-#include "common.cuh"
+#include <algorithm>
+#include <cstdint>
+
#include "argmax.cuh"
+#include "common.cuh"
#include "sum.cuh"
-#include <cstdint>
+static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) {
+ const int64_t row = blockIdx.x;
-static __global__ void argmax_f32(
- const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) {
+ float maxval = -FLT_MAX;
+ int argmax = -1;
+ const float * rowx = x + row * ncols;
- int argmax_thread = 0;
- const int64_t row0 = (int64_t)blockIdx.x*WARP_SIZE;
+ for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) {
+ const float val = rowx[col];
+ if (val > maxval) {
+ maxval = val;
+ argmax = col;
+ }
+ }
#pragma unroll
- for (int64_t row1 = 0; row1 < WARP_SIZE; ++row1) {
- const int64_t row = row0 + row1;
-
- if (row >= nrows) {
- break;
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
+ const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
+ if (val > maxval) {
+ maxval = val;
+ argmax = col;
}
+ }
- float maxval = -FLT_MAX;
- int argmax = -1;
-
- for (int32_t col = threadIdx.x; col < ncols; col += WARP_SIZE) {
- const float val = x[row*ncols + col];
- const int bigger = val > maxval;
- const int not_bigger = bigger ^ 0x00000001;
-
- maxval = maxval*not_bigger + val*bigger;
- argmax = argmax*not_bigger + col*bigger;
+ const int n_warps = blockDim.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ if (n_warps > 1) {
+ constexpr int max_warps = 1024 / WARP_SIZE;
+ __shared__ float shared_maxval[max_warps];
+ __shared__ int shared_argmax[max_warps];
+ if (lane_id == 0) {
+ shared_maxval[warp_id] = maxval;
+ shared_argmax[warp_id] = argmax;
}
+ __syncthreads();
+
+ if (warp_id == 0) {
+ if (lane_id < n_warps) {
+ maxval = shared_maxval[lane_id];
+ argmax = shared_argmax[lane_id];
+ }
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, mask, WARP_SIZE);
- const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, mask, WARP_SIZE);
- const int bigger = val > maxval;
- const int not_bigger = bigger ^ 0x00000001;
-
- maxval = maxval*not_bigger + val*bigger;
- argmax = argmax*not_bigger + col*bigger;
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
+ const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
+ if (val > maxval) {
+ maxval = val;
+ argmax = col;
+ }
+ }
}
-
- const int store = row1 == threadIdx.x;
- argmax_thread += store*argmax;
}
- const int row = row0 + threadIdx.x;
-
- if (row >= nrows) {
- return;
+ if (warp_id == 0 && lane_id == 0) {
+ dst[row] = argmax;
}
-
- dst[row] = argmax_thread;
}
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
cudaStream_t stream = ctx.stream();
- const int64_t num_blocks = (nrows + WARP_SIZE - 1) / WARP_SIZE;
-
- const dim3 blocks_dim(WARP_SIZE, 1, 1);
+ const int64_t num_blocks = nrows;
+ const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE);
+ const dim3 blocks_dim(num_threads, 1, 1);
const dim3 blocks_num(num_blocks, 1, 1);
- argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00, nrows);
+ argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00);
}
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
- a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
+ a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
}
return a;
}
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
reinterpret_cast<half&>(a.x) += __low2half(a_other);
reinterpret_cast<half&>(a.y) += __high2half(a_other);
}
return a;
#else
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
}
return a;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
}
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+ for (int offset = 16; offset > 0; offset >>= 1) {
+ x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
#else
// Exchange max. abs. value between vals_per_scale/4 threads.
#pragma unroll
- for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) {
- amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE));
+ for (int offset = vals_per_scale/8; offset > 0; offset >>= 1) {
+ amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, offset, WARP_SIZE));
}
float sum;
// Exchange calculate sum across vals_per_sum/4 threads.
#pragma unroll
- for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) {
- sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE);
+ for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
+ sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
}
}
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(ggml_is_matrix(a));
+ GGML_ASSERT(a->ne[0] <= INT32_MAX);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order) {
+ GGML_ASSERT(a->ne[0] <= INT32_MAX);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
ggml_set_op_params_i32(result, 0, (int32_t) order);