]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add MiniCPM support (#5346)
authorrunfuture <redacted>
Wed, 7 Feb 2024 06:15:56 +0000 (14:15 +0800)
committerGitHub <redacted>
Wed, 7 Feb 2024 06:15:56 +0000 (08:15 +0200)
* support minicpm arch.

* fix tab/space typo.

* convert minicpm model via convert-hf-gguf.py

* try to make tokenizer work

* fix bug for quantize minicpm

* fix for flake8 lint

* remove convert-minicpm.py

* fix for editorconfig

* correct minicpm model type (size)

* constants expanded for minicpm

* Minor change of the constant names for minicpm

convert-hf-to-gguf.py
gguf-py/gguf/constants.py
llama.cpp

index 5e343742d24847bb7940e68f401859259f135b4e..829d6836888ec67950e5587ec341cd310e008555 100755 (executable)
@@ -22,6 +22,8 @@ if 'NO_LOCAL_GGUF' not in os.environ:
     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 import gguf
 
+from convert import HfVocab
+
 
 # check for any of the given keys in the dictionary and return the value of the first key found
 def get_key_opts(d, keys):
@@ -205,6 +207,8 @@ class Model:
             return OrionModel
         if model_architecture == "InternLM2ForCausalLM":
             return InternLM2Model
+        if model_architecture == "MiniCPMForCausalLM":
+            return MiniCPMModel
         return Model
 
     def _is_model_safetensors(self) -> bool:
@@ -258,6 +262,8 @@ class Model:
             return gguf.MODEL_ARCH.ORION
         if arch == "InternLM2ForCausalLM":
             return gguf.MODEL_ARCH.INTERNLM2
+        if arch == "MiniCPMForCausalLM":
+            return gguf.MODEL_ARCH.MINICPM
 
         raise NotImplementedError(f'Architecture "{arch}" not supported!')
 
@@ -402,6 +408,31 @@ class Model:
         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
         special_vocab.add_to_gguf(self.gguf_writer)
 
+    def _set_vocab_hf(self):
+        path = self.dir_model
+        added_tokens_path = self.dir_model
+        vocab = HfVocab(
+            path, added_tokens_path if added_tokens_path.exists() else None
+        )
+        tokens = []
+        scores = []
+        toktypes = []
+
+        for text, score, toktype in vocab.all_tokens():
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        assert len(tokens) == vocab.vocab_size
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
 
 class GPTNeoXModel(Model):
     def set_gguf_parameters(self):
@@ -1041,6 +1072,24 @@ class MixtralModel(Model):
         self._set_vocab_sentencepiece()
 
 
+class MiniCPMModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        self.gguf_writer.add_name("MiniCPM")
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+
+    def set_vocab(self):
+        self._set_vocab_hf()
+
+
 class QwenModel(Model):
     @staticmethod
     def token_bytes_to_string(b):
index ed8e26f83e6a9966928c3a84f29c771304cc747c..1cfd41c0be1fef408997cb9c51dfc63c5be23a6f 100644 (file)
@@ -104,6 +104,7 @@ class MODEL_ARCH(IntEnum):
     CODESHELL = auto()
     ORION     = auto()
     INTERNLM2  = auto()
+    MINICPM   = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -156,6 +157,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.CODESHELL:      "codeshell",
     MODEL_ARCH.ORION:          "orion",
     MODEL_ARCH.INTERNLM2:      "internlm2",
+    MODEL_ARCH.MINICPM:        "minicpm",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -464,6 +466,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.MINICPM: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+    ],
     # TODO
 }
 
index 65e399adca60eb83337653491fb36b241bda8ed5..f3c5146d113e1dc4e72a2f3d6148d9b97b481806 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -205,6 +205,7 @@ enum llm_arch {
     LLM_ARCH_CODESHELL,
     LLM_ARCH_ORION,
     LLM_ARCH_INTERNLM2,
+    LLM_ARCH_MINICPM,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -228,6 +229,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_CODESHELL,       "codeshell" },
     { LLM_ARCH_ORION,           "orion"     },
     { LLM_ARCH_INTERNLM2,       "internlm2" },
+    { LLM_ARCH_MINICPM,         "minicpm"   },
 };
 
 enum llm_kv {
@@ -690,6 +692,29 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_MINICPM,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
+            { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
+            { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -1390,6 +1415,7 @@ enum e_model {
     MODEL_UNKNOWN,
     MODEL_0_5B,
     MODEL_1B,
+    MODEL_2B,
     MODEL_3B,
     MODEL_4B,
     MODEL_7B,
@@ -2748,6 +2774,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
 static const char * llama_model_type_name(e_model type) {
     switch (type) {
         case MODEL_1B:     return "1B";
+        case MODEL_2B:     return "2B";
         case MODEL_3B:     return "3B";
         case MODEL_7B:     return "7B";
         case MODEL_8B:     return "8B";
@@ -2887,6 +2914,13 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_MINICPM:
+            {
+                switch (hparams.n_layer) {
+                    case 40: model.type = e_model::MODEL_2B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_FALCON:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3524,13 +3558,16 @@ static bool llm_load_tensors(
         switch (model.arch) {
             case LLM_ARCH_LLAMA:
             case LLM_ARCH_REFACT:
+            case LLM_ARCH_MINICPM:
                 {
                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 
                     // output
                     {
                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
-                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                        if (model.arch != LLM_ARCH_MINICPM){
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                        }
                     }
 
                     for (int i = 0; i < n_layer; ++i) {
@@ -6781,6 +6818,153 @@ struct llm_build_context {
         return gf;
     }
 
+    // ref: https://arxiv.org/abs/2203.03466
+    //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
+    // based on the original build_llama() function
+    struct ggml_cgraph * build_minicpm() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        const int64_t n_embd = hparams.n_embd;
+        //TODO: if the model varies, these parameters need to be read from the model
+        const int64_t n_embd_base = 256;
+        const float scale_embd  = 12.0f;
+        const float scale_depth = 1.4f;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
+        cb(inpL, "inp_embd", -1);
+
+        // scale the input embeddings
+        inpL = ggml_scale(ctx0, inpL, scale_embd);
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
+                    hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                cb(cur, "kqv_out", il);
+            }
+
+            // scale_res - scale the hidden states for residual connection
+            const float scale_res = scale_depth/sqrtf(float(n_layer));
+            cur = ggml_scale(ctx0, cur, scale_res);
+            cb(cur, "hidden_scaled", -1);
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, cur,
+                        model.layers[il].ffn_up,   NULL,
+                        model.layers[il].ffn_gate, NULL,
+                        model.layers[il].ffn_down, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            // scale the hidden states for residual connection
+            cur = ggml_scale(ctx0, cur, scale_res);
+            cb(cur, "hidden_scaled_ffn", -1);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head scaling
+        const float scale_lmhead = float(n_embd_base)/float(n_embd);
+        cur = ggml_scale(ctx0, cur, scale_lmhead);
+        cb(cur, "lmhead_scaling", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
 };
 
 static struct ggml_cgraph * llama_build_graph(
@@ -6943,6 +7127,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_internlm2();
             } break;
+        case LLM_ARCH_MINICPM:
+            {
+                result = llm.build_minicpm();
+            } break;
         default:
             GGML_ASSERT(false);
     }