]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
compare-llama-bench: add option to plot (#14169)
authorAman Gupta <redacted>
Sat, 14 Jun 2025 08:34:20 +0000 (16:34 +0800)
committerGitHub <redacted>
Sat, 14 Jun 2025 08:34:20 +0000 (10:34 +0200)
* compare llama-bench: add option to plot

* Address review comments: convert case + add type hints

* Add matplotlib to requirements

* fix tests

* Improve comment and fix assert condition for test

* Add back default test_name, add --plot_log_scale

* use log_scale regardless of x_values

requirements/requirements-compare-llama-bench.txt
scripts/compare-llama-bench.py

index e0aaa32043ce2db3356c1f9f32b1a49bb778af2c..d87e897e17199fc3ae494b91f643af5c15ab98b2 100644 (file)
@@ -1,2 +1,3 @@
 tabulate~=0.9.0
 GitPython~=3.1.43
+matplotlib~=3.10.0
index a1013c3b7a66dd3648432a97a6d719fb567c79e9..30e3cf8649e8ae6bc579497d6748ac26d97822ef 100755 (executable)
@@ -19,6 +19,7 @@ except ImportError as e:
     print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
     raise e
 
+
 logger = logging.getLogger("compare-llama-bench")
 
 # All llama-bench SQL fields
@@ -122,11 +123,15 @@ help_s = (
 parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
 parser.add_argument("-s", "--show", help=help_s)
 parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
+parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
+parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
+parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
 
 known_args, unknown_args = parser.parse_known_args()
 
 logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
 
+
 if known_args.check:
     # Check if all required Python libraries are installed. Would have failed earlier if not.
     sys.exit(0)
@@ -499,7 +504,6 @@ else:
 
 name_compare = bench_data.get_commit_name(hexsha8_compare)
 
-
 # If the user provided columns to group the results by, use them:
 if known_args.show is not None:
     show = known_args.show.split(",")
@@ -544,6 +548,14 @@ else:
             show.remove(prop)
         except ValueError:
             pass
+
+    # Add plot_x parameter to parameters to show if it's not already present:
+    if known_args.plot:
+        for k, v in PRETTY_NAMES.items():
+            if v == known_args.plot_x and k not in show:
+                show.append(k)
+                break
+
     rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
 
 if not rows_show:
@@ -600,6 +612,161 @@ if "gpu_info" in show:
 headers  = [PRETTY_NAMES[p] for p in show]
 headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
 
+if known_args.plot:
+    def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
+        try:
+            import matplotlib.pyplot as plt
+            import matplotlib
+            matplotlib.use('Agg')
+        except ImportError as e:
+            logger.error("matplotlib is required for --plot.")
+            raise e
+
+        data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
+        plot_x_index = None
+        plot_x_label = plot_x_param
+
+        if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
+            pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
+            if pretty_name in data_headers:
+                plot_x_index = data_headers.index(pretty_name)
+                plot_x_label = pretty_name
+            elif plot_x_param in data_headers:
+                plot_x_index = data_headers.index(plot_x_param)
+                plot_x_label = plot_x_param
+            else:
+                logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
+                return
+
+        grouped_data = {}
+
+        for i, row in enumerate(table_data):
+            group_key_parts = []
+            test_name = row[-4]
+
+            base_test = ""
+            x_value = None
+
+            if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
+                for j, val in enumerate(row[:-4]):
+                    header_name = data_headers[j]
+                    if val is not None and str(val).strip():
+                        group_key_parts.append(f"{header_name}={val}")
+
+                if plot_x_param == "n_prompt" and "pp" in test_name:
+                    base_test = test_name.split("@")[0]
+                    x_value = base_test
+                elif plot_x_param == "n_gen" and "tg" in test_name:
+                    x_value = test_name.split("@")[0]
+                elif plot_x_param == "n_depth" and "@d" in test_name:
+                    base_test = test_name.split("@d")[0]
+                    x_value = int(test_name.split("@d")[1])
+                else:
+                    base_test = test_name
+
+                if base_test.strip():
+                    group_key_parts.append(f"Test={base_test}")
+            else:
+                for j, val in enumerate(row[:-4]):
+                    if j != plot_x_index:
+                        header_name = data_headers[j]
+                        if val is not None and str(val).strip():
+                            group_key_parts.append(f"{header_name}={val}")
+                    else:
+                        x_value = val
+
+                group_key_parts.append(f"Test={test_name}")
+
+            group_key = tuple(group_key_parts)
+
+            if group_key not in grouped_data:
+                grouped_data[group_key] = []
+
+            grouped_data[group_key].append({
+                'x_value': x_value,
+                'baseline': float(row[-3]),
+                'compare': float(row[-2]),
+                'speedup': float(row[-1])
+            })
+
+        if not grouped_data:
+            logger.error("No data available for plotting")
+            return
+
+        def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
+            from math import ceil
+            cols = 1 if num_groups == 1 else min(max_cols, num_groups)
+            rows = ceil(num_groups / cols)
+
+            # Scale figure size by grid dimensions
+            w, h = base_size
+            fig, ax_arr = plt.subplots(rows, cols,
+                                       figsize=(w * cols, h * rows),
+                                       squeeze=False)
+
+            axes = ax_arr.flatten()[:num_groups]
+            return fig, axes
+
+        num_groups = len(grouped_data)
+        fig, axes = make_axes(num_groups)
+
+        plot_idx = 0
+
+        for group_key, points in grouped_data.items():
+            if plot_idx >= len(axes):
+                break
+            ax = axes[plot_idx]
+
+            try:
+                points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
+                x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
+            except ValueError:
+                points_sorted = sorted(points, key=lambda p: group_key)
+                x_values = [p['x_value'] for p in points_sorted]
+
+            baseline_vals = [p['baseline'] for p in points_sorted]
+            compare_vals = [p['compare'] for p in points_sorted]
+
+            ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
+                    label=f'{baseline_name}', linewidth=2, markersize=6)
+            ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
+                    label=f'{compare_name}', linewidth=2, markersize=6)
+
+            if log_scale:
+                ax.set_xscale('log', base=2)
+                unique_x = sorted(set(x_values))
+                ax.set_xticks(unique_x)
+                ax.set_xticklabels([str(int(x)) for x in unique_x])
+
+            title_parts = []
+            for part in group_key:
+                if '=' in part:
+                    key, value = part.split('=', 1)
+                    title_parts.append(f"{key}: {value}")
+
+            title = ', '.join(title_parts) if title_parts else "Performance comparison"
+
+            ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
+            ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
+            ax.set_title(title, fontsize=12, fontweight='bold')
+            ax.legend(loc='best', fontsize=10)
+            ax.grid(True, alpha=0.3)
+
+            plot_idx += 1
+
+        for i in range(plot_idx, len(axes)):
+            axes[i].set_visible(False)
+
+        fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
+                     fontsize=14, fontweight='bold')
+        fig.subplots_adjust(top=1)
+
+        plt.tight_layout()
+        plt.savefig(output_file, dpi=300, bbox_inches='tight')
+        plt.close()
+
+    create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)
+
 print(tabulate( # noqa: NP100
     table,
     headers=headers,