dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
-
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
-
- const int tid = item_ct1.get_local_id(2);
- const int rowx = item_ct1.get_group(2);
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
-
- const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
-
- const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
-
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = rowx/nrows_y; // head index
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = sycl::pow(base, float(exp));
- }
-
- float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
-
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
-
- const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
-
- vals[col] = val;
- max_val = sycl::max(max_val, val);
- }
-
- // find the max value in the block
- max_val = warp_reduce_max(max_val, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val, item_ct1);
- }
-
- float tmp = 0.f;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const float val = sycl::native::exp(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
-
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- const float inv_sum = 1.f / tmp;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
-
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
-}
-
static void scale_f32(const float * x, float * dst, const float scale, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
});
}
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
- const size_t n_local_scratch, queue_ptr stream) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
- soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
- nrows_y, scale, max_bias, m0,
- m1, n_head_log2, item_ct1,
- local_buf_acc.get_pointer());
- });
- });
-}
-
-static void soft_max_f32_sycl(const float * x, const float * mask,
- float * dst, const int ncols_x, const int nrows_x,
- const int nrows_y, const float scale, const float max_bias,
- queue_ptr stream, int device) {
- int nth = WARP_SIZE;
- int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
- while (nth < ncols_x && nth < max_block_size) nth *= 2;
- if (nth>max_block_size) nth = max_block_size;
-
- const sycl::range<3> block_dims(1, 1, nth);
- const sycl::range<3> block_nums(1, 1, nrows_x);
- const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
-
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
- if (n_local_scratch*sizeof(float) < local_mem_size) {
- if (ncols_x > max_block_size) {
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- return;
- }
- switch (ncols_x) {
- case 32:
- soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 64:
- soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 128:
- soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 256:
- soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 512:
- soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 1024:
- soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 2048:
- soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 4096:
- soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- default:
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- }
- } else {
- soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, WARP_SIZE, stream);
- }
-}
-
template <typename T>
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
int OW, int OH, int KW, int KH, int IC,
(void) src1_dd;
}
-inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
-#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
-
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
-
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
- nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
-}
-
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
+ int dim = op->op_params[0];
+ return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2;
} break;
case GGML_OP_DUP:
case GGML_OP_NONE: