]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support BailingMoE (Ling) (#12634)
authorSigbjørn Skjæret <redacted>
Sun, 30 Mar 2025 20:21:03 +0000 (22:21 +0200)
committerGitHub <redacted>
Sun, 30 Mar 2025 20:21:03 +0000 (22:21 +0200)
13 files changed:
README.md
convert_hf_to_gguf.py
convert_hf_to_gguf_update.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
include/llama.h
src/llama-arch.cpp
src/llama-arch.h
src/llama-chat.cpp
src/llama-chat.h
src/llama-model.cpp
src/llama-model.h
src/llama-vocab.cpp

index b637fe2ef9ee94ad531410259088de549fad1028..f8ed423c4e2ded9fc91c6d1fe15520a78c8d3b91 100644 (file)
--- a/README.md
+++ b/README.md
@@ -113,6 +113,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
 - [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
 - [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
 - [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
+- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
 
 #### Multimodal
 
index c322edc414ed8463a22dbb0383e9da43f2b4a60f..0919cd3f0d9a857ddb5d6a262b804fc5f826d2e3 100755 (executable)
@@ -711,6 +711,9 @@ class Model:
         if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
             # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
             res = "trillion"
+        if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
+            # ref: https://huggingface.co/inclusionAI/Ling-lite
+            res = "bailingmoe"
 
         if res is None:
             logger.warning("\n")
@@ -5133,6 +5136,108 @@ class GraniteMoeModel(GraniteModel):
         return super().modify_tensors(data_torch, name, bid)
 
 
+@Model.register("BailingMoeForCausalLM")
+class BailingMoeModel(Model):
+    model_arch = gguf.MODEL_ARCH.BAILINGMOE
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+        self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
+        self.gguf_writer.add_expert_weights_scale(1.0)
+        self.gguf_writer.add_expert_count(hparams["num_experts"])
+        self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
+        self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    @staticmethod
+    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+        if n_head_kv is not None and n_head != n_head_kv:
+            n_head = n_head_kv
+        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+                .swapaxes(1, 2)
+                .reshape(weights.shape))
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        n_kv_head = self.hparams.get("num_key_value_heads")
+        n_embd = self.hparams["hidden_size"]
+        head_dim = self.hparams.get("head_dim", n_embd // n_head)
+
+        output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
+
+        if name.endswith("attention.dense.weight"):
+            return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
+        elif name.endswith("query_key_value.weight"):
+            q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
+
+            return [
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
+                (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
+            ]
+        elif name.find("mlp.experts") != -1:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            tensors: list[tuple[str, Tensor]] = []
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+
+            return tensors
+
+        new_name = self.map_tensor_name(name)
+
+        if new_name == output_name and self.hparams.get("norm_head"):
+            data_torch = data_torch.float()
+            data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
+
+        return [(new_name, data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
 @Model.register("ChameleonForConditionalGeneration")
 @Model.register("ChameleonForCausalLM")  # obsolete
 class ChameleonModel(Model):
index a3a64712536f1d038b9aca1a4df30f718f348f81..1b86f4c90acf6b245da2e5f807540f162f402abd 100755 (executable)
@@ -112,6 +112,7 @@ models = [
     {"name": "gpt-4o",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
     {"name": "superbpe",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
     {"name": "trillion",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
+    {"name": "bailingmoe",       "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
 ]
 
 
index 1753dca4b34ce0b6eacd038d19c612eda429030f..3a52cfd1e39ace05b6b479a9d538105db8416b35 100644 (file)
@@ -287,6 +287,7 @@ class MODEL_ARCH(IntEnum):
     CHAMELEON        = auto()
     WAVTOKENIZER_DEC = auto()
     PLM              = auto()
+    BAILINGMOE       = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -490,6 +491,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.CHAMELEON:        "chameleon",
     MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
     MODEL_ARCH.PLM:              "plm",
+    MODEL_ARCH.BAILINGMOE:       "bailingmoe",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -1667,6 +1669,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.POSNET_ATTN_V,
         MODEL_TENSOR.POSNET_ATTN_OUT,
     ],
+    MODEL_ARCH.BAILINGMOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_GATE_SHEXP,
+        MODEL_TENSOR.FFN_DOWN_SHEXP,
+        MODEL_TENSOR.FFN_UP_SHEXP,
+    ],
     # TODO
 }
 
@@ -1719,6 +1740,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.ROPE_FREQS,
         MODEL_TENSOR.ATTN_ROT_EMBD,
     ],
+    MODEL_ARCH.BAILINGMOE: [
+        MODEL_TENSOR.ROPE_FREQS,
+    ],
 }
 
