]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
sync : ggml (#2001)
authorGeorgi Gerganov <redacted>
Wed, 27 Mar 2024 16:55:10 +0000 (18:55 +0200)
committerGitHub <redacted>
Wed, 27 Mar 2024 16:55:10 +0000 (18:55 +0200)
* sync : update scripts

* sync : ggml

* talk-llama : sync llama.cpp

* make : WHISPER_CUBLAS -> WHISPER_CUDA

* ci : try to fix sycl build

* talk-llama : fix make build

90 files changed:
.github/workflows/build.yml
CMakeLists.txt
Makefile
README.md
examples/common-ggml.cpp
examples/talk-llama/CMakeLists.txt
examples/talk-llama/llama.cpp
examples/talk-llama/llama.h
examples/talk-llama/unicode-data.cpp [new file with mode: 0644]
examples/talk-llama/unicode-data.h [new file with mode: 0644]
examples/talk-llama/unicode.cpp
examples/talk-llama/unicode.h
examples/wchess/CMakeLists.txt
extra/sync-ggml-am.sh
extra/sync-ggml.sh
extra/sync-llama.sh
ggml-alloc.c
ggml-backend-impl.h
ggml-backend.c
ggml-backend.h
ggml-common.h
ggml-cuda.cu
ggml-cuda.h
ggml-cuda/acc.cu [new file with mode: 0644]
ggml-cuda/acc.cuh [new file with mode: 0644]
ggml-cuda/alibi.cu [new file with mode: 0644]
ggml-cuda/alibi.cuh [new file with mode: 0644]
ggml-cuda/arange.cu [new file with mode: 0644]
ggml-cuda/arange.cuh [new file with mode: 0644]
ggml-cuda/argsort.cu [new file with mode: 0644]
ggml-cuda/argsort.cuh [new file with mode: 0644]
ggml-cuda/binbcast.cu [new file with mode: 0644]
ggml-cuda/binbcast.cuh [new file with mode: 0644]
ggml-cuda/clamp.cu [new file with mode: 0644]
ggml-cuda/clamp.cuh [new file with mode: 0644]
ggml-cuda/common.cuh [new file with mode: 0644]
ggml-cuda/concat.cu [new file with mode: 0644]
ggml-cuda/concat.cuh [new file with mode: 0644]
ggml-cuda/convert.cu [new file with mode: 0644]
ggml-cuda/convert.cuh [new file with mode: 0644]
ggml-cuda/cpy.cu [new file with mode: 0644]
ggml-cuda/cpy.cuh [new file with mode: 0644]
ggml-cuda/dequantize.cuh [new file with mode: 0644]
ggml-cuda/diagmask.cu [new file with mode: 0644]
ggml-cuda/diagmask.cuh [new file with mode: 0644]
ggml-cuda/dmmv.cu [new file with mode: 0644]
ggml-cuda/dmmv.cuh [new file with mode: 0644]
ggml-cuda/getrows.cu [new file with mode: 0644]
ggml-cuda/getrows.cuh [new file with mode: 0644]
ggml-cuda/im2col.cu [new file with mode: 0644]
ggml-cuda/im2col.cuh [new file with mode: 0644]
ggml-cuda/mmq.cu [new file with mode: 0644]
ggml-cuda/mmq.cuh [new file with mode: 0644]
ggml-cuda/mmvq.cu [new file with mode: 0644]
ggml-cuda/mmvq.cuh [new file with mode: 0644]
ggml-cuda/norm.cu [new file with mode: 0644]
ggml-cuda/norm.cuh [new file with mode: 0644]
ggml-cuda/pad.cu [new file with mode: 0644]
ggml-cuda/pad.cuh [new file with mode: 0644]
ggml-cuda/pool2d.cu [new file with mode: 0644]
ggml-cuda/pool2d.cuh [new file with mode: 0644]
ggml-cuda/quantize.cu [new file with mode: 0644]
ggml-cuda/quantize.cuh [new file with mode: 0644]
ggml-cuda/rope.cu [new file with mode: 0644]
ggml-cuda/rope.cuh [new file with mode: 0644]
ggml-cuda/scale.cu [new file with mode: 0644]
ggml-cuda/scale.cuh [new file with mode: 0644]
ggml-cuda/softmax.cu [new file with mode: 0644]
ggml-cuda/softmax.cuh [new file with mode: 0644]
ggml-cuda/sumrows.cu [new file with mode: 0644]
ggml-cuda/sumrows.cuh [new file with mode: 0644]
ggml-cuda/tsembd.cu [new file with mode: 0644]
ggml-cuda/tsembd.cuh [new file with mode: 0644]
ggml-cuda/unary.cu [new file with mode: 0644]
ggml-cuda/unary.cuh [new file with mode: 0644]
ggml-cuda/upscale.cu [new file with mode: 0644]
ggml-cuda/upscale.cuh [new file with mode: 0644]
ggml-cuda/vecdotq.cuh [new file with mode: 0644]
ggml-kompute.cpp
ggml-metal.m
ggml-metal.metal
ggml-opencl.cpp
ggml-quants.c
ggml-quants.h
ggml-sycl.cpp
ggml-sycl.h
ggml-vulkan.cpp
ggml.c
ggml.h
whisper.cpp

index 7355d70f3471396a16c766e8f4107d1b4a4377f9..fe66933c2e1d3af7c224cc5063be6df9d3603f05 100644 (file)
@@ -152,13 +152,13 @@ jobs:
 
   ubuntu-22-cmake-sycl:
     runs-on: ubuntu-22.04
-    
+
     strategy:
       fail-fast: false
       matrix:
         dwhisper_sycl: [ON]
         dcmake_c_compiler: [icx]
-        dcmake_cxx_compiler: [icpx] 
+        dcmake_cxx_compiler: [icpx]
         arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
 
     continue-on-error: true
@@ -166,7 +166,7 @@ jobs:
     steps:
       - name: Clone
         uses: actions/checkout@v3
-        
+
       - name: add oneAPI to apt
         shell: bash
         run: |
@@ -190,7 +190,7 @@ jobs:
       - name: Clone
         id: checkout
         uses: actions/checkout@v3
-            
+
       - name: Build
         id: cmake_build
         run: |
@@ -202,13 +202,13 @@ jobs:
 
   ubuntu-22-cmake-sycl-fp16:
     runs-on: ubuntu-22.04
-    
+
     strategy:
       fail-fast: false
       matrix:
         dwhisper_sycl: [ON]
         dcmake_c_compiler: [icx]
-        dcmake_cxx_compiler: [icpx] 
+        dcmake_cxx_compiler: [icpx]
         arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
 
     continue-on-error: true
@@ -216,7 +216,7 @@ jobs:
     steps:
       - name: Clone
         uses: actions/checkout@v3
-        
+
       - name: add oneAPI to apt
         shell: bash
         run: |
@@ -240,7 +240,7 @@ jobs:
       - name: Clone
         id: checkout
         uses: actions/checkout@v3
-            
+
       - name: Build
         id: cmake_build
         run: |
@@ -249,7 +249,7 @@ jobs:
           cd build
           cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
           cmake --build . --config Release -j $(nproc)
-  
+
   windows:
     runs-on: windows-latest
 
index cc732650289a1e787c99a5c721a3bcbbda596108..8aff0f8307855b2ccbed75f6f6deacb919da4a52 100644 (file)
@@ -74,7 +74,8 @@ else()
     option(WHISPER_BLAS                  "whisper: use BLAS libraries"                        OFF)
     option(WHISPER_BLAS_VENDOR           "whisper: BLAS library vendor"                       Generic)
     option(WHISPER_OPENBLAS              "whisper: prefer OpenBLAS"                           OFF)
-    option(WHISPER_CUBLAS                "whisper: support for cuBLAS"                        OFF)
+    option(WHISPER_CUDA                  "whisper: support for CUDA"                          OFF)
+    option(WHISPER_CUBLAS                "whisper: support for CUDA (deprecated)"             OFF)
     option(WHISPER_HIPBLAS               "whisper: support for hipBLAS"                       OFF)
     option(WHISPER_CLBLAST               "whisper: use CLBlast"                               OFF)
     option(WHISPER_SYCL                  "whisper: use SYCL"                                  OFF)
@@ -240,6 +241,11 @@ if (WHISPER_BLAS)
 endif ()
 
 if (WHISPER_CUBLAS)
+    message(WARNING "WHISPER_CUBLAS is deprecated and will be removed in the future.\nUse WHISPER_CUDA instead")
+    set(WHISPER_CUDA ON)
+endif()
+
+if (WHISPER_CUDA)
     cmake_minimum_required(VERSION 3.17)
 
     find_package(CUDAToolkit)
@@ -249,9 +255,11 @@ if (WHISPER_CUBLAS)
 
         enable_language(CUDA)
 
-        set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
+        file(GLOB   GGML_SOURCES_CUDA "ggml-cuda/*.cu")
+        list(APPEND GGML_SOURCES_CUDA  ggml-cuda.h)
+        list(APPEND GGML_SOURCES_CUDA  ggml-cuda.cu)
 
-        add_compile_definitions(GGML_USE_CUBLAS)
+        add_compile_definitions(GGML_USE_CUDA)
 
         if (WHISPER_STATIC)
             if (WIN32)
@@ -286,7 +294,7 @@ if (WHISPER_HIPBLAS)
 
     if (${hipblas_FOUND} AND ${hip_FOUND})
         message(STATUS "HIP and hipBLAS found")
-        add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
+        add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
         add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
         set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
         set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
index 030391d0fc0d671c39e1a95e38377a840b402773..e1e0cb98c117a78c221f1008efea1c8187083441 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -216,20 +216,29 @@ ifdef WHISPER_OPENBLAS
 endif
 
 ifdef WHISPER_CUBLAS
+# WHISPER_CUBLAS is deprecated and will be removed in the future
+       WHISPER_CUDA := 1
+endif
+
+ifdef WHISPER_CUDA
        ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
                CUDA_ARCH_FLAG ?= native
        else
                CUDA_ARCH_FLAG ?= all
        endif
 
-       CFLAGS      += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
-       CXXFLAGS    += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
+       CFLAGS      += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
+       CXXFLAGS    += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
        LDFLAGS     += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
        WHISPER_OBJ += ggml-cuda.o
+       WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
        NVCC        = nvcc
        NVCCFLAGS   = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
 
-ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
+ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
+       $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@
+
+ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
        $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
 endif
 
@@ -237,14 +246,18 @@ ifdef WHISPER_HIPBLAS
        ROCM_PATH   ?= /opt/rocm
        HIPCC       ?= $(ROCM_PATH)/bin/hipcc
        GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
-       CFLAGS      += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
-       CXXFLAGS    += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
+       CFLAGS      += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
+       CXXFLAGS    += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
        LDFLAGS     += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
        LDFLAGS     += -lhipblas -lamdhip64 -lrocblas
        HIPFLAGS    += $(addprefix --offload-arch=,$(GPU_TARGETS))
        WHISPER_OBJ += ggml-cuda.o
+       WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
+
+ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
+       $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
 
-ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
+ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
        $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
 endif
 
@@ -309,6 +322,13 @@ $(info I CC:       $(CCV))
 $(info I CXX:      $(CXXV))
 $(info )
 
+ifdef WHISPER_CUBLAS
+$(info !!!!)
+$(info WHISPER_CUBLAS is deprecated and will be removed in the future. Use WHISPER_CUDA instead.)
+$(info !!!!)
+$(info )
+endif
+
 #
 # Build library
 #
@@ -410,8 +430,8 @@ lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
 talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
        $(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
 
-talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
-       $(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
+talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
+       $(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
 
 #
 # Audio samples
index 8773a0d515a321e2c53553508c19601897042ef1..96a8dd7b2c1bfc5ad0e2db7f57d416c8bf1436b7 100644 (file)
--- a/README.md
+++ b/README.md
@@ -414,11 +414,11 @@ For more information about the Core ML implementation please refer to PR [#1037]
 With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
 First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
 
-Now build `whisper.cpp` with cuBLAS support:
+Now build `whisper.cpp` with CUDA support:
 
 ```
 make clean
-WHISPER_CUBLAS=1 make -j
+WHISPER_CUDA=1 make -j
 ```
 
 ## OpenCL GPU support via CLBlast
index cf2478f0a43254be9642fc5d19cf6c61e723688e..4ea8e44af02de1c899f97cc00bc8665c0ee6c514 100644 (file)
@@ -70,6 +70,7 @@ bool ggml_common_quantize_0(
         case GGML_FTYPE_MOSTLY_IQ1_S:
         case GGML_FTYPE_MOSTLY_IQ4_NL:
         case GGML_FTYPE_MOSTLY_IQ4_XS:
+        case GGML_FTYPE_MOSTLY_IQ1_M:
                 {
                     fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
                     return false;
@@ -193,6 +194,8 @@ bool ggml_common_quantize_0(
                 case GGML_TYPE_I8:
                 case GGML_TYPE_I16:
                 case GGML_TYPE_I32:
+                case GGML_TYPE_I64:
+                case GGML_TYPE_F64:
                 case GGML_TYPE_Q8_1:
                 case GGML_TYPE_Q8_K:
                 case GGML_TYPE_IQ2_XXS:
@@ -203,6 +206,7 @@ bool ggml_common_quantize_0(
                 case GGML_TYPE_IQ1_S:
                 case GGML_TYPE_IQ4_NL:
                 case GGML_TYPE_IQ4_XS:
+                case GGML_TYPE_IQ1_M:
                 case GGML_TYPE_COUNT:
                     {
                         fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
index 2b30c0ea2f5c07c6fd6d097c444fe38d7f49375d..f95ec372754b115df923b28d826fa260fc5bdfd6 100644 (file)
@@ -1,7 +1,7 @@
 if (WHISPER_SDL2)
     # talk-llama
     set(TARGET talk-llama)
-    add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp)
+    add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
     target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
 
     if (WHISPER_CLBLAST)
index 8e185d4bfe7731f04a4da7fea6bf8c09b9a684ef..892d46fbcfcecf7752c5bd4794357ba23bf02cd8 100644 (file)
@@ -7,7 +7,7 @@
 #include "ggml-alloc.h"
 #include "ggml-backend.h"
 
-#ifdef GGML_USE_CUBLAS
+#ifdef GGML_USE_CUDA
 #  include "ggml-cuda.h"
 #elif defined(GGML_USE_CLBLAST)
 #  include "ggml-opencl.h"
         #define NOMINMAX
     #endif
     #include <windows.h>
+    #ifndef PATH_MAX
+        #define PATH_MAX MAX_PATH
+    #endif
     #include <io.h>
 #endif
 
 #include <algorithm>
 #include <array>
 #include <cassert>
+#include <cctype>
 #include <cfloat>
 #include <cinttypes>
 #include <climits>
@@ -68,7 +72,6 @@
 #include <cstdio>
 #include <cstring>
 #include <ctime>
-#include <cwctype>
 #include <forward_list>
 #include <fstream>
 #include <functional>
@@ -192,6 +195,7 @@ enum llm_arch {
     LLM_ARCH_LLAMA,
     LLM_ARCH_FALCON,
     LLM_ARCH_BAICHUAN,
+    LLM_ARCH_GROK,
     LLM_ARCH_GPT2,
     LLM_ARCH_GPTJ,
     LLM_ARCH_GPTNEOX,
@@ -214,12 +218,14 @@ enum llm_arch {
     LLM_ARCH_GEMMA,
     LLM_ARCH_STARCODER2,
     LLM_ARCH_MAMBA,
+    LLM_ARCH_COMMAND_R,
     LLM_ARCH_UNKNOWN,
 };
 
 static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_LLAMA,           "llama"      },
     { LLM_ARCH_FALCON,          "falcon"     },
+    { LLM_ARCH_GROK,            "grok"       },
     { LLM_ARCH_GPT2,            "gpt2"       },
     { LLM_ARCH_GPTJ,            "gptj"       },
     { LLM_ARCH_GPTNEOX,         "gptneox"    },
@@ -243,6 +249,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_GEMMA,           "gemma"      },
     { LLM_ARCH_STARCODER2,      "starcoder2" },
     { LLM_ARCH_MAMBA,           "mamba"      },
+    { LLM_ARCH_COMMAND_R,       "command-r"  },
     { LLM_ARCH_UNKNOWN,         "(unknown)"  },
 };
 
@@ -268,6 +275,7 @@ enum llm_kv {
     LLM_KV_EXPERT_COUNT,
     LLM_KV_EXPERT_USED_COUNT,
     LLM_KV_POOLING_TYPE,
+    LLM_KV_LOGIT_SCALE,
 
     LLM_KV_ATTENTION_HEAD_COUNT,
     LLM_KV_ATTENTION_HEAD_COUNT_KV,
@@ -287,6 +295,10 @@ enum llm_kv {
     LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
     LLM_KV_ROPE_SCALING_FINETUNED,
 
+    LLM_KV_SPLIT_NO,
+    LLM_KV_SPLIT_COUNT,
+    LLM_KV_SPLIT_TENSORS_COUNT,
+
     LLM_KV_SSM_INNER_SIZE,
     LLM_KV_SSM_CONV_KERNEL,
     LLM_KV_SSM_STATE_SIZE,
@@ -332,6 +344,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_EXPERT_COUNT,                  "%s.expert_count"          },
     { LLM_KV_EXPERT_USED_COUNT,             "%s.expert_used_count"     },
     { LLM_KV_POOLING_TYPE ,                 "%s.pooling_type"          },
+    { LLM_KV_LOGIT_SCALE,                   "%s.logit_scale"           },
 
     { LLM_KV_ATTENTION_HEAD_COUNT,          "%s.attention.head_count"             },
     { LLM_KV_ATTENTION_HEAD_COUNT_KV,       "%s.attention.head_count_kv"          },
@@ -351,6 +364,10 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,     "%s.rope.scaling.original_context_length" },
     { LLM_KV_ROPE_SCALING_FINETUNED,        "%s.rope.scaling.finetuned"               },
 
+    { LLM_KV_SPLIT_NO,                      "split.no"            },
+    { LLM_KV_SPLIT_COUNT,                   "split.count"         },
+    { LLM_KV_SPLIT_TENSORS_COUNT,           "split.tensors.count" },
+
     { LLM_KV_SSM_CONV_KERNEL,               "%s.ssm.conv_kernel"    },
     { LLM_KV_SSM_INNER_SIZE,                "%s.ssm.inner_size"     },
     { LLM_KV_SSM_STATE_SIZE,                "%s.ssm.state_size"     },
@@ -479,6 +496,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_GROK,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
+            { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
+            { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
+            { LLM_TENSOR_LAYER_OUT_NORM,  "blk.%d.layer_output_norm" },
+            { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
+        },
+    },
     {
         LLM_ARCH_GPT2,
         {
@@ -536,6 +575,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
         {
             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output"},
             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
@@ -838,6 +878,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_SSM_OUT,         "blk.%d.ssm_out" },
         },
     },
+    {
+        LLM_ARCH_COMMAND_R,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -1010,7 +1065,7 @@ struct llama_file {
     size_t size;
 
     llama_file(const char * fname, const char * mode) {
-        fp = std::fopen(fname, mode);
+        fp = ggml_fopen(fname, mode);
         if (fp == NULL) {
             throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
         }
@@ -1079,6 +1134,7 @@ struct llama_file {
         }
     }
 };
+using llama_files = std::vector<std::unique_ptr<llama_file>>;
 
 struct llama_mmap {
     void * addr;
@@ -1279,6 +1335,7 @@ struct llama_mmap {
     }
 #endif
 };
+using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
 
 // Represents some region of memory being locked using mlock or VirtualLock;
 // will automatically unlock on destruction.
@@ -1428,6 +1485,7 @@ struct llama_mlock {
     static void raw_unlock(const void * addr, size_t len) {}
 #endif
 };
+using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
 
 static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
     std::vector<char> result(8, 0);
@@ -1447,7 +1505,7 @@ static std::string llama_token_to_piece(const struct llama_context * ctx, llama_
 static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
     ggml_backend_buffer_type_t buft = nullptr;
 
-#if defined(GGML_USE_CUBLAS)
+#if defined(GGML_USE_CUDA)
     // host buffers should only be used when data is expected to be copied to/from the GPU
     if (host_buffer) {
         buft = ggml_backend_cuda_host_buffer_type();
@@ -1477,7 +1535,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
 
 #ifdef GGML_USE_METAL
     buft = ggml_backend_metal_buffer_type();
-#elif defined(GGML_USE_CUBLAS)
+#elif defined(GGML_USE_CUDA)
     buft = ggml_backend_cuda_buffer_type(gpu);
 #elif defined(GGML_USE_VULKAN)
     buft = ggml_backend_vk_buffer_type(gpu);
@@ -1503,7 +1561,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
 static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
     ggml_backend_buffer_type_t buft = nullptr;
 
-#ifdef GGML_USE_CUBLAS
+#ifdef GGML_USE_CUDA
     if (ggml_backend_cuda_get_device_count() > 1) {
         buft = ggml_backend_cuda_split_buffer_type(tensor_split);
     }
@@ -1524,7 +1582,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g
 }
 
 static size_t llama_get_device_count() {
-#if defined(GGML_USE_CUBLAS)
+#if defined(GGML_USE_CUDA)
     return ggml_backend_cuda_get_device_count();
 #elif defined(GGML_USE_SYCL)
     return ggml_backend_sycl_get_device_count();
@@ -1536,7 +1594,7 @@ static size_t llama_get_device_count() {
 }
 
 static size_t llama_get_device_memory(int device) {
-#if defined(GGML_USE_CUBLAS)
+#if defined(GGML_USE_CUDA)
     size_t total;
     size_t free;
     ggml_backend_cuda_get_device_memory(device, &total, &free);
@@ -1597,9 +1655,11 @@ enum e_model {
     MODEL_20B,
     MODEL_30B,
     MODEL_34B,
+    MODEL_35B,
     MODEL_40B,
     MODEL_65B,
     MODEL_70B,
+    MODEL_314B,
     MODEL_SMALL,
     MODEL_MEDIUM,
     MODEL_LARGE,
@@ -1643,6 +1703,7 @@ struct llama_hparams {
 
     float f_clamp_kqv      = 0.0f;
     float f_max_alibi_bias = 0.0f;
+    float f_logit_scale    = 0.0f;
 
     bool causal_attn = true;
     bool need_kq_pos = false;
@@ -1716,6 +1777,7 @@ struct llama_cparams {
     uint32_t n_ctx;           // context size used during inference
     uint32_t n_batch;
     uint32_t n_ubatch;
+    uint32_t n_seq_max;
     uint32_t n_threads;       // number of threads to use for generation
     uint32_t n_threads_batch; // number of threads to use for batch processing
 
@@ -1873,6 +1935,31 @@ struct llama_kv_cache {
     }
 };
 
+struct llama_control_vector {
+    std::vector<struct ggml_tensor *> tensors; // per layer
+    std::vector<struct ggml_context *> ctxs;
+    std::vector<ggml_backend_buffer_t> bufs;
+
+    int32_t layer_start = -1;
+    int32_t layer_end   = -1;
+
+    ggml_tensor * tensor_for(int il) const {
+        if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
+            return nullptr;
+        }
+        return tensors[il];
+    }
+
+    ~llama_control_vector() {
+        for (struct ggml_context * ctx : ctxs) {
+            ggml_free(ctx);
+        }
+        for (ggml_backend_buffer_t buf : bufs) {
+            ggml_backend_buffer_free(buf);
+        }
+    }
+};
+
 struct llama_vocab {
     using id    = int32_t;
     using token = std::string;
@@ -1976,12 +2063,12 @@ struct llama_model {
     // the model memory buffers for the tensor data
     std::vector<ggml_backend_buffer_t> bufs;
 
-    // model memory mapped file
-    std::unique_ptr<llama_mmap> mapping;
+    // model memory mapped files
+    llama_mmaps mappings;
 
     // objects representing data potentially being locked in memory
-    std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
-    llama_mlock mlock_mmap;
+    llama_mlocks mlock_bufs;
+    llama_mlocks mlock_mmaps;
 
     // for quantize-stats only
     std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
@@ -1994,6 +2081,11 @@ struct llama_model {
             ggml_free(ctx);
         }
         for (ggml_backend_buffer_t buf : bufs) {
+#ifdef GGML_USE_CUDA
+            if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
+                ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
+            }
+#endif
             ggml_backend_buffer_free(buf);
         }
     }
@@ -2048,20 +2140,20 @@ struct llama_context {
     // host buffer for the model output (logits and embeddings)
     ggml_backend_buffer_t buf_output = nullptr;
 
-    // decode output (2-dimensional array: [n_tokens][n_vocab])
-    size_t logits_size = 0;
-    float * logits = nullptr;
+    // decode output (2-dimensional array: [n_outputs][n_vocab])
+    size_t  logits_size = 0; // capacity (of floats) for logits
+    float * logits      = nullptr;
+
+    std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
+    size_t  output_size = 0; // capacity (of tokens positions) for the output buffers
+    int32_t n_outputs   = 0; // number of actually-used outputs in the current ubatch
 
-#ifndef NDEBUG
-    // guard against access to unset logits
-    std::vector<bool>  logits_valid;
-#endif
     bool logits_all = false;
 
-    // embeddings output (2-dimensional array: [n_tokens][n_embd])
+    // embeddings output (2-dimensional array: [n_outputs][n_embd])
     // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
-    size_t embd_size = 0;
-    float * embd = nullptr;
+    size_t  embd_size = 0; // capacity (of floats) for embeddings
+    float * embd      = nullptr;
 
