]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
talk-llama : sync llama.cpp
authorGeorgi Gerganov <redacted>
Wed, 22 Oct 2025 05:32:16 +0000 (08:32 +0300)
committerGeorgi Gerganov <redacted>
Wed, 22 Oct 2025 09:58:11 +0000 (12:58 +0300)
13 files changed:
examples/talk-llama/llama-arch.cpp
examples/talk-llama/llama-arch.h
examples/talk-llama/llama-batch.h
examples/talk-llama/llama-chat.cpp
examples/talk-llama/llama-chat.h
examples/talk-llama/llama-context.cpp
examples/talk-llama/llama-graph.cpp
examples/talk-llama/llama-hparams.h
examples/talk-llama/llama-model.cpp
examples/talk-llama/llama-model.h
examples/talk-llama/llama-quant.cpp
examples/talk-llama/llama-vocab.cpp
examples/talk-llama/llama.cpp

index 869e4dccf0dc9922bfb41f9476108b2d3cbbb6d5..8ca769c5fd2ef7e0d3be88e34a33fc11d0e70c83 100644 (file)
@@ -5,6 +5,7 @@
 #include <map>
 
 static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
+    { LLM_ARCH_CLIP,             "clip"             }, // dummy, only used by llama-quantize
     { LLM_ARCH_LLAMA,            "llama"            },
     { LLM_ARCH_LLAMA4,           "llama4"           },
     { LLM_ARCH_DECI,             "deci"             },
@@ -84,6 +85,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
     { LLM_ARCH_PLM,              "plm"              },
     { LLM_ARCH_BAILINGMOE,       "bailingmoe"       },
+    { LLM_ARCH_BAILINGMOE2,      "bailingmoe2"      },
     { LLM_ARCH_DOTS1,            "dots1"            },
     { LLM_ARCH_ARCEE,            "arcee"            },
     { LLM_ARCH_ERNIE4_5,         "ernie4_5"         },
@@ -134,6 +136,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_EXPERT_COUNT,                      "%s.expert_count"                      },
     { LLM_KV_EXPERT_USED_COUNT,                 "%s.expert_used_count"                 },
     { LLM_KV_EXPERT_SHARED_COUNT,               "%s.expert_shared_count"               },
+    { LLM_KV_EXPERT_GROUP_COUNT,                "%s.expert_group_count"                },
+    { LLM_KV_EXPERT_GROUP_USED_COUNT,           "%s.expert_group_used_count"           },
     { LLM_KV_EXPERT_WEIGHTS_SCALE,              "%s.expert_weights_scale"              },
     { LLM_KV_EXPERT_WEIGHTS_NORM,               "%s.expert_weights_norm"               },
     { LLM_KV_EXPERT_GATING_FUNC,                "%s.expert_gating_func"                },
@@ -275,6 +279,10 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
 };
 
 static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_NAMES = {
+    {
+        LLM_ARCH_CLIP,
+        {},
+    },
     {
         LLM_ARCH_LLAMA,
         {
@@ -1941,6 +1949,38 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
         },
     },
+    {
+        LLM_ARCH_BAILINGMOE2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_QKV,           "blk.%d.attn_qkv" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B,    "blk.%d.exp_probs_b" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,           "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,           "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
+            { LLM_TENSOR_NEXTN_EH_PROJ,      "blk.%d.nextn.eh_proj" },
+            { LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" },
+            { LLM_TENSOR_NEXTN_ENORM,        "blk.%d.nextn.enorm" },
+            { LLM_TENSOR_NEXTN_HNORM,        "blk.%d.nextn.hnorm" },
+            { LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" },
+            { LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" },
+            { LLM_TENSOR_LAYER_OUT_NORM,     "blk.%d.layer_output_norm" },
+        },
+    },
     {
         LLM_ARCH_DOTS1,
         {
index c3ae71655b17b417acce9f052925296802ba21a2..dea725c1a753a92736fd61bcc0228fa9e3f19bac 100644 (file)
@@ -9,6 +9,7 @@
 //
 
 enum llm_arch {
+    LLM_ARCH_CLIP,
     LLM_ARCH_LLAMA,
     LLM_ARCH_LLAMA4,
     LLM_ARCH_DECI,
@@ -88,6 +89,7 @@ enum llm_arch {
     LLM_ARCH_WAVTOKENIZER_DEC,
     LLM_ARCH_PLM,
     LLM_ARCH_BAILINGMOE,
+    LLM_ARCH_BAILINGMOE2,
     LLM_ARCH_DOTS1,
     LLM_ARCH_ARCEE,
     LLM_ARCH_ERNIE4_5,
@@ -138,6 +140,8 @@ enum llm_kv {
     LLM_KV_EXPERT_COUNT,
     LLM_KV_EXPERT_USED_COUNT,
     LLM_KV_EXPERT_SHARED_COUNT,
+    LLM_KV_EXPERT_GROUP_COUNT,
+    LLM_KV_EXPERT_GROUP_USED_COUNT,
     LLM_KV_EXPERT_WEIGHTS_SCALE,
     LLM_KV_EXPERT_WEIGHTS_NORM,
     LLM_KV_EXPERT_GATING_FUNC,
index d563adc66aaf561eb037f9650cb7c07574cac3a7..0dc8cebd2a7b3045022172dd670cd0e13b20389e 100644 (file)
@@ -123,7 +123,7 @@ private:
     uint32_t n_seq_max;
     uint32_t n_outputs;
 
-    std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
+    std::array<llama_seq_id, 1> seq_id_0 = {{ 0 }}; // default sequence id
 
     std::vector<llama_pos>      pos;
     std::vector<int32_t>        n_seq_id;
index 956c4e085e5b6e10e787d61d9dcf4f31f9e6ff23..0285006d73caa874527ffebf7e1c020ff0e9c635 100644 (file)
@@ -63,6 +63,8 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "megrez",            LLM_CHAT_TEMPLATE_MEGREZ            },
     { "yandex",            LLM_CHAT_TEMPLATE_YANDEX            },
     { "bailing",           LLM_CHAT_TEMPLATE_BAILING           },
+    { "bailing-think",     LLM_CHAT_TEMPLATE_BAILING_THINK     },
+    { "bailing2",          LLM_CHAT_TEMPLATE_BAILING2          },
     { "llama4",            LLM_CHAT_TEMPLATE_LLAMA4            },
     { "smolvlm",           LLM_CHAT_TEMPLATE_SMOLVLM           },
     { "hunyuan-moe",       LLM_CHAT_TEMPLATE_HUNYUAN_MOE       },
@@ -191,6 +193,10 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
         return LLM_CHAT_TEMPLATE_YANDEX;
     } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("'HUMAN'")) {
         return LLM_CHAT_TEMPLATE_BAILING;
+    } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("\"HUMAN\"") && tmpl_contains("<think>")) {
+        return LLM_CHAT_TEMPLATE_BAILING_THINK;
+    } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("<role>HUMAN</role>") && tmpl_contains("<|role_end|>")) {
+        return LLM_CHAT_TEMPLATE_BAILING2;
     } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
         return LLM_CHAT_TEMPLATE_LLAMA4;
     } else if (tmpl_contains("<|endofuserprompt|>")) {
@@ -644,8 +650,8 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << " Ассистент:[SEP]";
         }
-    }  else if (tmpl == LLM_CHAT_TEMPLATE_BAILING) {
-        // Bailing (Ling) template
+    } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING || tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) {
+        // Bailing (Ling/Ring) template
         for (auto message : chat) {
             std::string role(message->role);
 
@@ -658,6 +664,33 @@ int32_t llm_chat_apply_template(
             ss << "<role>" << role << "</role>" << message->content;
         }
 
