*sin_theta = sycl::sin(theta) * mscale;
}
-template<typename T, bool has_ff>
-static void rope_norm(
- const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
- const sycl::nd_item<3> &item_ct1) {
- const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
+template <typename T, bool has_ff>
+static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
+ const int32_t * pos, float freq_scale, float ext_factor, float attn_factor,
+ const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> & item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
- const int i = row*ne0 + i0;
+ const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
- const int i = row*ne0 + i0;
- const int i2 = row/p_delta_rows;
+ const int row0 = row % ne1;
+ const int channel0 = row / ne1;
+
+ const int i = row * ne0 + i0;
+ const int i2 = channel0 * s2 + row0 * s1 + i0;
- const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
+ const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
- const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+ const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
- rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+ rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
+ const float x0 = x[i2 + 0];
+ const float x1 = x[i2 + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
+ dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
+ dst[i + 1] = x0 * sin_theta + x1 * cos_theta;
}
-template<typename T, bool has_ff>
-static void rope_neox(
- const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
- const sycl::nd_item<3> &item_ct1) {
- const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
+template <typename T, bool has_ff>
+static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
+ const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
+ const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> & item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
- const int i = row*ne0 + i0;
+ const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
- const int i = row*ne0 + i0/2;
- const int i2 = row/p_delta_rows;
+ const int row0 = row % ne1;
+ const int channel0 = row / ne1;
+
+ const int i = row * ne0 + i0 / 2;
+ const int i2 = channel0 * s2 + row0 * s1 + i0 / 2;
- const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
+ const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
- const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+ const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
- rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+ rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
+ const float x0 = x[i2 + 0];
+ const float x1 = x[i2 + n_dims / 2];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+ dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
+ dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
}
template <typename T>
-static void rope_norm_sycl(
- const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
+ const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base,
+ const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
+ const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const sycl::range<3> block_nums(1, num_blocks_x, nr);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
+ const float theta_scale = powf(freq_base, -2.0f / n_dims);
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
/*
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
- ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
- item_ct1);
- });
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
+ theta_scale, freq_factors, item_ct1);
+ });
} else {
/*
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
- ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
- item_ct1);
- });
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
+ theta_scale, freq_factors, item_ct1);
+ });
}
}
template <typename T>
-static void rope_neox_sycl(
- const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
+ const int n_dims, const int nr, const int32_t * pos, const float freq_scale,
+ const float freq_base, const float ext_factor, const float attn_factor,
+ const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const sycl::range<3> block_nums(1, num_blocks_x, nr);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
+ const float theta_scale = powf(freq_base, -2.0f / n_dims);
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, freq_factors,
- item_ct1);
- });
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
+ theta_scale, freq_factors, item_ct1);
+ });
} else {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, freq_factors,
- item_ct1);
- });
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
+ theta_scale, freq_factors, item_ct1);
+ });
}
}
}
}
-void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
+inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
if (is_neox) {
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
- rope_neox_sycl(
- (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
+ rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
+ pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
- rope_neox_sycl(
- (const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
+ rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
+ n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
+ main_stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
- rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
- freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
+ rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01,
+ s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
+ freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
- rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
- freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
+ rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
+ nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
+ main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else {
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
- rope_norm_sycl(
- (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
+ rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
+ pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
- rope_norm_sycl(
- (const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
+ rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
+ n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
+ main_stream);
} else {
GGML_ABORT("fatal error");
}
}
}
+
+void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
+ GGML_SYCL_DEBUG("call %s\n", __func__);
+ ggml_sycl_op_rope(ctx, dst);
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
+}
+