cl_program program_mul_mv_f16_f32;
cl_program program_mul_mv_f32_f32;
cl_program program_mul;
+ cl_program program_div;
+ cl_program program_sub;
cl_program program_norm;
cl_program program_relu;
cl_program program_rms_norm;
+ cl_program program_group_norm;
cl_program program_rope;
cl_program program_scale;
cl_program program_silu;
+ cl_program program_sigmoid;
cl_program program_softmax_f32;
cl_program program_softmax_f16;
cl_program program_softmax_4_f32;
cl_program program_softmax_4_f16;
+ cl_program program_argsort_f32_i32;
+ cl_program program_sum_rows_f32;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
+ cl_kernel kernel_div, kernel_div_row;
+ cl_kernel kernel_sub, kernel_sub_row;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
cl_kernel kernel_relu;
+ cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_clamp;
cl_kernel kernel_norm;
cl_kernel kernel_rms_norm;
+ cl_kernel kernel_group_norm;
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
+ cl_kernel kernel_argsort_f32_i32;
+ cl_kernel kernel_sum_rows_f32;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
GGML_LOG_CONT(".");
}
+ // argsort
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "argsort.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("argsort.cl");
+#endif
+ backend_ctx->program_argsort_f32_i32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // div
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "div.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("div.cl");
+#endif
+ backend_ctx->program_div =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
+ CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // sub
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "sub.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("sub.cl");
+#endif
+ backend_ctx->program_sub =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
+ CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // sum_rows
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "sum_rows.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("sum_rows.cl");
+#endif
+ backend_ctx->program_sum_rows_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // sigmoid
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "sigmoid.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("sigmoid.cl");
+#endif
+ backend_ctx->program_sigmoid =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // group_norm
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "group_norm.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("group_norm.cl");
+#endif
+ backend_ctx->program_group_norm =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
case GGML_OP_ADD:
case GGML_OP_SCALE:
case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_SUB:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU_QUICK:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
+ return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
+ case GGML_UNARY_OP_SIGMOID:
+ return ggml_is_contiguous(op->src[0]);
default:
return false;
}
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
+ case GGML_OP_GROUP_NORM:
+ return ggml_is_contiguous(op->src[0]);
case GGML_OP_MUL_MAT:
if (op->src[0]->type == GGML_TYPE_F16) {
return true;
}
case GGML_OP_IM2COL:
return true;
+ case GGML_OP_ARGSORT:
+ return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_SUM_ROWS:
+ return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
default:
return false;
}
}
}
+static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(src1);
+ GGML_ASSERT(src1->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb00 = src0->nb[0];
+ const cl_ulong nb01 = src0->nb[1];
+ const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+ const int ne13 = src1->ne[3];
+
+ const cl_ulong nb10 = src1->nb[0];
+ const cl_ulong nb11 = src1->nb[1];
+ const cl_ulong nb12 = src1->nb[2];
+ const cl_ulong nb13 = src1->nb[3];
+
+ const int ne0 = dst->ne[0];
+
+ const cl_ulong nb0 = dst->nb[0];
+ const cl_ulong nb1 = dst->nb[1];
+ const cl_ulong nb2 = dst->nb[2];
+ const cl_ulong nb3 = dst->nb[3];
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ bool bcast_row = false;
+ cl_kernel kernel;
+
+ if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ // src1 is a row
+ GGML_ASSERT(ne11 == 1);
+
+ bcast_row = true;
+ int ne = ne00 / 4;
+ kernel = backend_ctx->kernel_div_row;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
+ } else {
+ kernel = backend_ctx->kernel_div;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
+ }
+
+ if (bcast_row) {
+ int n = ggml_nelements(dst)/4;
+ size_t global_work_size[] = {(size_t)n, 1, 1};
+ size_t local_work_size[] = {64, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+ } else {
+ unsigned int nth = MIN(64, ne0);
+ size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
+ size_t local_work_size[] = {nth, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+ }
+}
+
+static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(src1);
+ GGML_ASSERT(src1->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb00 = src0->nb[0];
+ const cl_ulong nb01 = src0->nb[1];
+ const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+ const int ne13 = src1->ne[3];
