#include <limits>
#include <array>
#include <numeric>
+#include <functional>
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
+enum ffn_op_type {
+ FFN_GELU,
+ FFN_SILU,
+ FFN_GELU_QUICK,
+};
+
+enum norm_type {
+ NORM_TYPE_NORMAL,
+ NORM_TYPE_RMS,
+};
+
//#define CLIP_DEBUG_FUNCTIONS
#ifdef CLIP_DEBUG_FUNCTIONS
int32_t n_layer;
int32_t proj_scale_factor = 0; // idefics3
+ ffn_op_type ffn_op = FFN_GELU;
+
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
float eps = 1e-6;
struct clip_layer {
// attention
- struct ggml_tensor * k_w = nullptr;
- struct ggml_tensor * k_b = nullptr;
- struct ggml_tensor * q_w = nullptr;
- struct ggml_tensor * q_b = nullptr;
- struct ggml_tensor * v_w = nullptr;
- struct ggml_tensor * v_b = nullptr;
+ ggml_tensor * k_w = nullptr;
+ ggml_tensor * k_b = nullptr;
+ ggml_tensor * q_w = nullptr;
+ ggml_tensor * q_b = nullptr;
+ ggml_tensor * v_w = nullptr;
+ ggml_tensor * v_b = nullptr;
- struct ggml_tensor * o_w = nullptr;
- struct ggml_tensor * o_b = nullptr;
+ ggml_tensor * o_w = nullptr;
+ ggml_tensor * o_b = nullptr;
// layernorm 1
- struct ggml_tensor * ln_1_w = nullptr;
- struct ggml_tensor * ln_1_b = nullptr;
+ ggml_tensor * ln_1_w = nullptr;
+ ggml_tensor * ln_1_b = nullptr;
- struct ggml_tensor * ff_up_w = nullptr;
- struct ggml_tensor * ff_up_b = nullptr;
- struct ggml_tensor * ff_gate_w = nullptr;
- struct ggml_tensor * ff_gate_b = nullptr;
- struct ggml_tensor * ff_down_w = nullptr;
- struct ggml_tensor * ff_down_b = nullptr;
+ ggml_tensor * ff_up_w = nullptr;
+ ggml_tensor * ff_up_b = nullptr;
+ ggml_tensor * ff_gate_w = nullptr;
+ ggml_tensor * ff_gate_b = nullptr;
+ ggml_tensor * ff_down_w = nullptr;
+ ggml_tensor * ff_down_b = nullptr;
// layernorm 2
- struct ggml_tensor * ln_2_w = nullptr;
- struct ggml_tensor * ln_2_b = nullptr;
+ ggml_tensor * ln_2_w = nullptr;
+ ggml_tensor * ln_2_b = nullptr;
};
struct clip_vision_model {
struct clip_hparams hparams;
// embeddings
- struct ggml_tensor * class_embedding = nullptr;
- struct ggml_tensor * patch_embeddings_0 = nullptr;
- struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
- struct ggml_tensor * patch_bias = nullptr;
- struct ggml_tensor * position_embeddings = nullptr;
+ ggml_tensor * class_embedding = nullptr;
+ ggml_tensor * patch_embeddings_0 = nullptr;
+ ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
+ ggml_tensor * patch_bias = nullptr;
+ ggml_tensor * position_embeddings = nullptr;
- struct ggml_tensor * pre_ln_w = nullptr;
- struct ggml_tensor * pre_ln_b = nullptr;
+ ggml_tensor * pre_ln_w = nullptr;
+ ggml_tensor * pre_ln_b = nullptr;
std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
+ ggml_tensor * post_ln_w;
+ ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
+ ggml_tensor * projection;
// LLaVA projection
- struct ggml_tensor * mm_input_norm_w = nullptr;
- struct ggml_tensor * mm_0_w = nullptr;
- struct ggml_tensor * mm_0_b = nullptr;
- struct ggml_tensor * mm_2_w = nullptr;
- struct ggml_tensor * mm_2_b = nullptr;
+ ggml_tensor * mm_input_norm_w = nullptr;
+ ggml_tensor * mm_0_w = nullptr;
+ ggml_tensor * mm_0_b = nullptr;
+ ggml_tensor * mm_2_w = nullptr;
+ ggml_tensor * mm_2_b = nullptr;
- struct ggml_tensor * image_newline = nullptr;
+ ggml_tensor * image_newline = nullptr;
// Yi type models with mlp+normalization projection
- struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
- struct ggml_tensor * mm_1_b = nullptr;
- struct ggml_tensor * mm_3_w = nullptr;
- struct ggml_tensor * mm_3_b = nullptr;
- struct ggml_tensor * mm_4_w = nullptr;
- struct ggml_tensor * mm_4_b = nullptr;
+ ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
+ ggml_tensor * mm_1_b = nullptr;
+ ggml_tensor * mm_3_w = nullptr;
+ ggml_tensor * mm_3_b = nullptr;
+ ggml_tensor * mm_4_w = nullptr;
+ ggml_tensor * mm_4_b = nullptr;
// GLMV-Edge projection
- struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
- struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
- struct ggml_tensor * mm_glm_tok_boi = nullptr;
- struct ggml_tensor * mm_glm_tok_eoi = nullptr;
+ ggml_tensor * mm_model_adapter_conv_w = nullptr;
+ ggml_tensor * mm_model_adapter_conv_b = nullptr;
+ ggml_tensor * mm_glm_tok_boi = nullptr;
+ ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection
- struct ggml_tensor * mm_model_mlp_1_w = nullptr;
- struct ggml_tensor * mm_model_mlp_1_b = nullptr;
- struct ggml_tensor * mm_model_mlp_3_w = nullptr;
- struct ggml_tensor * mm_model_mlp_3_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
+ ggml_tensor * mm_model_mlp_1_w = nullptr;
+ ggml_tensor * mm_model_mlp_1_b = nullptr;
+ ggml_tensor * mm_model_mlp_3_w = nullptr;
+ ggml_tensor * mm_model_mlp_3_b = nullptr;
+ ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
+ ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
+ ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
+ ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
+ ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
+ ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
+ ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
+ ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
+ ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
+ ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
// MobileVLM_V2 projection
- struct ggml_tensor * mm_model_mlp_0_w = nullptr;
- struct ggml_tensor * mm_model_mlp_0_b = nullptr;
- struct ggml_tensor * mm_model_mlp_2_w = nullptr;
- struct ggml_tensor * mm_model_mlp_2_b = nullptr;
- struct ggml_tensor * mm_model_peg_0_w = nullptr;
- struct ggml_tensor * mm_model_peg_0_b = nullptr;
+ ggml_tensor * mm_model_mlp_0_w = nullptr;
+ ggml_tensor * mm_model_mlp_0_b = nullptr;
+ ggml_tensor * mm_model_mlp_2_w = nullptr;
+ ggml_tensor * mm_model_mlp_2_b = nullptr;
+ ggml_tensor * mm_model_peg_0_w = nullptr;
+ ggml_tensor * mm_model_peg_0_b = nullptr;
// MINICPMV projection
- struct ggml_tensor * mm_model_pos_embed_k = nullptr;
- struct ggml_tensor * mm_model_query = nullptr;
- struct ggml_tensor * mm_model_proj = nullptr;
- struct ggml_tensor * mm_model_kv_proj = nullptr;
- struct ggml_tensor * mm_model_attn_q_w = nullptr;
- struct ggml_tensor * mm_model_attn_q_b = nullptr;
- struct ggml_tensor * mm_model_attn_k_w = nullptr;
- struct ggml_tensor * mm_model_attn_k_b = nullptr;
- struct ggml_tensor * mm_model_attn_v_w = nullptr;
- struct ggml_tensor * mm_model_attn_v_b = nullptr;
- struct ggml_tensor * mm_model_attn_o_w = nullptr;
- struct ggml_tensor * mm_model_attn_o_b = nullptr;
- struct ggml_tensor * mm_model_ln_q_w = nullptr;
- struct ggml_tensor * mm_model_ln_q_b = nullptr;
- struct ggml_tensor * mm_model_ln_kv_w = nullptr;
- struct ggml_tensor * mm_model_ln_kv_b = nullptr;
- struct ggml_tensor * mm_model_ln_post_w = nullptr;
- struct ggml_tensor * mm_model_ln_post_b = nullptr;
+ ggml_tensor * mm_model_pos_embed_k = nullptr;
+ ggml_tensor * mm_model_query = nullptr;
+ ggml_tensor * mm_model_proj = nullptr;
+ ggml_tensor * mm_model_kv_proj = nullptr;
+ ggml_tensor * mm_model_attn_q_w = nullptr;
+ ggml_tensor * mm_model_attn_q_b = nullptr;
+ ggml_tensor * mm_model_attn_k_w = nullptr;
+ ggml_tensor * mm_model_attn_k_b = nullptr;
+ ggml_tensor * mm_model_attn_v_w = nullptr;
+ ggml_tensor * mm_model_attn_v_b = nullptr;
+ ggml_tensor * mm_model_attn_o_w = nullptr;
+ ggml_tensor * mm_model_attn_o_b = nullptr;
+ ggml_tensor * mm_model_ln_q_w = nullptr;
+ ggml_tensor * mm_model_ln_q_b = nullptr;
+ ggml_tensor * mm_model_ln_kv_w = nullptr;
+ ggml_tensor * mm_model_ln_kv_b = nullptr;
+ ggml_tensor * mm_model_ln_post_w = nullptr;
+ ggml_tensor * mm_model_ln_post_b = nullptr;
// gemma3
- struct ggml_tensor * mm_input_proj_w = nullptr;
- struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
+ ggml_tensor * mm_input_proj_w = nullptr;
+ ggml_tensor * mm_soft_emb_norm_w = nullptr;
// pixtral
- struct ggml_tensor * token_embd_img_break = nullptr;
- struct ggml_tensor * mm_patch_merger_w = nullptr;
+ ggml_tensor * token_embd_img_break = nullptr;
+ ggml_tensor * mm_patch_merger_w = nullptr;
};
struct clip_ctx {
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
- int32_t max_feature_layer; // unused in newer models like gemma3
float image_mean[3];
float image_std[3];
- bool use_gelu = false;
- bool use_silu = false;
gguf_context_ptr ctx_gguf;
ggml_context_ptr ctx_data;
}
};
-static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
-
- int image_size_width = img.nx;
- int image_size_height = img.ny;
-
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int n_embd = hparams.n_embd;
- const int n_head = hparams.n_head;
