+ // for glm-edge, BOI and EOI token's embeddings are not present in the text model
std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
output.clear();