+
+ const cl_ulong nb10 = src1->nb[0];
+ const cl_ulong nb11 = src1->nb[1];
+ const cl_ulong nb12 = src1->nb[2];
+ const cl_ulong nb13 = src1->nb[3];
+
+ const int ne0 = dst->ne[0];
+
+ const cl_ulong nb0 = dst->nb[0];
+ const cl_ulong nb1 = dst->nb[1];
+ const cl_ulong nb2 = dst->nb[2];
+ const cl_ulong nb3 = dst->nb[3];
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ bool bcast_row = false;
+ cl_kernel kernel;
+
+ if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ // src1 is a row
+ GGML_ASSERT(ne11 == 1);
+
+ bcast_row = true;
+ int ne = ne00 / 4;
+ kernel = backend_ctx->kernel_sub_row;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
+ } else {
+ kernel = backend_ctx->kernel_sub;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
+ }
+
+ if (bcast_row) {
+ int n = ggml_nelements(dst)/4;
+ size_t global_work_size[] = {(size_t)n, 1, 1};
+ size_t local_work_size[] = {64, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+ } else {
+ unsigned int nth = MIN(64, ne0);
+ size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
+ size_t local_work_size[] = {nth, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+ }
+}
+
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
#endif
}
+static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ UNUSED(src1);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ cl_kernel kernel;
+ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+ kernel = backend_ctx->kernel_sigmoid_f32;
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+ kernel = backend_ctx->kernel_sigmoid_f16;
+ } else {
+ GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+
+ const int64_t n = ggml_nelements(dst);
+
+ size_t global_work_size[] = {(size_t)n, 1, 1};
+ size_t local_work_size[] = {64, 1, 1};
+
+ size_t * local_work_size_ptr = local_work_size;
+ if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+ local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
+ }
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
+#endif
+}
+
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
#endif
}
+static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ UNUSED(src1);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ int32_t n_groups = ((const int32_t *) dst->op_params)[0];
+ int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
+ float eps = ((const float *) dst->op_params)[1];
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne = ne00*ne01*ne02;
+
+ cl_kernel kernel = backend_ctx->kernel_group_norm;
+
+ size_t sgs = 64;
+ if (backend_ctx->gpu_family == ADRENO) {
+ sgs = 64;
+ } else if (backend_ctx->gpu_family == INTEL) {
+ sgs = 32;
+ } else {
+ GGML_ASSERT(false && "Unsupported GPU");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
+
+ size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
+ size_t local_work_size[] = {(size_t)sgs, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+}
+
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
#endif
}
+static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+ GGML_UNUSED(src1);
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ const int ne00 = src0->ne[0];
+ const int nrows = ggml_nrows(src0);
+
+ int ne00_padded = 1;
+ while (ne00_padded < ne00) {
+ ne00_padded *= 2;
+ }
+
+ int order = (enum ggml_sort_order) dst->op_params[0];
+
+ cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
+ CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
+
+ size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
+ size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+}
+
+static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+ GGML_UNUSED(src1);
+
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb01 = src0->nb[1];
+ const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
+
+ const cl_ulong nb1 = dst->nb[1];
+ const cl_ulong nb2 = dst->nb[2];
+ const cl_ulong nb3 = dst->nb[3];
+
+ cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
+
+ size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
+ size_t local_work_size[] = {(size_t)64, 1, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+}
+
//------------------------------------------------------------------------------
// Op offloading
//------------------------------------------------------------------------------
}
func = ggml_cl_mul;
break;
+ case GGML_OP_DIV:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_div;
+ break;
+ case GGML_OP_SUB:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_sub;
+ break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
}
func = ggml_cl_relu;
break;
+ case GGML_UNARY_OP_SIGMOID:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_sigmoid;
+ break;
default:
return false;
} break;
}
func = ggml_cl_rms_norm;
break;
+ case GGML_OP_GROUP_NORM:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_group_norm;
+ break;
case GGML_OP_MUL_MAT:
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
return false;
}
func = ggml_cl_im2col;
break;
+ case GGML_OP_ARGSORT:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_argsort;
+ break;
+ case GGML_OP_SUM_ROWS:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_sum_rows;
+ break;
default:
return false;
}