- const int d_head = n_embd / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
-
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
-
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
-
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+struct clip_graph {
+ clip_ctx * ctx;
+ const clip_vision_model & model;
+ const clip_hparams & hparams;
+
+ // we only support single image per batch
+ const clip_image_f32 & img;
+
+ const int patch_size;
+ const int n_patches_x;
+ const int n_patches_y;
+ const int n_patches;
+ const int n_embd;
+ const int n_head;
+ const int d_head;
+ const int n_layer;
+ const float eps;
+ const float kq_scale;
+
+ ggml_context_ptr ctx0_ptr;
+ ggml_context * ctx0;
+ ggml_cgraph * gf;
+
+ clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
+ ctx(ctx),
+ model(ctx->vision_model),
+ hparams(model.hparams),
+ img(img),
+ patch_size(hparams.patch_size),
+ n_patches_x(img.nx / patch_size),
+ n_patches_y(img.ny / patch_size),
+ n_patches(n_patches_x * n_patches_y),
+ n_embd(hparams.n_embd),
+ n_head(hparams.n_head),
+ d_head(n_embd / n_head),
+ n_layer(hparams.n_layer),
+ eps(hparams.eps),
+ kq_scale(1.0f / sqrtf((float)d_head)) {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ ctx->buf_compute_meta.size(),
+ /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
+ /*.no_alloc =*/ true,
+ };
+ ctx0_ptr.reset(ggml_init(params));
+ ctx0 = ctx0_ptr.get();
+ gf = ggml_new_graph(ctx0);
+ }
+
+ ggml_cgraph * build_siglip() {
+ ggml_tensor * inp = build_inp();
+ ggml_tensor * cur = build_vit(
+ inp, n_patches,
+ NORM_TYPE_NORMAL,
+ hparams.ffn_op,
+ model.position_embeddings,
+ nullptr);
+
+ if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
+ const int batch_size = 1;
+ GGML_ASSERT(n_patches_x == n_patches_y);
+ const int patches_per_image = n_patches_x;
+ const int kernel_size = hparams.proj_scale_factor;
+
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
+ cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
+
+ // doing a pool2d to reduce the number of output tokens
+ cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
+ cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
+
+ // apply norm before projection
+ cur = ggml_rms_norm(ctx0, cur, eps);
+ cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
+
+ // apply projection
+ cur = ggml_mul_mat(ctx0,
+ ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
+ cur);
+
+ } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
+ // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
+
+ const int scale_factor = model.hparams.proj_scale_factor;
+ const int n_embd = cur->ne[0];
+ const int seq = cur->ne[1];
+ const int bsz = 1; // batch size, always 1 for now since we don't support batching
+ const int height = std::sqrt(seq);
+ const int width = std::sqrt(seq);
+ GGML_ASSERT(scale_factor != 0);
+ cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+ cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
+ n_embd * scale_factor * scale_factor,
+ height / scale_factor,
+ width / scale_factor,
+ bsz);
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+ cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
+ n_embd * scale_factor * scale_factor,
+ seq / (scale_factor * scale_factor),
+ bsz);
+
+ cur = ggml_mul_mat(ctx0, model.projection, cur);
+ } else {
+ GGML_ABORT("SigLIP: Unsupported projector type");
+ }
- // input raw
- struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
+ // build the graph
+ ggml_build_forward_expand(gf, cur);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, num_patches, n_embd);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
+ return gf;
+ }
- // position embeddings
- struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
+ ggml_cgraph * build_pixtral() {
+ const int n_merge = hparams.spatial_merge_size;
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
+ // 2D input positions
+ ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+ ggml_set_name(pos_h, "pos_h");
+ ggml_set_input(pos_h);
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
- }
+ ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+ ggml_set_name(pos_w, "pos_w");
+ ggml_set_input(pos_w);
- // self-attention
- {
-
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
+ auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
+ return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta);
+ };
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
+ ggml_tensor * inp = build_inp();
+ ggml_tensor * cur = build_vit(
+ inp, n_patches,
+ NORM_TYPE_RMS,
+ hparams.ffn_op,
+ nullptr, // no learned pos embd
+ add_pos);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
+ // mistral small 3.1 patch merger
+ // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
+ if (model.mm_patch_merger_w) {
+ GGML_ASSERT(hparams.spatial_merge_size > 0);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
+ cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
+ // reshape image tokens to 2D grid
+ cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
+ cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
+ cur = ggml_cont(ctx0, cur);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
+ // torch.nn.functional.unfold is just an im2col under the hood
+ // we just need a dummy kernel to make it work
+ ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
+ cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
+ // project to n_embd
+ cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
+ cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
+ }
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ // LlavaMultiModalProjector (always using GELU activation)
+ {
+ cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
+ if (model.mm_1_b) {
+ cur = ggml_add(ctx0, cur, model.mm_1_b);
+ }
- cur = ggml_cont_2d(ctx0, KQV, n_embd, num_patches);
+ cur = ggml_gelu(ctx0, cur);
+ cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
+ if (model.mm_2_b) {
+ cur = ggml_add(ctx0, cur, model.mm_2_b);
+ }
}
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
-
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
+ // arrangement of the [IMG_BREAK] token
+ {
+ // not efficient, but works
+ // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
+ // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
+ // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
- embeddings = cur; // embeddings = residual, cur = hidden_states
+ const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
+ const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
+ const int p_total = p_x * p_y;
+ const int n_embd_text = cur->ne[0];
+ const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
+ ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
+ ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
+ tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
+ tok = ggml_add(ctx0, tok, model.token_embd_img_break);
+ tmp = ggml_concat(ctx0, tmp, tok, 1);
+ cur = ggml_view_2d(ctx0, tmp,
+ n_embd_text, n_tokens_output,
+ ggml_row_size(tmp->type, n_embd_text), 0);
}
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_up_b);
+ // build the graph
+ ggml_build_forward_expand(gf, cur);
- // siglip uses gelu
- cur = ggml_gelu(ctx0, cur);
+ return gf;
+ }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
+ // Qwen2VL and Qwen2.5VL use M-RoPE
+ ggml_cgraph * build_qwen2vl() {
+ const int batch_size = 1;
+ const bool use_window_attn = hparams.n_wa_pattern > 0;
+ const int n_wa_pattern = hparams.n_wa_pattern;
+ const int n_pos = n_patches;
+ const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
+ norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL
+ ? NORM_TYPE_RMS // qwen 2.5 vl
+ : NORM_TYPE_NORMAL; // qwen 2 vl
- embeddings = cur;
- }
+ int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
+ ggml_tensor * inp_raw = build_inp_raw();
+ ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
+ GGML_ASSERT(img.nx % (patch_size * 2) == 0);
+ GGML_ASSERT(img.ny % (patch_size * 2) == 0);
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- const int mm_tokens_per_image = 256; // default value for gemma3
- const int tokens_per_side = sqrt(mm_tokens_per_image);
- const int patches_per_image = sqrt(num_patches);
- const int kernel_size = patches_per_image / tokens_per_side;
+ // second conv dimension
+ {
+ auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+ inp = ggml_add(ctx0, inp, inp_1);
+
+ inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
+ inp = ggml_reshape_4d(
+ ctx0, inp,
+ n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