     // sequence embeddings output (map of [n_embd] vectors)
     // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
@@ -2078,14 +2170,18 @@ struct llama_context {
     struct ggml_tensor * inp_tokens;    // I32 [n_batch]
     struct ggml_tensor * inp_embd;      // F32 [n_embd, n_batch]
     struct ggml_tensor * inp_pos;       // I32 [n_batch]
+    struct ggml_tensor * inp_out_ids;   // I32 [n_outputs]
     struct ggml_tensor * inp_KQ_mask;   // F32 [kv_size, n_batch]
-    struct ggml_tensor * inp_KQ_pos;    // F32 [kv_size]
+    struct ggml_tensor * inp_KQ_pos;    // F32 [n_kv]
     struct ggml_tensor * inp_K_shift;   // I32 [kv_size]
     struct ggml_tensor * inp_mean;      // F32 [n_batch, n_batch]
     struct ggml_tensor * inp_cls;       // I32 [n_batch]
     struct ggml_tensor * inp_s_copy;    // I32 [kv_size]
-    struct ggml_tensor * inp_s_mask;    // F32 [1, kv_size]
-    struct ggml_tensor * inp_s_seq;     // I32 [kv_size, n_batch]
+    struct ggml_tensor * inp_s_mask;    // F32 [1, n_kv]
+    struct ggml_tensor * inp_s_seq;     // I32 [n_kv, n_batch]
+
+    // control vectors
+    struct llama_control_vector cvec;
 
 #ifdef GGML_USE_MPI
     ggml_mpi_context * ctx_mpi = NULL;
@@ -2737,6 +2833,8 @@ namespace GGUFMeta {
     };
 }
 
+using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
+
 struct llama_model_loader {
     int n_kv      = 0;
     int n_tensors = 0;
@@ -2747,54 +2845,133 @@ struct llama_model_loader {
 
     bool use_mmap = false;
 
-    llama_file  file;
+    llama_files files;
     llama_ftype ftype;
     llama_fver  fver;
 
-    std::unique_ptr<llama_mmap> mapping;
+    llama_mmaps mappings;
+
+    // Holds information on a model weights
+    struct llama_tensor_weights {
+        uint16_t  idx; // source file index
+        size_t   offs; // tensor data offset in the original file
+
+        ggml_tensor * tensor;
+
+        llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
+            const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
+            offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
+        }
+    };
+    std::vector<llama_tensor_weights> weights;
+
     std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
 
-    struct gguf_context * ctx_gguf = NULL;
-    struct ggml_context * ctx_meta = NULL;
+    struct gguf_context * meta = NULL;
+    std::vector<ggml_context *> contexts;
 
     std::string arch_name;
     LLM_KV      llm_kv    = LLM_KV(LLM_ARCH_UNKNOWN);
 
-    llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
+    llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
         int trace = 0;
         if (getenv("LLAMA_TRACE")) {
             trace = atoi(getenv("LLAMA_TRACE"));
         }
 
-        struct gguf_init_params params = {
-            /*.no_alloc = */ true,
-            /*.ctx      = */ &ctx_meta,
-        };
-
         if (param_overrides_p != nullptr) {
             for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
                 kv_overrides.insert({std::string(p->key), *p});
             }
         }
 
-        ctx_gguf = gguf_init_from_file(fname.c_str(), params);
-        if (!ctx_gguf) {
+        struct ggml_context * ctx = NULL;
+        struct gguf_init_params params = {
+            /*.no_alloc = */ true,
+            /*.ctx      = */ &ctx,
+        };
+
+        meta = gguf_init_from_file(fname.c_str(), params);
+        if (!meta) {
             throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
         }
 
         get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
         llm_kv = LLM_KV(llm_arch_from_string(arch_name));
 
-        n_kv      = gguf_get_n_kv(ctx_gguf);
-        n_tensors = gguf_get_n_tensors(ctx_gguf);
+        // Save tensors data offset of the main file.
+        // For subsidiary files, `meta` tensor data offset must not be used,
+        // so we build a unified tensors index for weights.
+        for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+            weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur));
+        }
+        files.emplace_back(new llama_file(fname.c_str(), "rb"));
+        contexts.emplace_back(ctx);
+
+        uint16_t n_split = 0;
+        get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
+
+        // Load additional GGML contexts
+        if (n_split > 1) {
+            uint16_t idx = 0;
+            get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
+            if (idx != 0) {
+                throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
+            }
+
+            char split_prefix[PATH_MAX] = {0};
+            if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
+                throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
+            }
+
+            if (trace > 0) {
+                LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
+            }
+
+            char split_path[PATH_MAX] = {0};
+            for (idx = 1; idx < n_split; idx++) {
+                llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
+
+                struct gguf_init_params split_params = {
+                    /*.no_alloc = */ true,
+                    /*.ctx      = */ &ctx,
+                };
+                struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
+                if (!ctx_gguf) {
+                    throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
+                }
+
+                // Save tensors data offset info of the shard.
+                for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+                    weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur));
+                }
+                files.emplace_back(new llama_file(split_path, "rb"));
+                contexts.emplace_back(ctx);
+
+                gguf_free(ctx_gguf);
+            }
+
+            get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
+
+            // sanity check
+            {
+                const int n_tensors_loaded = (int) weights.size();
+                if (n_tensors != n_tensors_loaded) {
+                    throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
+                }
+            }
+
+            LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n",  __func__, n_split - 1);
+        }
+
+        n_kv      = gguf_get_n_kv(meta);
+        n_tensors = weights.size();
 
-        fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
+        fver = (enum llama_fver) gguf_get_version(meta);
 
-        for (int i = 0; i < n_tensors; i++) {
-            const char * name = gguf_get_tensor_name(ctx_gguf, i);
-            struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
-            n_elements += ggml_nelements(t);
-            n_bytes    += ggml_nbytes(t);
+        for (auto & w : weights) {
+            n_elements += ggml_nelements(w.tensor);
+            n_bytes    += ggml_nbytes(w.tensor);
         }
 
         LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
@@ -2809,7 +2986,8 @@ struct llama_model_loader {
             enum ggml_type type_max = GGML_TYPE_F32;
 
             for (int i = 0; i < n_tensors; i++) {
-                enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
+                const ggml_tensor * tensor = weights.at(i).tensor;
+                enum ggml_type type = tensor->type;
 
                 n_type[type]++;
 
@@ -2819,8 +2997,8 @@ struct llama_model_loader {
                 }
 
                 if (trace > 0) {
-                    struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
-                    LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
+                    const uint16_t sid = weights.at(i).idx;
+                    LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
                 }
             }
 
@@ -2842,6 +3020,7 @@ struct llama_model_loader {
                 case GGML_TYPE_IQ2_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ2_S;   break;
                 case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
                 case GGML_TYPE_IQ1_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ1_S;   break;
+                case GGML_TYPE_IQ1_M:   ftype = LLAMA_FTYPE_MOSTLY_IQ1_M;   break;
                 case GGML_TYPE_IQ4_NL:  ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL;  break;
                 case GGML_TYPE_IQ4_XS:  ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS;  break;
                 case GGML_TYPE_IQ3_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ3_S;   break;
@@ -2856,22 +3035,23 @@ struct llama_model_loader {
             ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
 
             {
-                const int kid = gguf_find_key(ctx_gguf, "general.file_type");
+                const int kid = gguf_find_key(meta, "general.file_type");
                 if (kid >= 0) {
-                    ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
+                    ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
                 }
             }
 
             LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
+
             for (int i = 0; i < n_kv; i++) {
-                const char * name           = gguf_get_key(ctx_gguf, i);
-                const enum gguf_type type   = gguf_get_kv_type(ctx_gguf, i);
+                const char * name           = gguf_get_key(meta, i);
+                const enum gguf_type type   = gguf_get_kv_type(meta, i);
                 const std::string type_name =
                     type == GGUF_TYPE_ARRAY
-                    ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
+                    ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
                     : gguf_type_name(type);
 
-                std::string value          = gguf_kv_to_str(ctx_gguf, i);
+                std::string value          = gguf_kv_to_str(meta, i);
                 const size_t MAX_VALUE_LEN = 40;
                 if (value.size() > MAX_VALUE_LEN) {
                     value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
@@ -2900,18 +3080,18 @@ struct llama_model_loader {
     }
 