 #
index 8d4a2b032018395dab06356b5b92117fa5f023e4..50bef12e3dbe77e1194963afeffe98f57559cd1b 100644 (file)
@@ -29,6 +29,7 @@ class TensorNameMap:
             "shared",                                    # t5
             "rwkv.embeddings",                           # rwkv6
             "model.embeddings",                          # rwkv7
+            "model.word_embeddings",                     # bailingmoe
         ),
 
         # Token type embeddings
index 4eb70ec99e523c8db1e5620a3247f4a754bdc9a0..468ab1fa485dab3d33a439f659ab634fee341051 100644 (file)
@@ -109,6 +109,7 @@ extern "C" {
         LLAMA_VOCAB_PRE_TYPE_GPT4O          = 29,
         LLAMA_VOCAB_PRE_TYPE_SUPERBPE       = 30,
         LLAMA_VOCAB_PRE_TYPE_TRILLION       = 31,
+        LLAMA_VOCAB_PRE_TYPE_BAILINGMOE     = 32,
     };
 
     enum llama_rope_type {
index 9e443d83029f56225a248597fe864612c0ba17d0..954ae65a37c9361e2dfafebef7a81ed3f08fe5df 100644 (file)
@@ -66,6 +66,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_CHAMELEON,        "chameleon"        },
     { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
     { LLM_ARCH_PLM,              "plm"              },
+    { LLM_ARCH_BAILINGMOE,       "bailingmoe"       },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
 };
 
@@ -1409,6 +1410,29 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_POS_NET_ATTN_OUT,  "posnet.%d.attn_output" },
         },
     },
+    {
+        LLM_ARCH_BAILINGMOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ROPE_FREQS,         "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
index 39e3a2ce0565c1aa7067f316cfadab1e95f6658d..7e2a3dd29f7afb3f0ff7db6f73620e139932b44d 100644 (file)
@@ -70,6 +70,7 @@ enum llm_arch {
     LLM_ARCH_CHAMELEON,
     LLM_ARCH_WAVTOKENIZER_DEC,
     LLM_ARCH_PLM,
+    LLM_ARCH_BAILINGMOE,
     LLM_ARCH_UNKNOWN,
 };
 
index d6d781cbaad182bb37759459054e1380c95a4697..dd27a381423df20cc411be76bbf4bdec7d2e4d74 100644 (file)
@@ -60,6 +60,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "gigachat",          LLM_CHAT_TEMPLATE_GIGACHAT          },
     { "megrez",            LLM_CHAT_TEMPLATE_MEGREZ            },
     { "yandex",            LLM_CHAT_TEMPLATE_YANDEX            },
+    { "bailing",           LLM_CHAT_TEMPLATE_BAILING           },
 };
 
 llm_chat_template llm_chat_template_from_str(const std::string & name) {
@@ -171,6 +172,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
         return LLM_CHAT_TEMPLATE_MEGREZ;
     } else if (tmpl_contains(" Ассистент:")) {
         return LLM_CHAT_TEMPLATE_YANDEX;
+    } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("'HUMAN'")) {
+        return LLM_CHAT_TEMPLATE_BAILING;
     }
     return LLM_CHAT_TEMPLATE_UNKNOWN;
 }
@@ -588,6 +591,23 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << " Ассистент:[SEP]";
         }
+    }  else if (tmpl == LLM_CHAT_TEMPLATE_BAILING) {
+        // Bailing (Ling) template
+        for (auto message : chat) {
+            std::string role(message->role);
+
+            if (role == "user") {
+                role = "HUMAN";
+            } else {
+                std::transform(role.begin(), role.end(), role.begin(), ::toupper);
+            }
+
+            ss << "<role>" << role << "</role>" << message->content;
+        }
+
+        if (add_ass) {
+            ss << "<role>ASSISTANT</role>";
+        }
     } else {
         // template not supported
         return -1;
index bbd5a6b722a7398f394e8bcdf63da845d83d1a3d..0e0bd772c2eacf3447fea0385d709fe5281a39c2 100644 (file)
@@ -39,6 +39,7 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_GIGACHAT,
     LLM_CHAT_TEMPLATE_MEGREZ,
     LLM_CHAT_TEMPLATE_YANDEX,
+    LLM_CHAT_TEMPLATE_BAILING,
     LLM_CHAT_TEMPLATE_UNKNOWN,
 };
 
index e712960f8c14a2557affb7991b950defe2f0f98a..8d525e1bec4e06f4a92322e06c2b0d1d90544896 100644 (file)
@@ -88,6 +88,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
         case LLM_TYPE_57B_A14B:      return "57B.A14B";
         case LLM_TYPE_27B:           return "27B";
+        case LLM_TYPE_290B:          return "290B";
         default:                     return "?B";
     }
 }
@@ -1328,6 +1329,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                 ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
                 ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
             } break;
+        case LLM_ARCH_BAILINGMOE:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
+
+                switch (hparams.n_layer) {
+                    case 28: type = LLM_TYPE_16B; break;
+                    case 88: type = LLM_TYPE_290B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         default: throw std::runtime_error("unsupported model architecture");
     }
 
