#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
+#include "ggml-cuda/rwkv-wkv.cuh"
#include <algorithm>
#include <array>
case GGML_UNARY_OP_HARDSWISH:
ggml_cuda_op_hardswish(ctx, dst);
break;
+ case GGML_UNARY_OP_EXP:
+ ggml_cuda_op_exp(ctx, dst);
+ break;
default:
return false;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
+ case GGML_OP_RWKV_WKV:
+ ggml_cuda_op_rwkv_wkv(ctx, dst);
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst);
break;
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
+ case GGML_UNARY_OP_EXP:
return ggml_is_contiguous(op->src[0]);
default:
return false;
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
+ case GGML_OP_RWKV_WKV:
return true;
case GGML_OP_FLASH_ATTN_EXT:
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
--- /dev/null
+#include "common.cuh"
+#include "rwkv-wkv.cuh"
+
+static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
+ const int tid = threadIdx.x;
+ const int bid = blockIdx.x;
+
+ const int head_size = CUDA_WKV_BLOCK_SIZE;
+ const int batch_i = bid / H;
+ const int head_i = bid % H;
+ const int state_size = C * head_size;
+ const int n_seq_tokens = T / B;
+
+ float state[head_size];
+ __shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size];
+
+ #pragma unroll
+ for (int i = 0; i < head_size; i++) {
+ state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
+ }
+
+ __syncthreads();
+ _tf[tid] = tf[head_i * head_size + tid];
+ __syncthreads();
+
+ for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
+ __syncthreads();
+ _k[tid] = k[t];
+ _r[tid] = r[t];
+ _td[tid] = td[t];
+ __syncthreads();
+
+ const float _v = v[t];
+ float y = 0;
+ for (int j = 0; j < head_size; j += 4) {
+ const float4& k = (float4&)(_k[j]);
+ const float4& r = (float4&)(_r[j]);
+ const float4& tf = (float4&)(_tf[j]);
+ const float4& td = (float4&)(_td[j]);
+ float4& s = (float4&)(state[j]);
+ float4 kv;
+
+ kv.x = k.x * _v;
+ kv.y = k.y * _v;
+ kv.z = k.z * _v;
+ kv.w = k.w * _v;
+
+ y += r.x * (tf.x * kv.x + s.x);
+ y += r.y * (tf.y * kv.y + s.y);
+ y += r.z * (tf.z * kv.z + s.z);
+ y += r.w * (tf.w * kv.w + s.w);
+
+ s.x = s.x * td.x + kv.x;
+ s.y = s.y * td.y + kv.y;
+ s.z = s.z * td.z + kv.z;
+ s.w = s.w * td.w + kv.w;
+ }
+ dst[t] = y;
+ }
+
+ #pragma unroll
+ for (int i = 0; i < head_size; i++) {
+ dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
+ }
+}
+
+void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const float * k_d = (const float *)dst->src[0]->data;
+ const float * v_d = (const float *)dst->src[1]->data;
+ const float * r_d = (const float *)dst->src[2]->data;
+ const float * tf_d = (const float *)dst->src[3]->data;
+ const float * td_d = (const float *)dst->src[4]->data;
+ const float * s_d = (const float *)dst->src[5]->data;
+
+ const int64_t B = dst->src[5]->ne[1];
+ const int64_t T = dst->src[0]->ne[3];
+ const int64_t C = dst->ne[0];
+ const int64_t H = dst->src[0]->ne[2];
+
+ float * dst_d = (float *)dst->data;
+
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
+ GGML_ASSERT(C % H == 0);
+ GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE);
+
+ rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_WKV_BLOCK_SIZE 64
+
+void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
}
+static __global__ void exp_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = expf(x[i]);
+}
+
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
+static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE;
+ exp_f32<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
+void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
#define CUDA_RELU_BLOCK_SIZE 256
#define CUDA_SIGMOID_BLOCK_SIZE 256
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
+#define CUDA_EXP_BLOCK_SIZE 256
#define CUDA_HARDSWISH_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_SQRT_BLOCK_SIZE 256
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
}
};
+// GGML_OP_RWKV_WKV
+struct test_rwkv_wkv : public test_case {
+ const ggml_type type;
+
+ const int64_t head_count;
+ const int64_t head_size;
+ const int64_t n_seq_tokens;
+ const int64_t n_seqs;
+
+ std::string vars() override {
+ return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
+ }
+
+ test_rwkv_wkv(ggml_type type = GGML_TYPE_F32,
+ int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
+ : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ const int64_t n_tokens = n_seq_tokens * n_seqs;
+ ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
+ ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ head_size, 1, head_count, n_tokens }.data());
+ ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
+ ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
+ ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
+ ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
+ ggml_tensor * out = ggml_rwkv_wkv(ctx, k, v, r, tf, td, s);
+ return out;
+ }
+};
+
// GGML_OP_MUL_MAT
struct test_mul_mat : public test_case {
const ggml_type type_a;
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
+ test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 1, 1));
+ test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 1));
+ test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 4));
+ test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 128, 4));
+
#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {