/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
+ /*.name =*/ { 0 },
/*.pad =*/ { 0 },
};
return (float *)(tensor->data);
}
+const char * ggml_get_name(const struct ggml_tensor * tensor) {
+ return tensor->name;
+}
+
+void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
+ strncpy(tensor->name, name, sizeof(tensor->name));
+ tensor->name[sizeof(tensor->name) - 1] = '\0';
+}
+
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
const struct ggml_tensor * src) {
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
+ ggml_set_name(b, "n_past");
result->op = GGML_OP_DIAG_MASK_INF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
((int32_t *) b->data)[0] = n_past;
((int32_t *) b->data)[1] = n_dims;
((int32_t *) b->data)[2] = mode;
+ ggml_set_name(b, "n_past, n_dims, mode");
result->op = GGML_OP_ROPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
snprintf(color, sizeof(color), "white");
}
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
- (void *) node, color,
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s |", node->name);
+ }
+
+ fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
i, node->ne[0], node->ne[1],
GGML_OP_SYMBOL[node->op]);
snprintf(color, sizeof(color), "pink");
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"<x>",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s | ", node->name);
+ }
if (ggml_nelements(node) == 1) {
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"<x>%.1e\"; ]\n",
- (void *) node, color, (double)ggml_get_f32_1d(node, 0));
- } else {
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
- (void *) node, color,
- i, node->ne[0], node->ne[1]);
+ if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
+ fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
+ }
+ else {
+ fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
+ }
+ }
+ else {
+ fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
}
+ fprintf(fp, "\"; ]\n");
}
for (int i = 0; i < gb->n_nodes; i++) {
LLAMA_ASSERT(lt.ne.size() == 1);
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
}
+ ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
+ ggml_set_name(cache.k, "cache_k");
+ ggml_set_name(cache.v, "cache_v");
return true;
}
gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ ggml_set_name(embd, "embd");
memcpy(embd->data, tokens, N*ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
+ ggml_set_name(Qcur, "Qcur");
+ ggml_set_name(Kcur, "Kcur");
// store key and value to memory
{
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
+ ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
+ ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
+ struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
+ ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
+
+ struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
+ ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+ ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+ ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
+ ggml_set_name(V, "V");
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+ ggml_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+ ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,