+        if (add_ass) {
+            ss << "<role>ASSISTANT</role>";
+
+            if (tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) {
+                ss << "<think>";
+            }
+        }
+    } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING2) {
+        // Bailing2 (Ling 2.0) template
+        bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
+
+        if (!has_system) {
+            ss << "<role>SYSTEM</role>detailed thinking off<|role_end|>";
+        }
+
+        for (auto message : chat) {
+            std::string role(message->role);
+
+            if (role == "user") {
+                role = "HUMAN";
+            } else {
+                std::transform(role.begin(), role.end(), role.begin(), ::toupper);
+            }
+
+            ss << "<role>" << role << "</role>" << message->content << "<|role_end|>";
+        }
+
         if (add_ass) {
             ss << "<role>ASSISTANT</role>";
         }
index 5a87d9ab627bcccd214c41b4c3260449357c1d7b..da1b7c47997ca5af878de1a10b5214971419752e 100644 (file)
@@ -42,6 +42,8 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_MEGREZ,
     LLM_CHAT_TEMPLATE_YANDEX,
     LLM_CHAT_TEMPLATE_BAILING,
+    LLM_CHAT_TEMPLATE_BAILING_THINK,
+    LLM_CHAT_TEMPLATE_BAILING2,
     LLM_CHAT_TEMPLATE_LLAMA4,
     LLM_CHAT_TEMPLATE_SMOLVLM,
     LLM_CHAT_TEMPLATE_DOTS1,
index e7526e7d0a55791630066cad4ce0df075a9c8e64..bd348bcad370a8ca5c53e3a6c576d278b6b1dba1 100644 (file)
@@ -2346,7 +2346,8 @@ llama_context * llama_init_from_model(
         return nullptr;
     }
 
-    if (params.pooling_type != model->hparams.pooling_type) {
+    if (params.pooling_type != LLAMA_POOLING_TYPE_UNSPECIFIED &&
+        params.pooling_type != model->hparams.pooling_type) {
         //user-specified pooling-type is different from the model default
         LLAMA_LOG_WARN("%s: model default pooling_type is [%d], but [%d] was specified\n", __func__,
                        model->hparams.pooling_type, params.pooling_type);
index f29a1e98c9103e1135962d60aa5ff0a2e054e372..41fa6894377ea9bed2cb3d0497eac78704756d5f 100644 (file)
@@ -950,6 +950,31 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
         cb(selection_probs, "ffn_moe_probs_biased", il);
     }
 
+    // select top n_group_used expert groups
+    // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457
+    if (hparams.n_expert_groups > 1 && n_tokens > 0) {
+        const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups;
+
+        // organize experts into n_expert_groups
+        ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]
+
+        ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
+        group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]
+
+        // get top n_group_used expert groups
+        group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
+        group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]
+
+        ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
+        cb(expert_groups, "ffn_moe_group_topk", il);
+
+        // mask out the other groups
+        selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
+        selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
+        selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
+        cb(selection_probs, "ffn_moe_probs_masked", il);
+    }
+
     // select experts
     ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
     cb(selected_experts->src[0], "ffn_moe_argsort", il);
@@ -981,6 +1006,11 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
         cb(weights_sum, "ffn_moe_weights_sum", il);
 
+        if (arch == LLM_ARCH_BAILINGMOE2) {
+            weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
+            cb(weights_sum, "ffn_moe_weights_sum_biased", il);
+        }
+
         weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
         cb(weights, "ffn_moe_weights_norm", il);
 
index 4e7f73ec234c33f1164b2e191273436f17bda2fd..6fcf91b7daa47e8d8987e06ef6e72000071ae35d 100644 (file)
@@ -72,6 +72,8 @@ struct llama_hparams {
     uint32_t n_ff_chexp         = 0;
     uint32_t n_expert_shared    = 0;
     uint32_t n_norm_groups      = 0;
+    uint32_t n_expert_groups    = 0;
+    uint32_t n_group_used       = 0;
     uint32_t n_group_experts    = 0;
 