+ inp = ggml_reshape_4d(
+ ctx0, inp,
+ n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
+ inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
+ inp = ggml_reshape_3d(
+ ctx0, inp,
+ n_embd, n_patches_x * n_patches_y, batch_size);
+ }
+
+ if (model.patch_bias) {
+ inp = ggml_add(ctx0, inp, model.patch_bias);
+ }
+
+ ggml_tensor * inpL = inp;
+ ggml_tensor * window_mask = nullptr;
+ ggml_tensor * window_idx = nullptr;
+ ggml_tensor * inv_window_idx = nullptr;
+
+ ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
+ ggml_set_name(positions, "positions");
+ ggml_set_input(positions);
+
+ // pre-layernorm
+ if (model.pre_ln_w) {
+ inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
+ }
+
+ if (use_window_attn) {
+ // handle window attention inputs
+ inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
+ ggml_set_name(inv_window_idx, "inv_window_idx");
+ ggml_set_input(inv_window_idx);
+ // mask for window attention
+ window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
+ ggml_set_name(window_mask, "window_mask");
+ ggml_set_input(window_mask);
+
+ // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
+ GGML_ASSERT(batch_size == 1);
+ inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
+ inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
+ inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
+ }
+
+ // loop over layers
+ for (int il = 0; il < n_layer; il++) {
+ auto & layer = model.layers[il];
+ const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
- embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, n_embd, batch_size);
+ ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // doing a pool2d to reduce the number of output tokens to 256
- embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], n_embd, batch_size);
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
+ // layernorm1
+ cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
+ cb(cur, "ln1", il);
- // apply norm before projection
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
+ // self-attention
+ {
+ ggml_tensor * Qcur = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
+ ggml_tensor * Kcur = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
+ ggml_tensor * Vcur = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ // apply M-RoPE
+ Qcur = ggml_rope_multi(
+ ctx0, Qcur, positions, nullptr,
+ d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+ Kcur = ggml_rope_multi(
+ ctx0, Kcur, positions, nullptr,
+ d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- // apply projection
- embeddings = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- embeddings);
+ cb(Qcur, "Qcur_rope", il);
+ cb(Kcur, "Kcur_rope", il);
- } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
- // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
-
- ggml_tensor * cur = embeddings;
- const int scale_factor = model.hparams.proj_scale_factor;
- const int n_embd = cur->ne[0];
- const int seq = cur->ne[1];
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- const int height = std::sqrt(seq);
- const int width = std::sqrt(seq);
- GGML_ASSERT(scale_factor != 0);
- cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- height / scale_factor,
- width / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- seq / (scale_factor * scale_factor),
- bsz);
-
- cur = ggml_mul_mat(ctx0, model.projection, cur);
- embeddings = cur;
- } else {
- GGML_ABORT("SigLIP: Unsupported projector type");
- }
-
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
-
- return gf;
-}
+ ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
-// implementation of the 2D RoPE without adding a new op in ggml
-// this is not efficient (use double the memory), but works on all backends
-// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
-static ggml_tensor * build_rope_2d(
- ggml_context * ctx0,
- ggml_tensor * cur,
- ggml_tensor * pos_h,
- ggml_tensor * pos_w,
- const float freq_base
-) {
- const int64_t n_dim = cur->ne[0];
- const int64_t n_head = cur->ne[1];
- const int64_t n_pos = cur->ne[2];
-
- // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
- // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
- // first half of cur will use 1e-0, 1e-2 (even)
- // second half of cur will use 1e-1, 1e-3 (odd)
- // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
- // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
- // then for the second half, we use freq_scale to shift the inv_freq
- // ^ why? replace (2i) with (2i+1) in the above equation
- const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
-
- // first half
- ggml_tensor * first;
- {
- first = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- 0);
- first = ggml_rope_ext(
- ctx0,
- first,
- pos_h, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
+ cur = build_attn(layer.o_w, layer.o_b,
+ Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
+ cb(cur, "attn_out", il);
+ }
- // second half
- ggml_tensor * second;
- {
- second = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- n_dim/2 * ggml_element_size(cur));
- second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
- second = ggml_rope_ext(
- ctx0,
- second,
- pos_w, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- freq_scale_odd,
- 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
+ // re-add the layer input, e.g., residual
+ cur = ggml_add(ctx0, cur, inpL);
- cur = ggml_concat(ctx0, first, second, 0);
- return cur;
-}
+ inpL = cur; // inpL = residual, cur = hidden_states
-static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
+ cb(cur, "ffn_inp", il);
- GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL);
-
- int image_size_width = img.nx;
- int image_size_height = img.ny;
-
- const int patch_size = hparams.patch_size;
- const int n_patches_x = image_size_width / patch_size;
- const int n_patches_y = image_size_height / patch_size;
- const int num_patches = n_patches_x * n_patches_y;
- const int n_embd = hparams.n_embd;
- const int n_head = hparams.n_head;
- const int d_head = n_embd / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- const int n_merge = hparams.spatial_merge_size;
-
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
+ // layernorm2
+ cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
+ cb(cur, "ffn_inp_normed", il);
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
+ // ffn
+ cur = build_ffn(cur,
+ layer.ff_up_w, layer.ff_up_b,
+ layer.ff_gate_w, layer.ff_gate_b,
+ layer.ff_down_w, layer.ff_down_b,
+ hparams.ffn_op, il);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+ cb(cur, "ffn_out", il);
- // input raw
- struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
+ // residual 2
+ cur = ggml_add(ctx0, inpL, cur);
+ cb(cur, "layer_out", il);
- // 2D input positions
- struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
+ inpL = cur;
+ }
+
+ // post-layernorm
+ if (model.post_ln_w) {
+ inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
+ }
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, num_patches, n_embd);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
+ // multimodal projection
+ ggml_tensor * embeddings = inpL;
+ embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
- struct ggml_tensor * embeddings = inp;
+ embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // pre-layer norm
- embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w);
+ // GELU activation
+ embeddings = ggml_gelu(ctx0, embeddings);
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings;
+ // Second linear layer
+ embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- // pre-attention norm
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w);
+ if (use_window_attn) {
+ window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
+ ggml_set_name(window_idx, "window_idx");
+ ggml_set_input(window_idx);
- // self-attention
- {
- struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);
+ // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
+ GGML_ASSERT(batch_size == 1);
+ embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
+ embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
+ embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
+ }
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
- Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
+ // build the graph
+ ggml_build_forward_expand(gf, embeddings);
- struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);
+ return gf;
+ }
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
- K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