@@ -3739,6 +3755,46 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                     output   = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
                     output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"),   {n_embd}, 0);
                 } break;
+            case LLM_ARCH_BAILINGMOE:
+                {
+                    const int64_t n_ff_exp            = hparams.n_ff_exp;
+                    const int64_t n_expert_shared     = hparams.n_expert_shared;
+
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_head * n_rot}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_head_kv * n_rot}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+
+                        if (n_expert == 0) {
+                            throw std::runtime_error("n_expert must be > 0");
+                        }
+                        if (n_expert_used == 0) {
+                            throw std::runtime_error("n_expert_used must be > 0");
+                        }
+
+                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
+                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
+                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
+
+                        layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
+                        layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd}, 0);
+                        layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -4026,6 +4082,14 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
     }
 
+    if (arch == LLM_ARCH_BAILINGMOE) {
+        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
+        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
+        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
+        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
+        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
+    }
+
     vocab.print_info();
 }
 
@@ -11814,6 +11878,150 @@ struct llm_build_plm : public llm_graph_context {
     }
 };
 
+struct llm_build_bailingmoe : public llm_graph_context {
+    llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // rope freq factors for llama3; may return nullptr for llama2 and other models
+                ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
+
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, rope_factors,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, rope_factors,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            cur = build_norm(ffn_inp,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            ggml_tensor * moe_out =
+                build_moe_ffn(cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        nullptr,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, hparams.expert_weights_norm,
+                        false, hparams.expert_weights_scale,
+                        LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+                        il);
+            cb(moe_out, "ffn_moe_out", il);
+
+            // FFN shared expert
+            {
+                ggml_tensor * ffn_shexp = build_ffn(cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(ffn_shexp, "ffn_shexp", il);
+
+                cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 llama_memory_i * llama_model::create_memory() const {
     llama_memory_i * res;
 
@@ -12090,6 +12298,10 @@ llm_graph_result_ptr llama_model::build_graph(
             {
                 llm = std::make_unique<llm_build_plm>(*this, params, gf);
             } break;
+        case LLM_ARCH_BAILINGMOE:
+            {
+                llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
+            } break;
         default:
             GGML_ABORT("fatal error");
     }
@@ -12221,6 +12433,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_GRANITE:
         case LLM_ARCH_GRANITE_MOE:
         case LLM_ARCH_CHAMELEON:
+        case LLM_ARCH_BAILINGMOE:
             return LLAMA_ROPE_TYPE_NORM;
 
         // the pairs of head values are offset by n_rot/2
index 0064d597a961395c94f44be7db7751cdeceacf30..f1bf0df3a4ef63bcd352c9e88f63744ea3b1bf38 100644 (file)
@@ -85,6 +85,7 @@ enum llm_type {
     LLM_TYPE_10B_128x3_66B,
     LLM_TYPE_57B_A14B,
     LLM_TYPE_27B,
+    LLM_TYPE_290B,
 };
 
 struct llama_layer_posnet {
index 5ace5e385a5d1fd005168c0028b5191c70bee927..78072e17f3e11895d280bd4bd67028c0d0de2b2a 100644 (file)
@@ -407,6 +407,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
                     "(?=(\\d{3})+(?!\\d))",
                 };
                 break;
+            case LLAMA_VOCAB_PRE_TYPE_BAILINGMOE:
+                regex_exprs = {
+                    // original regex from tokenizer.json
+                    // "'(?i:[sdmt]|ll|ve|re)|[^\\r\\n\\p{L}\\p{N}]?+\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]++[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+"
+                    "'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?+\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]++[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
+                };
+                break;
             default:
                 // default regex for BPE tokenization pre-processing
                 regex_exprs = {
@@ -1619,6 +1626,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 tokenizer_pre == "trillion") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_TRILLION;
                 clean_spaces = false;
+            } else if (
+                tokenizer_pre == "bailingmoe") {
+                pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
+                clean_spaces = false;
             } else {
                 throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
             }