     float    expert_group_scale   = 0.05f;
index 0cdad9babd9b27c083488ecefd25f0ee02d1cbfa..e4609963300800b1fca694dcfabd44f1f172982c 100644 (file)
@@ -114,9 +114,12 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
         case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
         case LLM_TYPE_A13B:          return "A13B";
+        case LLM_TYPE_7B_A1B:        return "7B.A1B";
         case LLM_TYPE_8B_A1B:        return "8B.A1B";
+        case LLM_TYPE_16B_A1B:       return "16B.A1B";
         case LLM_TYPE_21B_A3B:       return "21B.A3B";
         case LLM_TYPE_30B_A3B:       return "30B.A3B";
+        case LLM_TYPE_100B_A6B:      return "100B.A6B";
         case LLM_TYPE_106B_A12B:     return "106B.A12B";
         case LLM_TYPE_235B_A22B:     return "235B.A22B";
         case LLM_TYPE_300B_A47B:     return "300B.A47B";
@@ -421,11 +424,8 @@ struct llama_model::impl {
     llama_mlocks mlock_bufs;
     llama_mlocks mlock_mmaps;
 
-    // contexts where the model tensors metadata is stored
-    std::vector<ggml_context_ptr> ctxs;
-
-    // the model memory buffers for the tensor data
-    std::vector<ggml_backend_buffer_ptr> bufs;
+    // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
+    std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
 
     buft_list_t cpu_buft_list;
     std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
@@ -478,15 +478,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
     ml.get_key(LLM_KV_GENERAL_NAME, name, false);
 
     // everything past this point is not vocab-related
-    if (hparams.vocab_only) {
+    // for CLIP models, we only need to load tensors, no hparams
+    if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
         return;
     }
 
-    ml.get_key(LLM_KV_CONTEXT_LENGTH,    hparams.n_ctx_train);
-    ml.get_key(LLM_KV_EMBEDDING_LENGTH,  hparams.n_embd);
-    ml.get_key(LLM_KV_BLOCK_COUNT,       hparams.n_layer);
-    ml.get_key(LLM_KV_EXPERT_COUNT,      hparams.n_expert,      false);
-    ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
+    ml.get_key(LLM_KV_CONTEXT_LENGTH,          hparams.n_ctx_train);
+    ml.get_key(LLM_KV_EMBEDDING_LENGTH,        hparams.n_embd);
+    ml.get_key(LLM_KV_BLOCK_COUNT,             hparams.n_layer);
+    ml.get_key(LLM_KV_EXPERT_COUNT,            hparams.n_expert,        false);
+    ml.get_key(LLM_KV_EXPERT_USED_COUNT,       hparams.n_expert_used,   false);
+    ml.get_key(LLM_KV_EXPERT_GROUP_COUNT,      hparams.n_expert_groups, false);
+    ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used,    false);
 
     if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
         ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@@ -502,8 +505,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
     GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
     if (hparams.n_expert > 0) {
         GGML_ASSERT(hparams.n_expert_used > 0);
+        GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
+        if (hparams.n_expert_groups > 1) {
+            GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
+            GGML_ASSERT(hparams.n_group_used > 0);
+            GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
+        }
     } else {
         GGML_ASSERT(hparams.n_expert_used == 0);
+        GGML_ASSERT(hparams.n_expert_groups == 0);
     }
 
     std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
@@ -1845,8 +1855,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
 
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 
-                switch (hparams.n_layer) {
-                    // TODO: Add llm type label (not sure this is useful)
+                switch (hparams.n_embd) {
+                    case 1536: type = LLM_TYPE_7B_A1B; break;
+                    case 2048: case 2560: type = LLM_TYPE_3B; break;
+                    case 4096: type = LLM_TYPE_32B; break;
                     default: type = LLM_TYPE_UNKNOWN;
                 }
 
@@ -1887,6 +1899,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_BAILINGMOE2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,               hparams.expert_weights_norm, false);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,                hparams.expert_gating_func);
+                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,              hparams.nextn_predict_layers, false);
+
+                // TODO: when MTP is implemented, this should probably be updated if needed
+                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
+
+                switch (hparams.n_layer) {
+                    case 20: type = LLM_TYPE_16B_A1B; break;
+                    case 21: type = LLM_TYPE_16B_A1B; break;
+                    case 32: type = LLM_TYPE_100B_A6B; break;
+                    case 33: type = LLM_TYPE_100B_A6B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_DOTS1:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -2181,7 +2216,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
     max_n_tensors += n_layer*2; // duplicated rope freq tensors
     const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
 