+ ggml_cgraph * build_minicpmv() {
+ const int batch_size = 1;
- struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);
+ GGML_ASSERT(model.class_embedding == nullptr);
+ const int n_pos = n_patches;
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
+ // position embeddings for the projector (not for ViT)
+ int n_output_dim = clip_n_mmproj_embd(ctx);
+ ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
+ ggml_set_name(pos_embed, "pos_embed");
+ ggml_set_input(pos_embed);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
+ // for selecting learned pos embd, used by ViT
+ struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+ ggml_set_name(positions, "positions");
+ ggml_set_input(positions);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
- cur = ggml_cont_2d(ctx0, KQV, n_embd, num_patches);
+ ggml_tensor * inp = build_inp();
+ ggml_tensor * embeddings = build_vit(
+ inp, n_patches,
+ NORM_TYPE_NORMAL,
+ hparams.ffn_op,
+ learned_pos_embd,
+ nullptr);
- cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
- }
+ // resampler projector (it is just another transformer)
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
+ ggml_tensor * q = model.mm_model_query;
+ ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
+ // norm
+ q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
+ v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
- // pre-ffn norm
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w);
+ // k = v + pos_embed
+ ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
- // feed-forward
+ // attention
{
- ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
- ggml_tensor * up_proj = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
- if (ctx->use_silu) {
- gate_proj = ggml_silu(ctx0, gate_proj);
- } else if (ctx->use_gelu) {
- gate_proj = ggml_gelu(ctx0, gate_proj);
- } else {
- GGML_ABORT("Pixtral: Unsupported activation");
+ int n_embd = clip_n_mmproj_embd(ctx);
+ const int d_head = 128;
+ int n_head = n_embd/d_head;
+ int num_query = 96;
+ if (ctx->minicpmv_version == 2) {
+ num_query = 96;
+ } else if (ctx->minicpmv_version == 3) {
+ num_query = 64;
+ } else if (ctx->minicpmv_version == 4) {
+ num_query = 64;
}
- cur = ggml_mul(ctx0, up_proj, gate_proj);
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
- }
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
+ ggml_tensor * Q = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
+ model.mm_model_attn_q_b);
+ ggml_tensor * K = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
+ model.mm_model_attn_k_b);
+ ggml_tensor * V = ggml_add(ctx0,
+ ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
+ model.mm_model_attn_v_b);
+
+ Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
+ K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
+ V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
+
+ cb(Q, "resampler_Q", -1);
+ cb(K, "resampler_K", -1);
+ cb(V, "resampler_V", -1);
+
+ embeddings = build_attn(
+ model.mm_model_attn_o_w,
+ model.mm_model_attn_o_b,
+ Q, K, V, nullptr, kq_scale, -1);
+ cb(embeddings, "resampler_attn_out", -1);
+ }
+ // layernorm
+ embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
+
+ // projection
+ embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
+
+ // build the graph
+ ggml_build_forward_expand(gf, embeddings);
- embeddings = cur;
+ return gf;
}
- // mistral small 3.1 patch merger
- // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
- if (model.mm_patch_merger_w) {
- GGML_ASSERT(hparams.spatial_merge_size > 0);
-
- ggml_tensor * cur = embeddings;
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
+ // this graph is used by llava, granite and glm
+ // due to having embedding_stack (used by granite), we cannot reuse build_vit
+ ggml_cgraph * build_llava() {
+ const int batch_size = 1;
+ const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
- // reshape image tokens to 2D grid
- cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
- cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
- cur = ggml_cont(ctx0, cur);
+ GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
- // torch.nn.functional.unfold is just an im2col under the hood
- // we just need a dummy kernel to make it work
- ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
- cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
+ // Calculate the deepest feature layer based on hparams and projector type
+ int max_feature_layer = n_layer;
+ {
+ // Get the index of the second to last layer; this is the default for models that have a llava projector
+ int il_last = hparams.n_layer - 1;
+ int deepest_feature_layer = -1;
- // project to n_embd
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
- cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
- embeddings = cur;
- }
+ if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+ il_last += 1;
+ }
- // LlavaMultiModalProjector (always using GELU activation)
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- if (model.mm_1_b) {
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
+ // If we set explicit vision feature layers, only go up to the deepest one
+ // NOTE: only used by granite-vision models for now
+ for (const auto & feature_layer : hparams.vision_feature_layer) {
+ if (feature_layer > deepest_feature_layer) {
+ deepest_feature_layer = feature_layer;
+ }
+ }
+ max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
}
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- if (model.mm_2_b) {
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ ggml_tensor * inp = build_inp();
+
+ if (model.patch_bias) {
+ inp = ggml_add(ctx0, inp, model.patch_bias);
}
- }
- // arrangement of the [IMG_BREAK] token
- {
- // not efficient, but works
- // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
- // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
- // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
-
- const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
- const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
- const int p_total = p_x * p_y;
- const int n_embd_text = embeddings->ne[0];
- const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
-
- ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, p_x, p_y);
- ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, p_y);
- tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
- tok = ggml_add(ctx0, tok, model.token_embd_img_break);
- cur = ggml_concat(ctx0, cur, tok, 1);
- embeddings = ggml_view_2d(ctx0, cur,
- n_embd_text, n_tokens_output,
- ggml_row_size(cur->type, n_embd_text), 0);
- }
-
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
-
- return gf;
-}
+ // concat class_embeddings and patch_embeddings
+ if (model.class_embedding) {
+ inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
+ }
-static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
+ ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
+ ggml_set_name(positions, "positions");
+ ggml_set_input(positions);
- const int image_size_width = imgs.entries[0]->nx;
- const int image_size_height = imgs.entries[0]->ny;
+ inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
- const bool use_window_attn = hparams.n_wa_pattern > 0;
-
- const int n_wa_pattern = hparams.n_wa_pattern;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int patches_w = image_size_width / patch_size;
- const int patches_h = image_size_height / patch_size;
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int num_position_ids = num_positions * 4; // m-rope requires 4 dim per position
- const int n_embd = hparams.n_embd;
- const int n_head = hparams.n_head;
- const int d_head = n_embd / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
-
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
-
- const int batch_size = imgs.entries.size();
- GGML_ASSERT(batch_size == 1);
-
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
+ ggml_tensor * inpL = inp;
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
+ // pre-layernorm
+ if (model.pre_ln_w) {
+ inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
+ cb(inpL, "pre_ln", -1);
+ }
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+ std::vector<ggml_tensor *> embedding_stack;
+ const auto & vision_feature_layer = hparams.vision_feature_layer;
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
+ // loop over layers
+ for (int il = 0; il < max_feature_layer; il++) {
+ auto & layer = model.layers[il];
+ ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+ // If this is an embedding feature layer, save the output.
