#pragma once
+//
+// GGML Tensor Library
+//
+// This documentation is still a work in progress.
+// If you wish some specific topics to be covered, feel free to drop a comment:
+//
+// https://github.com/ggerganov/whisper.cpp/issues/40
+//
+// ## Overview
+//
+// This library implements:
+//
+// - a set of tensor operations
+// - automatic differentiation
+// - basic optimization algorithms
+//
+// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
+// but is not limited to, the following:
+//
+// - linear regression
+// - support vector machines
+// - neural networks
+//
+// The library allows the user to define a certain function using the available tensor operations. This function
+// definition is represented internally via a computation graph. Each tensor operation in the function definition
+// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
+// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
+// using one of the available optimization algorithms.
+//
+// For example, here we define the function: f(x) = a*x^2 + b
+//
+// {
+// struct ggml_init_params params = {
+// .mem_size = 16*1024*1024,
+// .mem_buffer = NULL,
+// };
+//
+// // memory allocation happens here
+// struct ggml_context * ctx = ggml_init(params);
+//
+// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+//
+// ggml_set_param(ctx, x); // x is an input variable
+//
+// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
+// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
+//
+// ...
+// }
+//
+// Notice that the function definition above does not involve any actual computation. The computation is performed only
+// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
+//
+// {
+// ...
+//
+// struct ggml_cgraph gf = ggml_build_forward(f);
+//
+// // set the input variable and parameter values
+// ggml_set_f32(x, 2.0f);
+// ggml_set_f32(a, 3.0f);
+// ggml_set_f32(b, 4.0f);
+//
+// ggml_graph_compute(ctx0, &gf);
+//
+// printf("f = %f\n", ggml_get_f32_1d(f, 0));
+//
+// ...
+// }
+//
+// The actual computation is performed in the ggml_graph_compute() function.
+//
+// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
+// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
+// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
+// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
+// actually needed.
+//
+// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
+// differentiation and optimization algorithms.
+//
+// The described approach allows to define the function graph once and then compute its forward or backward graphs
+// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
+// the user can avoid the memory allocation overhead at runtime.
+//
+// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
+// citizens, but in theory the library can be extended to support FP8 and integer data types.
+//
+// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
+// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
+// clear that the library needs to support more complex operations. The way to support these operations is not clear
+// yet, but a few examples are demonstrated in the following operations:
+//
+// - ggml_permute()
+// - ggml_conv_1d_1s()
+// - ggml_conv_1d_2s()
+//
+// For each tensor operator, the library implements a forward and backward computation function. The forward function
+// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
+// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
+// calculus class, or watch the following video:
+//
+// What is Automatic Differentiation?
+// https://www.youtube.com/watch?v=wG_nF1awSSY
+//
+//
+// ## Tensor data (struct ggml_tensor)
+//
+// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
+// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
+// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
+//
+// {
+// struct ggml_tensor * c = ggml_add(ctx, a, b);
+//
+// assert(c->src[0] == a);
+// assert(c->src[1] == b);
+// }
+//
+// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
+// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
+// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
+// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
+// contiguous in memory.
+//
+// The data of the tensor is accessed via the "data" pointer. For example:
+//
+// {
+// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
+//
+// // a[1, 2] = 1.0f;
+// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
+//
+// // a[2, 0] = 2.0f;
+// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
+//
+// ...
+// }
+//
+// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
+//
+// ## The matrix multiplication operator (ggml_mul_mat)
+//
+// TODO
+//
+//
+// ## Multi-threading
+//
+// TODO
+//
+//
+// ## Overview of ggml.c
+//
+// TODO
+//
+//
+// ## SIMD optimizations
+//
+// TODO
+//
+//
+// ## Debugging ggml
+//
+// TODO
+//
+//
+
#ifdef __cplusplus
extern "C" {
#endif
typedef uint16_t ggml_fp16_t;
#endif
-float ggml_fp16_to_fp32(ggml_fp16_t x);
+// convert FP16 <-> FP32
+float ggml_fp16_to_fp32(ggml_fp16_t x);
ggml_fp16_t ggml_fp32_to_fp16(float x);
struct ggml_object;
GGML_TYPE_COUNT,
};
+// available tensor operations:
enum ggml_op {
GGML_OP_NONE = 0,
void * mem_buffer; // if NULL, memory will be allocated internally
};
-void ggml_time_init(void);
+void ggml_time_init(void); // call this once at the beginning of the program
int64_t ggml_time_ms(void);
int64_t ggml_time_us(void);
int64_t ggml_cycles(void);