     ~llama_model_loader() {
-        if (ctx_gguf) {
-            gguf_free(ctx_gguf);
+        if (meta) {
+            gguf_free(meta);
         }
-        if (ctx_meta) {
-            ggml_free(ctx_meta);
+        for (auto * ctx : contexts) {
+            ggml_free(ctx);
         }
     }
 
     template<typename T>
     typename std::enable_if<std::is_integral<T>::value, bool>::type
     get_arr_n(const std::string & key, T & result, const bool required = true) {
-        const int kid = gguf_find_key(ctx_gguf, key.c_str());
+        const int kid = gguf_find_key(meta, key.c_str());
 
         if (kid < 0) {
             if (required) {
@@ -2921,7 +3101,7 @@ struct llama_model_loader {
         }
 
         struct GGUFMeta::ArrayInfo arr_info =
-            GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
+            GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
 
 
         result = arr_info.length;
@@ -2941,7 +3121,7 @@ struct llama_model_loader {
         const struct llama_model_kv_override * override =
             it != kv_overrides.end() ? &it->second : nullptr;
 
-        const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
+        const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
 
         if (required && !found) {
             throw std::runtime_error(format("key not found in model: %s", key.c_str()));
@@ -2964,20 +3144,33 @@ struct llama_model_loader {
     }
 
     const char * get_tensor_name(int i) const {
-        return gguf_get_tensor_name(ctx_gguf, i);
+        return weights.at(i).tensor->name;
+    }
+
+    const llama_tensor_weights & get_weights(const char * name) const {
+        for (const auto & weight : weights) {
+            if (strcmp(name, weight.tensor->name) == 0) {
+                return weight;
+            }
+        }
+        throw std::runtime_error(format("tensor %s not found", name));
     }
 
     struct ggml_tensor * get_tensor_meta(const char * name) const {
-        return ggml_get_tensor(ctx_meta, name);
+        try {
+            return get_weights(name).tensor;
+        } catch (const std::runtime_error & e) {
+            return NULL;
+        }
     }
 
     struct ggml_tensor * get_tensor_meta(int i) const {
         return get_tensor_meta(get_tensor_name(i));
     }
 
-    struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
-        struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
-        ggml_set_name(tensor, ggml_get_name(meta));
+    struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
+        struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
+        ggml_set_name(tensor, ggml_get_name(cur));
 
         n_created++;
 
@@ -2985,7 +3178,7 @@ struct llama_model_loader {
     }
 
     struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
-        struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
+        const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
 
         if (cur == NULL) {
             if (!required) {
@@ -3020,76 +3213,79 @@ struct llama_model_loader {
         }
     }
 
-    size_t file_offset(const char * name) const {
-        const int idx = gguf_find_tensor(ctx_gguf, name);
-
-        if (idx < 0) {
-            throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
-        }
-
-        return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
-    }
-
-    void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
-        // prefetch the whole file - all the data is needed anyway
+    void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
         if (use_mmap) {
-            mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
+            mappings.reserve(files.size());
+            mmaps_used.reserve(files.size());
+            for (const auto & file : files) {
+                std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
+                mmaps_used.emplace_back(std::make_pair(mapping->size, 0));
+                if (mlock_mmaps) {
+                    std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
+                    mlock_mmap->init(mapping->addr);
+                    mlock_mmaps->emplace_back(std::move(mlock_mmap));
+                }
+                mappings.emplace_back(std::move(mapping));
+            }
         }
 
         // compute the total size of all tensors for progress reporting
-        for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
-            struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
-            size_data += ggml_nbytes(cur);
-        }
-
-        if (use_mmap && mapping) {
-            if (lmlock) {
-                lmlock->init(mapping->addr);
-            }
-            mmap_used_first = mapping->size;
+        for (auto & w : weights) {
+            size_data += ggml_nbytes(w.tensor);
         }
     }
 
-    void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
-        GGML_ASSERT(mapping);
+    void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
+        GGML_ASSERT(!mappings.empty());
+        const auto & mapping = mappings.at(idx);
 
         *first = mapping->size;
         *last  = 0;
+        *addr = mapping->addr;
         for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
-            const size_t offs = file_offset(ggml_get_name(tensor));
-            *first = std::min(*first, offs);
-            *last  = std::max(*last,  offs + ggml_nbytes(tensor));
+            const auto & w = get_weights(ggml_get_name(tensor));
+            if (w.idx != idx) {
+                continue;
+            }
+            *first = std::min(*first, w.offs);
+            *last  = std::max(*last,  w.offs + ggml_nbytes(tensor));
         }
     }
 
     // for backwards compatibility, does not support ggml-backend
     void load_data_for(struct ggml_tensor * cur) const {
-        const size_t offs = file_offset(ggml_get_name(cur));
+        const auto & w = get_weights(ggml_get_name(cur));
 
-        if (use_mmap && mapping) {
+        if (use_mmap) {
+            const auto & mapping = mappings.at(w.idx);
             if (cur->data == nullptr) {
-                cur->data = (uint8_t *)mapping->addr + offs;
+                cur->data = (uint8_t *)mapping->addr + w.offs;
             } else {
-                memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
+                memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
             }
         } else {
             GGML_ASSERT(cur->data != nullptr);
-            file.seek(offs, SEEK_SET);
-            file.read_raw(cur->data, ggml_nbytes(cur));
+            GGML_ASSERT(w.idx < files.size());
+            const auto & file = files.at(w.idx);
+            file->seek(w.offs, SEEK_SET);
+            file->read_raw(cur->data, ggml_nbytes(cur));
         }
     }
 
     size_t size_done = 0;
     size_t size_data = 0;
-    size_t mmap_used_first = -1;
-    size_t mmap_used_last  = 0;
+    std::vector<std::pair<size_t, size_t>> mmaps_used;
 
     // Returns false if cancelled by progress_callback
-    bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
-        GGML_ASSERT(size_data != 0 && "call init_mapping() first");
+    bool load_all_data(
+            struct ggml_context * ctx,
+            llama_buf_map & bufs_mmap,
+            llama_mlocks * lmlocks,
+            llama_progress_callback progress_callback,
+            void * progress_callback_user_data) {
+        GGML_ASSERT(size_data != 0 && "call init_mappings() first");
 
         std::vector<no_init<uint8_t>> read_buf;
-
         for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
             if (progress_callback) {
                 if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
@@ -3097,41 +3293,57 @@ struct llama_model_loader {
                 }
             }
 
-            const size_t offs = file_offset(ggml_get_name(cur));
+            const auto & w = get_weights(ggml_get_name(cur));
+            size_t n_size = ggml_nbytes(cur);
 
-            if (use_mmap && mapping) {
+            if (use_mmap) {
+                const auto & mapping = mappings.at(w.idx);
+                ggml_backend_buffer_t buf_mmap = nullptr;
+                if (bufs_mmap.count(w.idx)) {
+                    buf_mmap = bufs_mmap.at(w.idx);
+                }
+                GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
                 if (buf_mmap && cur->data == nullptr) {
-                    ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
-                    if (lmlock) {
-                        lmlock->grow_to(offs + ggml_nbytes(cur));
+                    ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs);
+                    if (lmlocks) {
+                        const auto & lmlock = lmlocks->at(w.idx);
+                        lmlock->grow_to(w.offs + ggml_nbytes(cur));
                     }
-                    mmap_used_first = std::min(mmap_used_first, offs);
-                    mmap_used_last  = std::max(mmap_used_last,  offs + ggml_nbytes(cur));
+
+                    auto & mmap_used = mmaps_used[w.idx];
+                    mmap_used.first  = std::min(mmap_used.first,  w.offs);
+                    mmap_used.second = std::max(mmap_used.second, w.offs + n_size);
                 } else {
-                    ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
+                    ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size);
                 }
             } else {
+                GGML_ASSERT(w.idx < files.size());
+                const auto & file = files.at(w.idx);
                 if (ggml_backend_buffer_is_host(cur->buffer)) {
-                    file.seek(offs, SEEK_SET);
-                    file.read_raw(cur->data, ggml_nbytes(cur));
+                    file->seek(w.offs, SEEK_SET);
+                    file->read_raw(cur->data, ggml_nbytes(cur));
                 } else {
                     read_buf.resize(ggml_nbytes(cur));
-                    file.seek(offs, SEEK_SET);
-                    file.read_raw(read_buf.data(), ggml_nbytes(cur));
-                    ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
+                    file->seek(w.offs, SEEK_SET);
+                    file->read_raw(read_buf.data(), ggml_nbytes(cur));
+                    ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
                 }
             }
 
-            size_done += ggml_nbytes(cur);
+            size_done += n_size;
         }
 