+ // NOTE: 0 index here refers to the input to the encoder.
+ if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
+ embedding_stack.push_back(cur);
+ }
- GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
- GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
+ // layernorm1
+ cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
+ cb(cur, "layer_inp_normed", il);
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
+ // self-attention
+ {
+ ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
+ if (layer.q_b) {
+ Qcur = ggml_add(ctx0, Qcur, layer.q_b);
+ }
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, patches_w / 2, patches_h, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- n_embd, patches_w * patches_h, batch_size);
+ ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
+ if (layer.k_b) {
+ Kcur = ggml_add(ctx0, Kcur, layer.k_b);
+ }
- if (model.patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * window_mask = nullptr;
- struct ggml_tensor * window_idx = nullptr;
- struct ggml_tensor * inv_window_idx = nullptr;
+ ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
+ if (layer.v_b) {
+ Vcur = ggml_add(ctx0, Vcur, layer.v_b);
+ }
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
+ Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- // pre-layernorm
- if (model.pre_ln_w) {
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
- embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
- }
+ cur = build_attn(layer.o_w, layer.o_b,
+ Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+ cb(cur, "attn_out", il);
+ }
- if (use_window_attn) {
- // handle window attention inputs
- inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
- ggml_set_name(inv_window_idx, "inv_window_idx");
- ggml_set_input(inv_window_idx);
- // mask for window attention
- window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
- ggml_set_name(window_mask, "window_mask");
- ggml_set_input(window_mask);
+ // re-add the layer input, e.g., residual
+ cur = ggml_add(ctx0, cur, inpL);
- // embeddings shape: [n_embd, patches_w * patches_h, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, n_embd * 4, patches_w * patches_h * batch_size / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd, patches_w * patches_h, batch_size);
- }
+ inpL = cur; // inpL = residual, cur = hidden_states
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
+ cb(cur, "ffn_inp", il);
- // rmsnorm1
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);
+ // layernorm2
+ cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
+ cb(cur, "ffn_inp_normed", il);
- // self-attention
- {
+ // ffn
+ cur = build_ffn(cur,
+ layer.ff_up_w, layer.ff_up_b,
+ layer.ff_gate_w, layer.ff_gate_b,
+ layer.ff_down_w, layer.ff_down_b,
+ hparams.ffn_op, il);
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
+ cb(cur, "ffn_out", il);
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- Q = ggml_rope_multi(
- ctx0, Q, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
+ // residual 2
+ cur = ggml_add(ctx0, inpL, cur);
+ cb(cur, "layer_out", il);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
+ inpL = cur;
+ }
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_rope_multi(
- ctx0, K, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
+ // post-layernorm
+ if (model.post_ln_w) {
+ inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
+ }
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
+ ggml_tensor * embeddings = inpL;
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
+ // process vision feature layers (used by granite)
+ {
+ // final layer is a vision feature layer
+ if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
+ embedding_stack.push_back(inpL);
+ }
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
- if (full_attn) {
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- } else {
- KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
+ // If feature layers are explicitly set, stack them (if we have multiple)
+ if (!embedding_stack.empty()) {
+ embeddings = embedding_stack[0];
+ for (size_t i = 1; i < embedding_stack.size(); i++) {
+ embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
+ }
}
+ }
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ // llava projector (also used by granite)
+ if (ctx->has_llava_projector) {
+ embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- cur = ggml_cont_3d(ctx0, KQV, n_embd, num_positions, batch_size);
- }
+ ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
+ ggml_set_name(patches, "patches");
+ ggml_set_input(patches);
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
+ // shape [1, 576, 1024]
+ // ne is whcn, ne = [1024, 576, 1, 1]
+ embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
+ // print_tensor_info(embeddings, "embeddings");
- embeddings = cur; // embeddings = residual, cur = hidden_states
+ // llava projector
+ if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
+ embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // rms norm2
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);
+ embeddings = ggml_gelu(ctx0, embeddings);
+ if (model.mm_2_w) {
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
+ }
+ else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
+ embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+ // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
+ // First LayerNorm
+ embeddings = ggml_norm(ctx0, embeddings, eps);
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
+ model.mm_1_b);
+
+ // GELU activation
+ embeddings = ggml_gelu(ctx0, embeddings);
+
+ // Second linear layer
+ embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
+
+ // Second LayerNorm
+ embeddings = ggml_norm(ctx0, embeddings, eps);
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
+ model.mm_4_b);
+ }
+ else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
+ // MobileVLM projector
+ int n_patch = 24;
+ ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
+ mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
+ mlp_1 = ggml_gelu(ctx0, mlp_1);
+ ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
+ mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
+ // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
+
+ // block 1
+ ggml_tensor * block_1 = nullptr;
+ {
+ // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
+ mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
+ mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
+ // stride = 1, padding = 1, bias is nullptr
+ block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
+
+ // layer norm
+ // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+ // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+
+ // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ // hardswish
+ ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+ block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+ // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ // pointwise conv
+ block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
+ block_1 = ggml_relu(ctx0, block_1);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
+ block_1 = ggml_hardsigmoid(ctx0, block_1);
+ // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
+ block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+ block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+ int w = block_1->ne[0], h = block_1->ne[1];
+ block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+
+ // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
+ block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+ // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+ // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
+ // residual
+ block_1 = ggml_add(ctx0, mlp_3, block_1);
+ }
- // mlp
- // ffn_up
- auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
- cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_up_b);
+ // block_2
+ {
+ // stride = 2
+ block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
+
+ // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+ // layer norm
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
+ // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
+ // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
+ // hardswish
+ ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
+
+ // not sure the parameters is right for globalAvgPooling
+ block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
+ // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ // pointwise conv
+ block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
+ block_1 = ggml_relu(ctx0, block_1);
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
+ block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
+ block_1 = ggml_hardsigmoid(ctx0, block_1);
+
+ // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
+ block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
+ block_1 = ggml_mul(ctx0, block_1_hw, block_1);
+
+ int w = block_1->ne[0], h = block_1->ne[1];
+ block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
+ block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
+ // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
+ block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
+ block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
+
+
+ // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
+ block_1 = ggml_norm(ctx0, block_1, eps);
+ block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
+ block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
+ // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
+ }
+ embeddings = block_1;
+ }
+ else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
+ {
+ int n_patch = 24;
+ ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
+ mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
+ mlp_0 = ggml_gelu(ctx0, mlp_0);
+ ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
+ mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
+ // mlp_2 ne = [2048, 576, 1, 1]
+ // // AVG Pool Layer 2*2, strides = 2
+ mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
+ // mlp_2 ne = [576, 2048, 1, 1]
+ mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
+ // mlp_2 ne [24, 24, 2048, 1]
+ mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
+ // weight ne = [3, 3, 2048, 1]
+ ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
+ peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
+ peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
+ mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
+ peg_0 = ggml_add(ctx0, peg_0, mlp_2);
+ peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
+ embeddings = peg_0;
+ }
+ else {
+ GGML_ABORT("fatal error");
+ }
+ }
- auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
- cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_gate_b);
- // TODO : only 2 of these 3 are actually used, should we remove one of them?
