print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
raise e
+
logger = logging.getLogger("compare-llama-bench")
# All llama-bench SQL fields
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
parser.add_argument("-s", "--show", help=help_s)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
+parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
+parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
+parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
known_args, unknown_args = parser.parse_known_args()
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
+
if known_args.check:
# Check if all required Python libraries are installed. Would have failed earlier if not.
sys.exit(0)
name_compare = bench_data.get_commit_name(hexsha8_compare)
-
# If the user provided columns to group the results by, use them:
if known_args.show is not None:
show = known_args.show.split(",")
show.remove(prop)
except ValueError:
pass
+
+ # Add plot_x parameter to parameters to show if it's not already present:
+ if known_args.plot:
+ for k, v in PRETTY_NAMES.items():
+ if v == known_args.plot_x and k not in show:
+ show.append(k)
+ break
+
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
if not rows_show:
headers = [PRETTY_NAMES[p] for p in show]
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
+if known_args.plot:
+ def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
+ try:
+ import matplotlib.pyplot as plt
+ import matplotlib
+ matplotlib.use('Agg')
+ except ImportError as e:
+ logger.error("matplotlib is required for --plot.")
+ raise e
+
+ data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
+ plot_x_index = None
+ plot_x_label = plot_x_param
+
+ if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
+ pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
+ if pretty_name in data_headers:
+ plot_x_index = data_headers.index(pretty_name)
+ plot_x_label = pretty_name
+ elif plot_x_param in data_headers:
+ plot_x_index = data_headers.index(plot_x_param)
+ plot_x_label = plot_x_param
+ else:
+ logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
+ return
+
+ grouped_data = {}
+
+ for i, row in enumerate(table_data):
+ group_key_parts = []
+ test_name = row[-4]
+
+ base_test = ""
+ x_value = None
+
+ if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
+ for j, val in enumerate(row[:-4]):
+ header_name = data_headers[j]
+ if val is not None and str(val).strip():
+ group_key_parts.append(f"{header_name}={val}")
+
+ if plot_x_param == "n_prompt" and "pp" in test_name:
+ base_test = test_name.split("@")[0]
+ x_value = base_test
+ elif plot_x_param == "n_gen" and "tg" in test_name:
+ x_value = test_name.split("@")[0]
+ elif plot_x_param == "n_depth" and "@d" in test_name:
+ base_test = test_name.split("@d")[0]
+ x_value = int(test_name.split("@d")[1])
+ else:
+ base_test = test_name
+
+ if base_test.strip():
+ group_key_parts.append(f"Test={base_test}")
+ else:
+ for j, val in enumerate(row[:-4]):
+ if j != plot_x_index:
+ header_name = data_headers[j]
+ if val is not None and str(val).strip():
+ group_key_parts.append(f"{header_name}={val}")
+ else:
+ x_value = val
+
+ group_key_parts.append(f"Test={test_name}")
+
+ group_key = tuple(group_key_parts)
+
+ if group_key not in grouped_data:
+ grouped_data[group_key] = []
+
+ grouped_data[group_key].append({
+ 'x_value': x_value,
+ 'baseline': float(row[-3]),
+ 'compare': float(row[-2]),
+ 'speedup': float(row[-1])
+ })
+
+ if not grouped_data:
+ logger.error("No data available for plotting")
+ return
+
+ def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
+ from math import ceil
+ cols = 1 if num_groups == 1 else min(max_cols, num_groups)
+ rows = ceil(num_groups / cols)
+
+ # Scale figure size by grid dimensions
+ w, h = base_size
+ fig, ax_arr = plt.subplots(rows, cols,
+ figsize=(w * cols, h * rows),
+ squeeze=False)
+
+ axes = ax_arr.flatten()[:num_groups]
+ return fig, axes
+
+ num_groups = len(grouped_data)
+ fig, axes = make_axes(num_groups)
+
+ plot_idx = 0
+
+ for group_key, points in grouped_data.items():
+ if plot_idx >= len(axes):
+ break
+ ax = axes[plot_idx]
+
+ try:
+ points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
+ x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
+ except ValueError:
+ points_sorted = sorted(points, key=lambda p: group_key)
+ x_values = [p['x_value'] for p in points_sorted]
+
+ baseline_vals = [p['baseline'] for p in points_sorted]
+ compare_vals = [p['compare'] for p in points_sorted]
+
+ ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
+ label=f'{baseline_name}', linewidth=2, markersize=6)
+ ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
+ label=f'{compare_name}', linewidth=2, markersize=6)
+
+ if log_scale:
+ ax.set_xscale('log', base=2)
+ unique_x = sorted(set(x_values))
+ ax.set_xticks(unique_x)
+ ax.set_xticklabels([str(int(x)) for x in unique_x])
+
+ title_parts = []
+ for part in group_key:
+ if '=' in part:
+ key, value = part.split('=', 1)
+ title_parts.append(f"{key}: {value}")
+
+ title = ', '.join(title_parts) if title_parts else "Performance comparison"
+
+ ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
+ ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
+ ax.set_title(title, fontsize=12, fontweight='bold')
+ ax.legend(loc='best', fontsize=10)
+ ax.grid(True, alpha=0.3)
+
+ plot_idx += 1
+
+ for i in range(plot_idx, len(axes)):
+ axes[i].set_visible(False)
+
+ fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
+ fontsize=14, fontweight='bold')
+ fig.subplots_adjust(top=1)
+
+ plt.tight_layout()
+ plt.savefig(output_file, dpi=300, bbox_inches='tight')
+ plt.close()
+
+ create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)
+
print(tabulate( # noqa: NP100
table,
headers=headers,