         // check if this is the last call and do final cleanup
         if (size_done >= size_data) {
             // unmap offloaded tensors and metadata
-            if (use_mmap && mapping) {
-                mapping->unmap_fragment(0, mmap_used_first);
-                if (mmap_used_last != 0) {
-                    mapping->unmap_fragment(mmap_used_last, mapping->size);
+            if (use_mmap) {
+                for (uint32_t idx = 0; idx < mappings.size(); idx++) {
+                    const auto & mmap_used = mmaps_used.at(idx);
+                    auto & mapping = mappings.at(idx);
+                    mapping->unmap_fragment(0, mmap_used.first);
+                    if (mmap_used.second != 0) {
+                        mapping->unmap_fragment(mmap_used.second, mapping->size);
+                    }
                 }
             }
             if (progress_callback) {
@@ -3204,6 +3416,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
         case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
         case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
         case LLAMA_FTYPE_MOSTLY_IQ1_S  :return "IQ1_S - 1.5625 bpw";
+        case LLAMA_FTYPE_MOSTLY_IQ1_M  :return "IQ1_M - 1.75 bpw";
         case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
         case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
         case LLAMA_FTYPE_MOSTLY_IQ3_S:  return "IQ3_S - 3.4375 bpw";
@@ -3231,9 +3444,11 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_20B:    return "20B";
         case MODEL_30B:    return "30B";
         case MODEL_34B:    return "34B";
+        case MODEL_35B:    return "35B";
         case MODEL_40B:    return "40B";
         case MODEL_65B:    return "65B";
         case MODEL_70B:    return "70B";
+        case MODEL_314B:   return "314B";
         case MODEL_SMALL:  return "0.1B";
         case MODEL_MEDIUM: return "0.4B";
         case MODEL_LARGE:  return "0.8B";
@@ -3263,7 +3478,7 @@ static void llm_load_hparams(
         llama_model_loader & ml,
         llama_model & model) {
     auto & hparams = model.hparams;
-    const gguf_context * ctx = ml.ctx_gguf;
+    const gguf_context * ctx = ml.meta;
 
     // get metadata as string
     for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
@@ -3372,6 +3587,15 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_GROK:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 64: model.type = e_model::MODEL_314B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_FALCON:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3623,6 +3847,15 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_COMMAND_R:
+            {
+                ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+                switch (hparams.n_layer) {
+                    case 40: model.type = e_model::MODEL_35B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     }
 
@@ -3644,7 +3877,7 @@ static void llm_load_vocab(
         llama_model & model) {
     auto & vocab = model.vocab;
 
-    struct gguf_context * ctx = ml.ctx_gguf;
+    struct gguf_context * ctx = ml.meta;
 
     const auto kv = LLM_KV(model.arch);
 
@@ -3777,7 +4010,7 @@ static void llm_load_vocab(
     } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
         vocab.linefeed_id = vocab.special_pad_id;
     } else {
-        const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
+        const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
         GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
         vocab.linefeed_id = ids[0];
     }
@@ -3944,6 +4177,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
     LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
     LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
     LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
+    LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
     LLAMA_LOG_INFO("%s: n_ff             = %u\n",     __func__, hparams.n_ff);
     LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
     LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
@@ -4199,6 +4433,54 @@ static bool llm_load_tensors(
                         }
                     }
                 } break;
+            case LLM_ARCH_GROK:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                            ml.n_created--; // artificial tensor
+                            ml.size_data += ggml_nbytes(model.output);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd});
+
+                        GGML_ASSERT(hparams.n_expert      > 0);
+                        GGML_ASSERT(hparams.n_expert_used > 0);
+
+                        // MoE branch
+                        for (uint32_t x = 0; x < hparams.n_expert; ++x) {
+                            layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd,   n_ff});
+                            layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), {  n_ff, n_embd});
+                            layer.ffn_up_exp[x]   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), {n_embd,   n_ff});
+                        }
+
+                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+                    }
+                } break;
             case LLM_ARCH_BAICHUAN:
                 {
                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -4235,9 +4517,9 @@ static bool llm_load_tensors(
                     {
                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
-                        if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
-                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,     "weight"), {n_embd, n_vocab});
-                        } else {
+
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
+                        if (!model.output) {
                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
                             ml.n_created--; // artificial tensor
                             ml.size_data += ggml_nbytes(model.output);
@@ -4253,10 +4535,8 @@ static bool llm_load_tensors(
                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 
-                        if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
-                            layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
-                            layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd});
-                        }
+                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
+                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, false);
 
                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
@@ -4442,10 +4722,12 @@ static bool llm_load_tensors(
                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, false);
 
-                        // same as tok_embd, duplicated to allow offloading
-                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
-                        ml.n_created--; // artificial tensor
-                        ml.size_data += ggml_nbytes(model.output);
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
+                        if (!model.output) {
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
+                            ml.n_created--; // artificial tensor
+                            ml.size_data += ggml_nbytes(model.output);
+                        }
                     }
 
                     for (int i = 0; i < n_layer; ++i) {
@@ -4918,6 +5200,37 @@ static bool llm_load_tensors(
                         layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
                     }
                 } break;
+            case LLM_ARCH_COMMAND_R:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        // init output from the input tok embed
+                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                        ml.n_created--; // artificial tensor
+                        ml.size_data += ggml_nbytes(model.output);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -4925,49 +5238,97 @@ static bool llm_load_tensors(
 
     ml.done_getting_tensors();
 
-    ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
+    ml.init_mappings(true, &model.mlock_mmaps);
+    model.mappings.reserve(ml.mappings.size());
 
     // create the backend buffers
-    std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
+    std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
+    ctx_bufs.reserve(ctx_map.size());
+
+    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
+    size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
+    model.bufs.reserve(n_max_backend_buffer);
 
     for (auto & it : ctx_map) {
         ggml_backend_buffer_type_t buft = it.first;
-        ggml_context * ctx = it.second;
-        ggml_backend_buffer_t buf = nullptr;
+        ggml_context * ctx              = it.second;
+
+        llama_buf_map bufs;
+        bufs.reserve(n_max_backend_buffer);
 
         // only the mmap region containing the tensors in the model is mapped to the backend buffer
         // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
         // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
         if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
-            size_t first, last;
-            ml.get_mapping_range(&first, &last, ctx);
-            buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                void * addr = nullptr;
+                size_t first, last;
+                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+                if (first >= last) {
+                    continue;
+                }
+                ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
+                if (buf == nullptr) {
+                    throw std::runtime_error("unable to allocate backend CPU buffer");
+                }
+                model.bufs.push_back(buf);
+                bufs.emplace(idx, buf);
+#ifdef GGML_USE_CUDA
+                if (n_layer >= n_gpu_layers) {
+                    ggml_backend_cuda_register_host_buffer(
+                        ggml_backend_buffer_get_base(buf),
+                        ggml_backend_buffer_get_size(buf));
+                }
+#endif
+            }
         }
 #ifdef GGML_USE_METAL
         else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
-            const size_t max_size = ggml_get_max_tensor_size(ctx);
-            size_t first, last;
-            ml.get_mapping_range(&first, &last, ctx);
-            buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                const size_t max_size = ggml_get_max_tensor_size(ctx);
+                void * addr = nullptr;
+                size_t first, last;
+                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+                if (first >= last) {
+                    continue;
+                }
+                ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
+                if (buf == nullptr) {
+                    throw std::runtime_error("unable to allocate backend metal buffer");
+                }
+                model.bufs.push_back(buf);
+                bufs.emplace(idx, buf);
+            }
         }
 #endif
         else {
-            buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
-            if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
+            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+            if (buf == nullptr) {
+                throw std::runtime_error("unable to allocate backend buffer");
+            }
+            model.bufs.push_back(buf);
+            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                 model.mlock_bufs.emplace_back(new llama_mlock);
                 auto & mlock_buf = model.mlock_bufs.back();
                 mlock_buf->init   (ggml_backend_buffer_get_base(buf));
                 mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
             }
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                bufs.emplace(idx, buf);
+            }
         }
-        if (buf == nullptr) {
+
+        if (bufs.empty()) {
             throw std::runtime_error("failed to allocate buffer");
         }
-        // indicate that this buffer contains weights
-        // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
-        ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
-        model.bufs.push_back(buf);
-        ctx_bufs.emplace_back(ctx, buf);
+
+        for (auto & buf : bufs) {
+            // indicate that this buffer contains weights
+            // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
+            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
+        }
+
+        ctx_bufs.emplace_back(ctx, bufs);
     }
 
     if (llama_supports_gpu_offload()) {
@@ -4999,13 +5360,15 @@ static bool llm_load_tensors(
     // load tensor data
     for (auto & it : ctx_bufs) {
         ggml_context * ctx = it.first;
-        ggml_backend_buffer_t buf = it.second;
-        if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
+        auto & bufs = it.second;
+        if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
             return false;
         }
     }
 
-    model.mapping = std::move(ml.mapping);
+    for (auto & mapping : ml.mappings) {
+        model.mappings.emplace_back(std::move(mapping));
+    }
 