-    std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
+    struct ggml_backend_buft_comparator {
+        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
+            return ggml_backend_buft_name(lhs) < ggml_backend_buft_name(rhs);
+        }
+    };
+    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
+
     auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
         auto it = ctx_map.find(buft);
         if (it == ctx_map.end()) {
@@ -2196,12 +2238,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                 throw std::runtime_error(format("failed to create ggml context"));
             }
 
-            ctx_map[buft] = ctx;
-            pimpl->ctxs.emplace_back(ctx);
+            ctx_map.emplace(buft, ctx);
 
             return ctx;
         }
-        return it->second;
+        return it->second.get();
     };
 
     const auto TENSOR_DUPLICATED   = llama_model_loader::TENSOR_DUPLICATED;
@@ -5491,6 +5532,70 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                     }
                 } break;
+            case LLM_ARCH_BAILINGMOE2:
+                {
+                    const int64_t n_ff_exp        = hparams.n_ff_exp;
+                    const int64_t n_expert_shared = hparams.n_expert_shared;
+
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
+                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        int flags = 0;
+                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
+                            // skip all tensors in the NextN layers
+                            flags |= TENSOR_SKIP;
+                        }
+
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
+
+                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
+
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
+
+                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
+                            const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
+
+                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
+
+                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
+                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, flags);
+                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
+
+                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
+                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
+                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, flags);
+                        } else { // Dense layers
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, flags);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, flags);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, flags);
+                        }
+
+                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
+                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
+                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
+                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
+                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
+                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
+                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
+                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
+                            layer.layer_out_norm         = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
+                        }
+                    }
+                } break;
             case LLM_ARCH_DOTS1:
                 {
                     const int64_t n_ff_exp        = hparams.n_ff_exp;
@@ -6036,16 +6141,15 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
     pimpl->mappings.reserve(ml.mappings.size());
 
     // create the backend buffers
-    std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
-    ctx_bufs.reserve(ctx_map.size());
+    std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
+    ctx_buf_maps.reserve(ctx_map.size());
 
     // Ensure we have enough capacity for the maximum backend buffer we will potentially create
     const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
-    pimpl->bufs.reserve(n_max_backend_buffer);
+    pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
 
-    for (auto & it : ctx_map) {
-        ggml_backend_buffer_type_t buft = it.first;
-        ggml_context * ctx              = it.second;
+    for (auto & [buft, ctx_ptr] : ctx_map) {
+        ggml_context * ctx = ctx_ptr.get();
 
         // skip contexts without tensors
         if (ggml_get_first_tensor(ctx) == nullptr) {
@@ -6069,6 +6173,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
         bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
         bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
 
+        ggml_backend_buffer_t buf = nullptr;
         if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
             for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                 // only the mmap region containing the tensors in the model is mapped to the backend buffer
@@ -6081,20 +6186,18 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                     continue;
                 }
                 const size_t max_size = ggml_get_max_tensor_size(ctx);
-                ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
+                buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
                 if (buf == nullptr) {
                     throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
                 }
-                pimpl->bufs.emplace_back(buf);
                 buf_map.emplace(idx, buf);
             }
         }
         else {
-            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+            buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
             if (buf == nullptr) {
                 throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
             }
-            pimpl->bufs.emplace_back(buf);
             if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                 pimpl->mlock_bufs.emplace_back(new llama_mlock);
                 auto & mlock_buf = pimpl->mlock_bufs.back();
@@ -6105,10 +6208,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                 buf_map.emplace(idx, buf);
             }
         }
-
-        if (pimpl->bufs.empty()) {
-            throw std::runtime_error("failed to allocate buffer");
-        }
+        pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), buf);
 
         for (auto & buf : buf_map) {
             // indicate that this buffer contains weights
@@ -6116,7 +6216,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
             ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
         }
 