- if (ctx->use_gelu) {
- cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
- } else if (ctx->use_silu) {
- cur_gate = ggml_silu_inplace(ctx0, cur_gate);
- } else {
- cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
+ // glm projector
+ else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+ size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
+ embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
+ embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
+ embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
+ embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
+ embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
+ embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
+ // GLU
+ {
+ embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
+ embeddings = ggml_norm(ctx0, embeddings, eps);
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
+ embeddings = ggml_gelu_inplace(ctx0, embeddings);
+ ggml_tensor * x = embeddings;
+ embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
+ x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
+ embeddings = ggml_silu_inplace(ctx0, embeddings);
+ embeddings = ggml_mul(ctx0, embeddings,x);
+ embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
+ }
+ // arrangement of BOI/EOI token embeddings
+ // note: these embeddings are not present in text model, hence we cannot process them as text tokens
+ // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
+ {
+ embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
+ embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
+ }
}
- cur = ggml_mul(ctx0, cur_gate, cur_up);
- // ffn_down
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
+ else {
+ GGML_ABORT("llava: unknown projector type");
+ }
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
+ // build the graph
+ ggml_build_forward_expand(gf, embeddings);
- embeddings = cur;
+ return gf;
}
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
+private:
+ //
+ // utility functions
+ //
- embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
+ void cb(ggml_tensor * cur, const char * name, int il) const {
+ // TODO: implement this
+ GGML_UNUSED(cur);
+ GGML_UNUSED(name);
+ GGML_UNUSED(il);
}
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, num_positions / 4, batch_size);
-
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
-
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
-
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
+ // build vision transformer (ViT) cgraph
+ // this function should cover most of the models
+ // if your model has specific features, you should probably duplicate this function
+ ggml_tensor * build_vit(
+ ggml_tensor * inp,
+ int64_t n_pos,
+ norm_type norm_t,
+ ffn_op_type ffn_t,
+ ggml_tensor * learned_pos_embd,
+ std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
+ ) {
+ if (model.patch_bias) {
+ inp = ggml_add(ctx0, inp, model.patch_bias);
+ cb(inp, "patch_bias", -1);
+ }
- if (use_window_attn) {
- window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
- ggml_set_name(window_idx, "window_idx");
- ggml_set_input(window_idx);
+ if (learned_pos_embd) {
+ inp = ggml_add(ctx0, inp, learned_pos_embd);
+ cb(inp, "pos_embed", -1);
+ }
- // embeddings shape: [n_embd, patches_w * patches_h, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
- }
+ ggml_tensor * inpL = inp;
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
+ // pre-layernorm
+ if (model.pre_ln_w) {
+ inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
+ cb(inpL, "pre_ln", -1);
+ }
- return gf;
-}
+ // loop over layers
+ for (int il = 0; il < n_layer; il++) {
+ auto & layer = model.layers[il];
+ ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
-static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
+ // layernorm1
+ cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
+ cb(cur, "layer_inp_normed", il);
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
+ // self-attention
+ {
+ ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
+ if (layer.q_b) {
+ Qcur = ggml_add(ctx0, Qcur, layer.q_b);
+ }
- if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
- image_size_width = load_image_size.width;
- image_size_height = load_image_size.height;
- if (is_inf) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
+ ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
+ if (layer.k_b) {
+ Kcur = ggml_add(ctx0, Kcur, layer.k_b);
+ }
- else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- // use the image's native resolution when image is avaible
- if (is_inf) {
- // if (imgs->data->nx && imgs->data->ny) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
+ ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
+ if (layer.v_b) {
+ Vcur = ggml_add(ctx0, Vcur, layer.v_b);
+ }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int patches_w = image_size_width / patch_size;
- const int patches_h = image_size_height / patch_size;
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int num_position_ids = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
- const int n_embd = hparams.n_embd;
- const int n_head = hparams.n_head;
- const int d_head = n_embd / n_head;
- const float eps = hparams.eps;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
+ Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- const int batch_size = imgs.entries.size();
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
- if (ctx->has_llava_projector
- || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- GGML_ASSERT(batch_size == 1);
- }
+ if (add_pos) {
+ Qcur = add_pos(Qcur, layer);
+ Kcur = add_pos(Kcur, layer);
+ cb(Qcur, "Qcur_pos", il);
+ cb(Kcur, "Kcur_pos", il);
+ }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
+ cur = build_attn(layer.o_w, layer.o_b,
+ Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+ cb(cur, "attn_out", il);
+ }
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
+ // re-add the layer input, e.g., residual
+ cur = ggml_add(ctx0, cur, inpL);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+ inpL = cur; // inpL = residual, cur = hidden_states
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
+ cb(cur, "ffn_inp", il);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+ // layernorm2
+ cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
+ cb(cur, "ffn_inp_normed", il);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
- GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
+ // ffn
+ cur = build_ffn(cur,
+ layer.ff_up_w, layer.ff_up_b,
+ layer.ff_gate_w, layer.ff_gate_b,
+ layer.ff_down_w, layer.ff_down_b,
+ ffn_t, il);
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, patches_w / 2, patches_h, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- n_embd, patches_w * patches_h, batch_size);
- }
- else {
- inp = ggml_reshape_3d(ctx0, inp, num_patches, n_embd, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- }
+ cb(cur, "ffn_out", il);
- if (model.patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * pos_embed = nullptr;
-
- // concat class_embeddings and patch_embeddings
- if (model.class_embedding) {
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, num_positions, batch_size);
- embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
+ // residual 2
+ cur = ggml_add(ctx0, inpL, cur);
+ cb(cur, "layer_out", il);
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
+ inpL = cur;
+ }
- if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
+ // post-layernorm
+ if (model.post_ln_w) {
+ inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
+ }
+ return inpL;
}
- if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- int pos_w = image_size_width/patch_size;
- int pos_h = image_size_height/patch_size;
- int n_output_dim = clip_n_mmproj_embd(ctx);
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, pos_w * pos_h, 1);
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
+ // build the input after conv2d (inp_raw --> patches)
+ // returns tensor with shape [n_embd, n_patches]
+ ggml_tensor * build_inp() {
+ ggml_tensor * inp_raw = build_inp_raw();
+ ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+ inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
+ inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
+ return inp;
}
- // pre-layernorm
- if (model.pre_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
-
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
+ ggml_tensor * build_inp_raw() {
+ ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, 3);
+ ggml_set_name(inp_raw, "inp_raw");
+ ggml_set_input(inp_raw);
+ return inp_raw;
}
- std::vector<struct ggml_tensor *> embedding_stack;
- const auto & vision_feature_layer = hparams.vision_feature_layer;
+ ggml_tensor * build_norm(
+ ggml_tensor * cur,
+ ggml_tensor * mw,
+ ggml_tensor * mb,
+ norm_type type,
+ float norm_eps,
+ int il) const {
- // loop over layers
- for (int il = 0; il < ctx->max_feature_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
+ cur = type == NORM_TYPE_RMS
+ ? ggml_rms_norm(ctx0, cur, norm_eps)
+ : ggml_norm(ctx0, cur, norm_eps);
- // If this is an embedding feature layer, save the output.
- // NOTE: 0 index here refers to the input to the encoder.