     // loading time will be recalculate after the first eval, so
     // we take page faults deferred by mmap() into consideration
@@ -5345,6 +5708,20 @@ static struct ggml_tensor * llm_build_kqv(
         ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
     }
 
+    if (model.arch == LLM_ARCH_GROK) {
+        // need to do the following:
+        // multiply by attn_output_multiplyer of 0.08838834764831845
+        // and then :
+        // kq = 30 * tanh(kq / 30)
+        // before the softmax below
+
+        //try from phi2
+        //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+
+        kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
+        kq = ggml_scale(ctx, kq, 30);
+    }
+
 #if defined(GGML_USE_KOMPUTE)
 #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
 #pragma message("      Falling back to ggml_alibi(). Will become an error in Mar 2024")
@@ -5471,7 +5848,8 @@ struct llm_build_context {
     const float norm_rms_eps;
 
     const int32_t n_tokens;
-    const int32_t n_kv;     // size of KV cache to consider (n_kv <= n_ctx)
+    const int32_t n_kv;     // size of KV cache to consider (n_kv <= kv_self.size)
+    const int32_t n_outputs;
     const int32_t kv_head;  // index of where we store new KV data in the cache
     const int32_t n_orig_ctx;
 
@@ -5518,6 +5896,7 @@ struct llm_build_context {
         norm_rms_eps     (hparams.f_norm_rms_eps),
         n_tokens         (batch.n_tokens),
         n_kv             (worst_case ? kv_self.size : kv_self.n),
+        n_outputs        (worst_case ? n_tokens : lctx.n_outputs),
         kv_head          (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
         n_orig_ctx       (cparams.n_yarn_orig_ctx),
         pooling_type     (cparams.pooling_type),
@@ -5539,6 +5918,7 @@ struct llm_build_context {
         lctx.inp_tokens = nullptr;
         lctx.inp_embd = nullptr;
         lctx.inp_pos = nullptr;
+        lctx.inp_out_ids = nullptr;
         lctx.inp_KQ_mask = nullptr;
         lctx.inp_KQ_pos = nullptr;
         lctx.inp_K_shift = nullptr;
@@ -5662,6 +6042,13 @@ struct llm_build_context {
         return lctx.inp_pos;
     }
 
+    struct ggml_tensor * build_inp_out_ids() {
+        lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
+        cb(lctx.inp_out_ids, "inp_out_ids", -1);
+        ggml_set_input(lctx.inp_out_ids);
+        return lctx.inp_out_ids;
+    }
+
     struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
         if (causal) {
             lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
@@ -5718,6 +6105,9 @@ struct llm_build_context {
     struct ggml_cgraph * build_llama() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
         const int64_t n_embd_head = hparams.n_embd_head_v;
         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
         GGML_ASSERT(n_embd_head == hparams.n_rot);
@@ -5785,6 +6175,14 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -5868,6 +6266,12 @@ struct llm_build_context {
             }
 
             cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+            if (layer_dir != nullptr) {
+                cur = ggml_add(ctx0, cur, layer_dir);
+            }
             cb(cur, "l_out", il);
 
             // input for next layer
@@ -5903,7 +6307,7 @@ struct llm_build_context {
         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 
         // inp_pos - contains the positions
-        struct ggml_tensor * inp_pos = build_inp_pos();
+        struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
 
         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
@@ -5953,12 +6357,18 @@ struct llm_build_context {
                 cb(Qcur, "Qcur", il);
                 cb(Kcur, "Kcur", il);
 
-
                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
                         model.layers[il].wo, NULL,
                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -6074,6 +6484,14 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur       = ggml_get_rows(ctx0,       cur, inp_out_ids);
+                inpL      = ggml_get_rows(ctx0,      inpL, inp_out_ids);
+                attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = cur;
 
             // feed forward
@@ -6114,11 +6532,219 @@ struct llm_build_context {
         return gf;
     }
 
-    struct ggml_cgraph * build_starcoder() {
+    struct ggml_cgraph * build_grok() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
         const int64_t n_embd_head = hparams.n_embd_head_v;
-        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // multiply by embedding_multiplier_scale of 78.38367176906169
+        inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+                    n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // Grok
+            // if attn_out_norm is present then apply it before adding the input
+            if (model.layers[il].attn_out_norm) {
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].attn_out_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_out_norm", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            // MoE branch
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
+            cb(logits, "ffn_moe_logits", il);
+
+            ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
+            cb(probs, "ffn_moe_probs", il);
+
+            // select experts
+            ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
+            cb(selected_experts->src[0], "ffn_moe_argsort", il);
+
+            ggml_tensor * weights = ggml_get_rows(ctx0,
+                    ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
+            cb(weights, "ffn_moe_weights", il);
+
+            weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
+
+            ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
+            cb(weights_sum, "ffn_moe_weights_sum", il);
+
+            weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
+            cb(weights, "ffn_moe_weights_norm", il);
+
+            // compute expert outputs
+            ggml_tensor * moe_out = nullptr;
+
+            for (int i = 0; i < n_expert_used; ++i) {
+                ggml_tensor * cur_expert;
+
+                ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
+                cb(cur_up, "ffn_moe_up", il);
+
+                ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
+                cb(cur_gate, "ffn_moe_gate", il);
+
+                //GeLU
+                cur_gate = ggml_gelu(ctx0, cur_gate);
+                cb(cur_gate, "ffn_moe_gelu", il);
+
+                cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
+                cb(cur_expert, "ffn_moe_gate_par", il);
+
+                cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
+                cb(cur_expert, "ffn_moe_down", il);
+
+                cur_expert = ggml_mul(ctx0, cur_expert,
+                        ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
+                cb(cur_expert, "ffn_moe_weighted", il);
+
+                if (i == 0) {
+                    moe_out = cur_expert;
+                } else {
+                    moe_out = ggml_add(ctx0, moe_out, cur_expert);
+                    cb(moe_out, "ffn_moe_out", il);
+                }
+            }
+
+            cur = moe_out;
+
+            // Grok
+            // if layer_out_norm is present then apply it before adding the input
+            // Idea: maybe ffn_out_norm is a better name
+            if (model.layers[il].layer_out_norm) {
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].layer_out_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "layer_out_norm", il);
+            }
+
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+            if (layer_dir != nullptr) {
+                cur = ggml_add(ctx0, cur, layer_dir);
+            }
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+
+        // Grok
+        // multiply logits by output_multiplier_scale of 0.5773502691896257
+
+        cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_starcoder() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 
         struct ggml_tensor * cur;
@@ -6168,6 +6794,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // add the input
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
             cb(ffn_inp, "ffn_inp", il);
@@ -6365,6 +6998,13 @@ struct llm_build_context {
                         Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur      = ggml_get_rows(ctx0,      cur, inp_out_ids);
+                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -6454,6 +7094,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -6611,6 +7258,13 @@ struct llm_build_context {
             }
             cb(cur, "kqv_out", il);
 
+            if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // re-add the layer input
             cur = ggml_add(ctx0, cur, inpL);
 
@@ -6733,6 +7387,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // Add the input
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
             cb(ffn_inp, "ffn_inp", il);
@@ -6831,6 +7492,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // Add the input
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
             cb(ffn_inp, "ffn_inp", il);
@@ -6944,6 +7612,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -7050,6 +7725,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -7162,6 +7844,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -7280,6 +7969,14 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
+                inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
+                attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
+            }
+
             // FF
             {
                 ffn_output = llm_build_ffn(ctx0, attn_norm_output,
@@ -7377,6 +8074,14 @@ struct llm_build_context {
 
             cur = attention_norm;
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur    = ggml_get_rows(ctx0,    cur, inp_out_ids);
+                sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
+                inpL   = ggml_get_rows(ctx0,   inpL, inp_out_ids);
+            }
+
             // feed-forward network
             {
                 cur = llm_build_ffn(ctx0, cur,
@@ -7469,6 +8174,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // add the input
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
             cb(ffn_inp, "ffn_inp", il);
@@ -7569,6 +8281,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             // add the input
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
             cb(ffn_inp, "ffn_inp", il);
@@ -7678,6 +8397,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -7788,6 +8514,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -7911,6 +8644,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
             // scale_res - scale the hidden states for residual connection
             const float scale_res = scale_depth/sqrtf(float(n_layer));
             cur = ggml_scale(ctx0, cur, scale_res);
@@ -8025,6 +8765,13 @@ struct llm_build_context {
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
             }
 
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
             struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
             cb(sa_out, "sa_out", il);
 
@@ -8135,7 +8882,13 @@ struct llm_build_context {
                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
                         model.layers[il].wo, model.layers[il].bo,
                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
-                cb(cur, "kqv_out", il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
             }
 
