import torch
import numpy as np
from gguf import *
-from transformers import CLIPModel, CLIPProcessor
+from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
+ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
+ help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
+# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
+default_image_mean = [0.48145466, 0.4578275, 0.40821073]
+default_image_std = [0.26862954, 0.26130258, 0.27577711]
+ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
+ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
+# with proper
args = ap.parse_args()
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
-
-with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- vocab = json.load(f)
- tokens = [key for key in vocab]
+if args.clip_model_is_vision:
+ vocab = None
+ tokens = None
+else:
+ with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
+ vocab = json.load(f)
+ tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
- v_hparams = config["vision_config"]
- t_hparams = config["text_config"]
+ if args.clip_model_is_vision:
+ v_hparams = config
+ t_hparams = None
+ else:
+ v_hparams = config["vision_config"]
+ t_hparams = config["text_config"]
# possible data types
# ftype == 0 -> float32
if args.use_f32:
ftype = 0
-
-model = CLIPModel.from_pretrained(dir_model)
-processor = CLIPProcessor.from_pretrained(dir_model)
+if args.clip_model_is_vision:
+ model = CLIPVisionModel.from_pretrained(dir_model)
+ processor = None
+else:
+ model = CLIPModel.from_pretrained(dir_model)
+ processor = CLIPProcessor.from_pretrained(dir_model)
fname_middle = None
has_text_encoder = True
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
-elif args.vision_only:
- fname_middle = "vision-"
- has_text_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
+elif args.vision_only:
+ fname_middle = "vision-"
+ has_text_encoder = False
else:
fname_middle = ""
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
- image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
- image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
+ if processor is not None:
+ image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
+ image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
+ else:
+ image_mean = args.image_mean if args.image_mean is not None else default_image_mean
+ image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)