- if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
+ if (mw || mb) {
+ cb(cur, "norm", il);
}
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
-
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
-
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
-
- // self-attention
- {
-
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
-
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- Q = ggml_rope_multi(
- ctx0, Q, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
+ if (mw) {
+ cur = ggml_mul(ctx0, cur, mw);
+ if (mb) {
+ cb(cur, "norm_w", il);
}
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
-
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
-
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- K = ggml_rope_multi(
- ctx0, K, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- }
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
-
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
-
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
-
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
-
- cur = ggml_cont_3d(ctx0, KQV, n_embd, num_positions, batch_size);
}
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
+ if (mb) {
+ cur = ggml_add(ctx0, cur, mb);
+ }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
+ return cur;
+ }
- embeddings = cur; // embeddings = residual, cur = hidden_states
+ ggml_tensor * build_ffn(
+ ggml_tensor * cur,
+ ggml_tensor * up,
+ ggml_tensor * up_b,
+ ggml_tensor * gate,
+ ggml_tensor * gate_b,
+ ggml_tensor * down,
+ ggml_tensor * down_b,
+ ffn_op_type type_op,
+ int il) const {
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
+ ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
+ cb(tmp, "ffn_up", il);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
+ if (up_b) {
+ tmp = ggml_add(ctx0, tmp, up_b);
+ cb(tmp, "ffn_up_b", il);
}
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_up_b);
+ if (gate) {
+ cur = ggml_mul_mat(ctx0, gate, cur);
+ cb(cur, "ffn_gate", il);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else if (ctx->use_silu) {
- cur = ggml_silu_inplace(ctx0, cur);
+ if (gate_b) {
+ cur = ggml_add(ctx0, cur, gate_b);
+ cb(cur, "ffn_gate_b", il);
+ }
} else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
+ cur = tmp;
}
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
+ switch (type_op) {
+ case FFN_SILU:
+ {
+ cur = ggml_silu(ctx0, cur);
+ cb(cur, "ffn_silu", il);
+ } break;
+ case FFN_GELU:
+ {
+ cur = ggml_gelu(ctx0, cur);
+ cb(cur, "ffn_gelu", il);
+ } break;
+ case FFN_GELU_QUICK:
+ {
+ cur = ggml_gelu_quick(ctx0, cur);
+ cb(cur, "ffn_relu", il);
+ } break;
+ }
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
+ // we only support parallel ffn for now
+ if (gate) {
+ cur = ggml_mul(ctx0, cur, tmp);
+ cb(cur, "ffn_gate_par", il);
+ }
- embeddings = cur;
- }
+ if (down) {
+ cur = ggml_mul_mat(ctx0, down, cur);
+ }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
+ if (down_b) {
+ cb(cur, "ffn_down", il);
+ }
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
+ if (down_b) {
+ cur = ggml_add(ctx0, cur, down_b);
+ }
- // final layer is a vision feature layer
- if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
+ return cur;
}
- // If feature layers are explicitly set, stack them (if we have multiple)
- if (!embedding_stack.empty()) {
- embeddings = embedding_stack[0];
- for (size_t i = 1; i < embedding_stack.size(); i++) {
- embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
- }
- }
+ ggml_tensor * build_attn(
+ ggml_tensor * wo,
+ ggml_tensor * wo_b,
+ ggml_tensor * q_cur,
+ ggml_tensor * k_cur,
+ ggml_tensor * v_cur,
+ ggml_tensor * kq_mask,
+ float kq_scale,
+ int il) const {
+ // these nodes are added to the graph together so that they are not reordered
+ // by doing so, the number of splits in the graph is reduced
+ ggml_build_forward_expand(gf, q_cur);
+ ggml_build_forward_expand(gf, k_cur);
+ ggml_build_forward_expand(gf, v_cur);
- // llava projector
- if (ctx->has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
+ ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
+ //cb(q, "q", il);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
+ ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
+ //cb(k, "k", il);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
+ ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
+ v = ggml_cont(ctx0, v);
+ //cb(k, "v", il);
- // print_tensor_info(embeddings, "embeddings");
+ ggml_tensor * cur;
- // llava projector
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+ // TODO @ngxson : support flash attention
+ {
+ const auto n_tokens = q->ne[1];
+ const auto n_head = q->ne[2];
+ // const auto n_kv = k->ne[1]; // for flash attention
- embeddings = ggml_gelu(ctx0, embeddings);
- if (model.mm_2_w) {
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
-
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
-
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
-
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
-
- // block 1
- struct ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
-
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
-
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
-
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
-
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
-
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
-
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
+ ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ // F32 may not needed for vision encoders?
+ // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
-
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
-
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
-
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
-
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
-
-
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // minicpmv projector
- else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- struct ggml_tensor * q = model.mm_model_query;
- { // layernorm
- q = ggml_norm(ctx0, q, eps);
- q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- }
- struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- { // layernorm
- v = ggml_norm(ctx0, v, eps);
- v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
- }
- struct ggml_tensor * k;
- { // position
- // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
- k = ggml_add(ctx0, v, pos_embed);
+ kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
+
+ ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+ cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
}
- { // attention
- int n_embd = clip_n_mmproj_embd(ctx);
- const int d_head = 128;
- int n_head = n_embd/d_head;
- int num_query = 96;
- if (ctx->minicpmv_version == 2) {
- num_query = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- num_query = 64;
- }
- else if (ctx->minicpmv_version == 4) {
- num_query = 64;
- }
+ cb(cur, "kqv_out", il);
- struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
- struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
- struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
- // permute
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- KQV = ggml_cont_3d(ctx0, KQV, n_embd, num_query, batch_size);
-
- embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
- }
- { // layernorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
+ if (wo) {
+ cur = ggml_mul_mat(ctx0, wo, cur);
}
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- }
- // glm projector
- else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
- embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
- embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
- embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
- embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
- // GLU
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- embeddings = ggml_gelu_inplace(ctx0, embeddings);
- struct ggml_tensor * x = embeddings;
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
- x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
- embeddings = ggml_silu_inplace(ctx0, embeddings);
- embeddings = ggml_mul(ctx0, embeddings,x);
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
- }
- // arrangement of BOI/EOI token embeddings
- // note: these embeddings are not present in text model, hence we cannot process them as text tokens
- // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
- {
- embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
- embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
+ if (wo_b) {
+ cur = ggml_add(ctx0, cur, wo_b);
}
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, num_positions / 4, batch_size);
+ return cur;
+ }
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
+ // implementation of the 2D RoPE without adding a new op in ggml
+ // this is not efficient (use double the memory), but works on all backends
+ // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
+ static ggml_tensor * build_rope_2d(
+ ggml_context * ctx0,
+ ggml_tensor * cur,
+ ggml_tensor * pos_h,
+ ggml_tensor * pos_w,
+ const float freq_base
+ ) {
+ const int64_t n_dim = cur->ne[0];
+ const int64_t n_head = cur->ne[1];
+ const int64_t n_pos = cur->ne[2];
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
+ // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
+ // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
+ // first half of cur will use 1e-0, 1e-2 (even)
+ // second half of cur will use 1e-1, 1e-3 (odd)
+ // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
+ // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
+ // then for the second half, we use freq_scale to shift the inv_freq
+ // ^ why? replace (2i) with (2i+1) in the above equation
+ const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
+ // first half
+ ggml_tensor * first;
+ {
+ first = ggml_view_3d(ctx0, cur,
+ n_dim/2, n_head, n_pos,
+ ggml_row_size(cur->type, n_dim),
+ ggml_row_size(cur->type, n_dim*n_head),
+ 0);
+ first = ggml_rope_ext(
+ ctx0,
+ first,
+ pos_h, // positions
+ nullptr, // freq factors
+ n_dim/2, // n_dims
+ 0, 0, freq_base,
+ 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
+ );
+ }
+
+ // second half
+ ggml_tensor * second;
+ {
+ second = ggml_view_3d(ctx0, cur,
