/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
- /*.allocated_tensors = */ = {0},
+ /*.allocated_tensors = */ {0},
#endif
};
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
- /*.allocated_tensors = */ = {0},
+ /*.allocated_tensors = */ {0},
#endif
};
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
- AT_PRINTF("view_src %s\n", view_src->name);
+ AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}
//#define GGML_SOFT_MAX_ACCELERATE
#endif
-#if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
-#else
- #define GGML_MEM_ALIGN 16
-#endif
-
//
// logging
//
};
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ ggml_set_op_params_i32(result, 0, stride);
+
result->op = GGML_OP_CONV_TRANSPOSE_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
- result->src[2] = ggml_new_i32(ctx, stride);
return result;
}
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
return;
}
- const int32_t stride = ((const int32_t*)(opt0->data))[0];
+ const int32_t stride = ggml_get_op_params_i32(dst, 0);
// total patches in dst
const int np = ne2;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = (ggml_fp16_t *) params->wdata + nk;
+ ggml_fp16_t * const wdata_src = wdata + nk;
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
float * dst_data = (float *)((char *) dst->data + i2*nb2);
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne03, &v,
- (ggml_fp16_t *) wdata_src + i1n,
- (ggml_fp16_t *) wdata_kernel + i01*ne00*ne03 + i00*ne03);
-
+ wdata_src + i1n,
+ wdata_kernel + i01*ne00*ne03 + i00*ne03);
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
}
}
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
- ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
+ ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_POOL_1D:
{
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
-// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
+// const int nx = 2;
+// const int ny = 3;
//
-// // a[2, 1] = 1.0f;
-// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
+// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
//
-// // a[0, 2] = 2.0f;
-// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
+// for (int y = 0; y < ny; y++) {
+// for (int x = 0; x < nx; x++) {
+// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
+// }
+// }
//
// ...
// }
#define GGML_MAX_OP_PARAMS 32
#define GGML_DEFAULT_N_THREADS 4
+#if UINTPTR_MAX == 0xFFFFFFFF
+ #define GGML_MEM_ALIGN 4
+#else
+ #define GGML_MEM_ALIGN 16
+#endif
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1