-        ctx_bufs.emplace_back(ctx, buf_map);
+        ctx_buf_maps.emplace_back(ctx, buf_map);
     }
 
     if (llama_supports_gpu_offload()) {
@@ -6134,22 +6234,20 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
     }
 
     // print memory requirements per buffer type
-    for (auto & buf : pimpl->bufs) {
+    for (auto & [_, buf] : pimpl->ctxs_bufs) {
         LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
     }
 
     // populate tensors_by_name
-    for (auto & ctx : pimpl->ctxs) {
+    for (auto & [ctx, _] : pimpl->ctxs_bufs) {
         for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
             tensors_by_name.emplace_back(ggml_get_name(cur), cur);
         }
     }
 
     // load tensor data
-    for (auto & it : ctx_bufs) {
-        ggml_context * ctx = it.first;
-        auto & bufs = it.second;
-        if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
+    for (auto & [ctx, buf_map] : ctx_buf_maps) {
+        if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
             return false;
         }
     }
@@ -6189,8 +6287,8 @@ size_t llama_model::n_devices() const {
 
 std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
     std::map<ggml_backend_buffer_type_t, size_t> ret;
-    for (const ggml_backend_buffer_ptr & buf_ptr : pimpl->bufs) {
-        ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
+    for (const auto & [_, buf] : pimpl->ctxs_bufs) {
+        ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
     }
     return ret;
 }
@@ -6353,6 +6451,19 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
     }
 
+    if (arch == LLM_ARCH_BAILINGMOE2) {
+        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
+        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
+        LLAMA_LOG_INFO("%s: n_ff_shexp           = %d\n",     __func__, hparams.n_ff_shexp);
+        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
+        LLAMA_LOG_INFO("%s: n_expert_groups      = %d\n",     __func__, hparams.n_expert_groups);
+        LLAMA_LOG_INFO("%s: n_group_used         = %d\n",     __func__, hparams.n_group_used);
+        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
+        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
+        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
+        LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n",     __func__, hparams.nextn_predict_layers);
+    }
+
     if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
         LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
         LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
@@ -17042,6 +17153,150 @@ struct llm_build_bailingmoe : public llm_graph_context {
     }
 };
 