+ n_dim/2, n_head, n_pos,
+ ggml_row_size(cur->type, n_dim),
+ ggml_row_size(cur->type, n_dim*n_head),
+ n_dim/2 * ggml_element_size(cur));
+ second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
+ second = ggml_rope_ext(
+ ctx0,
+ second,
+ pos_w, // positions
+ nullptr, // freq factors
+ n_dim/2, // n_dims
+ 0, 0, freq_base,
+ freq_scale_odd,
+ 0.0f, 1.0f, 0.0f, 0.0f
+ );
+ }
+
+ cur = ggml_concat(ctx0, first, second, 0);
+ return cur;
}
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
+};
- return gf;
-}
+static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
+ GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
+ clip_graph graph(ctx, *imgs.entries[0]);
-static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
ggml_cgraph * res;
+
switch (ctx->proj_type) {
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
{
- GGML_ASSERT(imgs.entries.size() == 1);
- res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]);
+ res = graph.build_siglip();
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
- GGML_ASSERT(imgs.entries.size() == 1);
- res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]);
+ res = graph.build_pixtral();
} break;
+ case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
- res = clip_image_build_graph_qwen25vl(ctx, imgs);
+ res = graph.build_qwen2vl();
+ } break;
+ case PROJECTOR_TYPE_MINICPMV:
+ {
+ res = graph.build_minicpmv();
} break;
default:
{
- // TODO: we should have one build_* function per model
- res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
+ res = graph.build_llava();
} break;
}
return res;
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
+ ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size;
LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
void load_hparams() {
auto & hparams = ctx_clip.vision_model.hparams;
+ std::string log_ffn_op; // for logging
// projector type
std::string proj_type;
// other hparams
{
- get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
-
- get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
- get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
+ get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy
get_u32(KEY_N_EMBD, hparams.n_embd);
get_u32(KEY_N_HEAD, hparams.n_head);
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDP
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
+ {
+ bool use_gelu = false;
+ bool use_silu = false;
+ get_bool(KEY_USE_GELU, use_gelu, false);
+ get_bool(KEY_USE_SILU, use_silu, false);
+ if (use_gelu && use_silu) {
+ throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
+ }
+ if (use_gelu) {
+ hparams.ffn_op = FFN_GELU;
+ log_ffn_op = "gelu";
+ } else if (use_silu) {
+ hparams.ffn_op = FFN_SILU;
+ log_ffn_op = "silu";
+ } else {
+ hparams.ffn_op = FFN_GELU_QUICK;
+ log_ffn_op = "gelu_quick";
+ }
+ }
+
{
std::string mm_patch_merge_type;
get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
hparams.vision_feature_layer.insert(layer);
}
- // Calculate the deepest feature layer based on hparams and projector type
- // NOTE: This is only used by build_graph_legacy()
- {
- // Get the index of the second to last layer; this is the default for models that have a llava projector
- int n_layer = hparams.n_layer - 1;
- int deepest_feature_layer = -1;
-
- if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE
- || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL
- || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN25VL) {
- n_layer += 1;
- }
-
- // If we set explicit vision feature layers, only go up to the deepest one
- // NOTE: only used by granite-vision models for now
- for (const auto & feature_layer : hparams.vision_feature_layer) {
- if (feature_layer > deepest_feature_layer) {
- deepest_feature_layer = feature_layer;
- }
- }
- ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
- }
-
// model-specific params
switch (ctx_clip.proj_type) {
case PROJECTOR_TYPE_MINICPMV:
hparams.rope_theta = 10000.0f;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
} break;
+ case PROJECTOR_TYPE_GEMMA3:
+ {
+ // default value (used by all model sizes in gemma 3 family)
+ // number of patches for each **side** is reduced by a factor of 4
+ hparams.proj_scale_factor = 4;
+ // test model (tinygemma3) has a different value, we optionally read it
+ get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
+ } break;
case PROJECTOR_TYPE_QWEN25VL:
{
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
}
LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
+ LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
+ LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
+ LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
+ LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
+ LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
+ LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
+ LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
+ LOG_INF("\n");
LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
- LOG_INF("%s: use_silu: %d\n", __func__, ctx_clip.use_silu);
- LOG_INF("%s: use_gelu: %d\n", __func__, ctx_clip.use_gelu);
+ LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
}
// helper function
auto get_tensor = [&](const std::string & name, bool required = true) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
+ ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
if (!cur && required) {
throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
}
if (cur) {
tensors_to_load.push_back(cur);
// add tensors to context
- struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
+ ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
ggml_set_name(data_tensor, cur->name);
cur = data_tensor;
}
ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
for (auto & t : tensors_to_load) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
+ ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
const size_t offset = tensor_offset[t->name];
fin.seekg(offset, std::ios::beg);
if (!fin) {
// create a fake batch
clip_image_f32_batch batch;
clip_image_f32_ptr img(clip_image_f32_init());
- clip_image_size image_size;
- image_size.width = ctx_clip.vision_model.hparams.image_size;
- image_size.height = ctx_clip.vision_model.hparams.image_size;
- img->nx = image_size.width;
- img->ny = image_size.height;
- img->buf.resize(image_size.width * image_size.height * 3);
+ img->nx = ctx_clip.vision_model.hparams.image_size;
+ img->ny = ctx_clip.vision_model.hparams.image_size;
+ img->buf.resize(img->nx * img->ny * 3);
batch.entries.push_back(std::move(img));
- ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
+ ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
n_patches = x_patch * y_patch;
} else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- n_patches = 256;
+ int n_per_side = params.image_size / params.patch_size;
+ int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
+ n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
- n_patches /= ctx->vision_model.hparams.proj_scale_factor;
+ n_patches /= params.proj_scale_factor;
} else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
- int n_merge = ctx->vision_model.hparams.spatial_merge_size;
+ int n_merge = params.spatial_merge_size;
int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
const clip_image_f32_batch & imgs = *imgs_c_ptr;
int batch_size = imgs.entries.size();
- if (ctx->has_llava_projector
- || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- GGML_ASSERT(batch_size == 1);
+ // TODO @ngxson : implement batch size > 1 as a loop
+ // we don't need true batching support because the cgraph will gonna be big anyway
+ if (batch_size != 1) {
+ return false; // only support batch size of 1
}
// build the inference graph
ggml_backend_sched_reset(ctx->sched.get());
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
+ ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
// set inputs
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
+ const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
const int pos_w = ctx->load_image_size.width / patch_size;
const int pos_h = ctx->load_image_size.height / patch_size;
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
auto get_inp_tensor = [&gf](const char * name) {
- struct ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
+ ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
if (inp == nullptr) {
GGML_ABORT("Failed to get tensor %s", name);
}
const int merge_ratio = 2;
const int pw = image_size_width / patch_size;
const int ph = image_size_height / patch_size;
- std::vector<int> positions(num_positions * 4);
+ std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < ph; y += merge_ratio) {
for (int x = 0; x < pw; x += merge_ratio) {
}
const int mpow = merge_ratio * merge_ratio;
- std::vector<int> positions(num_positions * 4);
+ std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < iph; y += merge_ratio) {
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(num_positions);
+ std::vector<int> pos_data(n_pos);
// dimension H
- for (int i = 0; i < num_positions; i++) {
+ for (int i = 0; i < n_pos; i++) {
pos_data[i] = i / n_patches_per_col;
}
set_input_i32("pos_h", pos_data);
// dimension W
- for (int i = 0; i < num_positions; i++) {
+ for (int i = 0; i < n_pos; i++) {
pos_data[i] = i % n_patches_per_col;
}
set_input_i32("pos_w", pos_data);
case PROJECTOR_TYPE_GLM_EDGE:
{
// llava and other models
- std::vector<int32_t> positions(num_positions);
- for (int i = 0; i < num_positions; i++) {
+ std::vector<int32_t> positions(n_pos);
+ for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
case PROJECTOR_TYPE_LDPV2:
{
// llava and other models
- std::vector<int32_t> positions(num_positions);
- for (int i = 0; i < num_positions; i++) {
+ std::vector<int32_t> positions(n_pos);
+ for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
}
// the last node is the embedding tensor
- struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
+ ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
+ ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
gguf_add_tensor(ctx_out, cur);
}
for (int i = 0; i < n_tensors; ++i) {
const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
+ ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
enum ggml_type new_type;
void * new_data;