+struct llm_build_bailingmoe2 : public llm_graph_context {
+    llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv();
+
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
+        for (int il = 0; il < n_transformer_layers; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                cur = build_lora_mm(model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
+                ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
+                ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_transformer_layers - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
+            cb(sa_out, "sa_out", il);
+
+            // MoE branch
+            cur = build_norm(sa_out,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
+                cur = build_ffn(cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(cur, "ffn_out", il);
+            } else {
+                ggml_tensor * moe_out =
+                    build_moe_ffn(cur,
+                            model.layers[il].ffn_gate_inp,
+                            model.layers[il].ffn_up_exps,
+                            model.layers[il].ffn_gate_exps,
+                            model.layers[il].ffn_down_exps,
+                            model.layers[il].ffn_exp_probs_b,
+                            n_expert, n_expert_used,
+                            LLM_FFN_SILU, hparams.expert_weights_norm,
+                            true, hparams.expert_weights_scale,
+                            (llama_expert_gating_func_type) hparams.expert_gating_func,
+                            il);
+                cb(moe_out, "ffn_moe_out", il);
+
+                {
+                    ggml_tensor * ffn_shexp = build_ffn(cur,
+                            model.layers[il].ffn_up_shexp,   NULL, NULL,
+                            model.layers[il].ffn_gate_shexp, NULL, NULL,
+                            model.layers[il].ffn_down_shexp, NULL, NULL,
+                            NULL,
+                            LLM_FFN_SILU, LLM_FFN_PAR, il);
+                    cb(ffn_shexp, "ffn_shexp", il);
+
+                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                    cb(cur, "ffn_out", il);
+                }
+            }
+
+            cur = ggml_add(ctx0, cur, sa_out);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_dots1 : public llm_graph_context {
     llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -19838,6 +20093,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_bailingmoe>(*this, params);
             } break;
+        case LLM_ARCH_BAILINGMOE2:
+            {
+                llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
+            } break;
         case LLM_ARCH_SEED_OSS:
             {
                 llm = std::make_unique<llm_build_seed_oss>(*this, params);
@@ -20013,6 +20272,7 @@ int32_t llama_n_head(const llama_model * model) {
 llama_rope_type llama_model_rope_type(const llama_model * model) {
     switch (model->arch) {
         // these models do not use RoPE
+        case LLM_ARCH_CLIP:
         case LLM_ARCH_GPT2:
         case LLM_ARCH_GPTJ:
         case LLM_ARCH_MPT:
@@ -20103,6 +20363,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_EXAONE:
         case LLM_ARCH_EXAONE4:
         case LLM_ARCH_MINICPM3:
+        case LLM_ARCH_BAILINGMOE2:
         case LLM_ARCH_DOTS1:
         case LLM_ARCH_HUNYUAN_MOE:
         case LLM_ARCH_OPENAI_MOE:
index 7f48662f2807ac46e6b24335e850e3585b1575ed..248f854101cd740491e051dce16a3ab1d22e222f 100644 (file)
@@ -107,9 +107,12 @@ enum llm_type {
     LLM_TYPE_17B_16E, // llama4 Scout
     LLM_TYPE_17B_128E, // llama4 Maverick
     LLM_TYPE_A13B,
+    LLM_TYPE_7B_A1B,
     LLM_TYPE_8B_A1B, // lfm2moe
+    LLM_TYPE_16B_A1B,
     LLM_TYPE_21B_A3B, // Ernie MoE small
     LLM_TYPE_30B_A3B,
+    LLM_TYPE_100B_A6B,
     LLM_TYPE_106B_A12B, // GLM-4.5-Air
     LLM_TYPE_235B_A22B,
     LLM_TYPE_300B_A47B, // Ernie MoE big
index 97228b2a693241045d3888736ddc06776c8c2506..6dd40412b488ee947ac1f9bf68fad9f1180946de 100644 (file)
@@ -701,6 +701,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
         });
     }
 
+    bool is_clip_model = false;
     for (const auto * it : tensors) {
         const struct ggml_tensor * tensor = it->tensor;
 
@@ -714,12 +715,14 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
         } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
             qs.has_output = true;
         }
+
+        is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix
     }
 
     qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
 
     // sanity checks for models that have attention layers
-    if (qs.n_attention_wv != 0)
+    if (qs.n_attention_wv != 0 && !is_clip_model)
     {
         const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
         // attention layers have a non-zero number of kv heads
@@ -881,6 +884,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
         // do not quantize relative position bias (T5)
         quantize &= name.find("attn_rel_b.weight") == std::string::npos;
 
+        // do not quantize specific multimodal tensors
+        quantize &= name.find(".position_embd.") == std::string::npos;
+
         ggml_type new_type;
         void * new_data;
         size_t new_size;
index 7fffd171491aa31f8f063c8a8daba946f72ac4f8..639fecbd31745801b8be2939bd1395b60a533699 100644 (file)
@@ -1968,6 +1968,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 clean_spaces = false;
             } else if (
                 tokenizer_pre == "bailingmoe" ||
+                tokenizer_pre == "bailingmoe2" ||
                 tokenizer_pre == "llada-moe") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
                 clean_spaces = false;
index 38700f97a068818f186fffe9b0480866e2ae75a0..ab2e9868af4688d740f5e7c0038e7fd7d9b9d2a7 100644 (file)
@@ -124,6 +124,9 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
         } catch(const std::exception & e) {
             throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
         }
+        if (model.arch == LLM_ARCH_CLIP) {
+            throw std::runtime_error("CLIP cannot be used as main model, use it with --mmproj instead");
+        }
         try {
             model.load_vocab(ml);
         } catch(const std::exception & e) {