             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
@@ -8285,6 +9038,15 @@ struct llm_build_context {
 
                 struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
 
+                if (il == n_layer - 1) {
+                    // skip computing output for unused tokens
+                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                    x    = ggml_get_rows(ctx0,    x, inp_out_ids);
+                    y    = ggml_get_rows(ctx0,    y, inp_out_ids);
+                    z    = ggml_get_rows(ctx0,    z, inp_out_ids);
+                    inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+                }
+
                 // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
                 y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
                 y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
@@ -8315,6 +9077,128 @@ struct llm_build_context {
 
         return gf;
     }
+
+    struct ggml_cgraph * build_command_r() {
+
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        const float f_logit_scale = hparams.f_logit_scale;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+            struct ggml_tensor * ffn_inp = cur;
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+                    n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            struct ggml_tensor * attn_out = cur;
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, ffn_inp,
+                        model.layers[il].ffn_up,   NULL,
+                        model.layers[il].ffn_gate, NULL,
+                        model.layers[il].ffn_down, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            // add together residual + FFN + self-attention
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = ggml_add(ctx0, cur, attn_out);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+
+        if (f_logit_scale) {
+            cur = ggml_scale(ctx0, cur, f_logit_scale);
+        }
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+
+    }
 };
 
 static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -8390,12 +9274,15 @@ static struct ggml_cgraph * llama_build_graph(
         }
 
         // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
-        // to fix this, we assign the norm layer manually to the backend of its layer
-        if (il != -1 && strcmp(name, "norm") == 0) {
-            for (auto * backend : lctx.backends) {
-                if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
-                    ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
-                    break;
+        // FIXME: fix in ggml_backend_sched
+        const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
+        if (batch.n_tokens < 32 || full_offload) {
+            if (il != -1 && strcmp(name, "norm") == 0) {
+                for (auto * backend : lctx.backends) {
+                    if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
+                        ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
+                        break;
+                    }
                 }
             }
         }
@@ -8420,6 +9307,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_falcon();
             } break;
+        case LLM_ARCH_GROK:
+            {
+                result = llm.build_grok();
+            } break;
         case LLM_ARCH_STARCODER:
             {
                 result = llm.build_starcoder();
@@ -8497,6 +9388,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_mamba();
             } break;
+        case LLM_ARCH_COMMAND_R:
+            {
+                result = llm.build_command_r();
+            } break;
         default:
             GGML_ASSERT(false);
     }
@@ -8558,9 +9453,39 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
         ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
     }
 
+    if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
+        GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
+        int32_t * data = (int32_t *) lctx.inp_out_ids->data;
+
+        if (lctx.n_outputs == n_tokens) {
+            for (int i = 0; i < n_tokens; ++i) {
+                data[i] = i;
+            }
+        } else if (batch.logits) {
+            int32_t n_outputs = 0;
+            for (int i = 0; i < n_tokens; ++i) {
+                if (batch.logits[i]) {
+                    data[n_outputs++] = i;
+                }
+            }
+            // the graph needs to have been passed the correct number of outputs
+            GGML_ASSERT(lctx.n_outputs == n_outputs);
+        } else if (lctx.n_outputs == 1) {
+            // only keep last output
+            data[0] = n_tokens - 1;
+        } else {
+            GGML_ASSERT(lctx.n_outputs == 0);
+        }
+    }
+
     GGML_ASSERT(
+        // (!a || b) is a logical implication (a -> b)
+        // !hparams.causal_attn -> !cparams.causal_attn
         (hparams.causal_attn || !cparams.causal_attn) &&
-        "non-causal attention with generative models is not supported"
+        "causal attention with embedding models is not supported"
     );
 
     if (lctx.inp_KQ_mask) {
@@ -8739,6 +9664,74 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
     }
 }
 
+// Make sure enough space is available for outputs.
+// Returns max number of outputs for which space was reserved.
+static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
+    const auto & cparams = lctx.cparams;
+    const auto & hparams = lctx.model.hparams;
+
+    const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
+
+    const auto n_batch = cparams.n_batch;
+    const auto n_vocab = hparams.n_vocab;
+    const auto n_embd  = hparams.n_embd;
+
+    // TODO: use a per-batch flag for logits presence instead
+    const bool has_logits = cparams.causal_attn;
+    const bool has_embd   = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
+
+    const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
+    const size_t embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;
+
+    if (lctx.output_ids.empty()) {
+        // init, never resized afterwards
+        lctx.output_ids.resize(n_batch);
+    }
+
+    const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
+    const size_t new_size  = (logits_size + embd_size) * sizeof(float);
+
+    // alloc only when more than the current capacity is required
+    // TODO: also consider shrinking the buffer
+    if (!lctx.buf_output || prev_size < new_size) {
+        if (lctx.buf_output) {
+#ifndef NDEBUG
+            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
+            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
+#endif
+            ggml_backend_buffer_free(lctx.buf_output);
+            lctx.buf_output = nullptr;
+            lctx.logits = nullptr;
+            lctx.embd = nullptr;
+        }
+
+        lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
+        if (lctx.buf_output == nullptr) {
+            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
+            return 0;
+        }
+    }
+
+    float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
+
+    lctx.logits = has_logits ? output_base               : nullptr;
+    lctx.embd   = has_embd   ? output_base + logits_size : nullptr;
+
+    lctx.output_size = n_outputs_max;
+    lctx.logits_size = logits_size;
+    lctx.embd_size   = embd_size;
+
+    // set all ids as invalid (negative)
+    std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
+
+    ggml_backend_buffer_clear(lctx.buf_output, 0);
+
+    lctx.n_outputs = 0;
+
+    return n_outputs_max;
+}
+
+
 static void llama_graph_compute(
         llama_context & lctx,
           ggml_cgraph * gf,
@@ -8814,16 +9807,8 @@ static int llama_decode_internal(
     const int64_t n_embd  = hparams.n_embd;
     const int64_t n_vocab = hparams.n_vocab;
 
-
-    auto * logits_out = lctx.logits;
-
-#ifndef NDEBUG
-    auto & logits_valid = lctx.logits_valid;
-    logits_valid.clear();
-    logits_valid.resize(n_tokens_all);
-
-    memset(logits_out, 0, lctx.logits_size*sizeof(float));
-#endif
+    uint32_t n_outputs = 0;
+    uint32_t n_outputs_prev = 0;
 
     const auto n_ubatch = cparams.n_ubatch;
 
@@ -8832,6 +9817,38 @@ static int llama_decode_internal(
     std::vector<llama_seq_id *>            seq_id_arr;
     std::vector<std::vector<llama_seq_id>> seq_id;
 
+    // count outputs
+    if (batch_all.logits) {
+        for (uint32_t i = 0; i < n_tokens_all; ++i) {
+            n_outputs += batch_all.logits[i] != 0;
+        }
+    } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
+        n_outputs = n_tokens_all;
+    } else {
+        // keep last output only
+        n_outputs = 1;
+    }
+
+    // reserve output buffer
+    if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
+        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
+        return -2;
+    };
+
+    // set output mappings
+    if (batch_all.logits) {
+        int32_t i_logits = 0;
+        for (uint32_t i = 0; i < n_tokens_all; ++i) {
+            if (batch_all.logits[i]) {
+                lctx.output_ids[i] = i_logits++;
+            }
+        }
+    } else {
+        for (uint32_t i = 0; i < n_outputs; ++i) {
+            lctx.output_ids[i] = i;
+        }
+    }
+
     for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
         const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
         llama_batch u_batch = {
@@ -8847,6 +9864,27 @@ static int llama_decode_internal(
             /* .all_seq_id = */ batch_all.all_seq_id,
         };
 
+        // count the outputs in this u_batch
+        {
+            int32_t n_outputs_new = 0;
+
+            if (u_batch.logits) {
+                for (uint32_t i = 0; i < n_tokens; i++) {
+                    n_outputs_new += u_batch.logits[i] != 0;
+                }
+            } else if (n_outputs == n_tokens_all) {
+                n_outputs_new = n_tokens;
+            } else {
+                // keep last output only
+                if (cur_token + n_tokens >= n_tokens_all) {
+                    n_outputs_new = 1;
+                }
+            }
+
+            // needs to happen before the graph is built
+            lctx.n_outputs = n_outputs_new;
+        }
+
         int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
         GGML_ASSERT(n_threads > 0);
 
@@ -8910,23 +9948,37 @@ static int llama_decode_internal(
         struct ggml_tensor * res  = gf->nodes[gf->n_nodes - 1];
         struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
 
-        if (!hparams.causal_attn) {
+        if (lctx.n_outputs == 0) {
+            // no output
+            res  = nullptr;
+            embd = nullptr;
+        } else if (!hparams.causal_attn) {
             res = nullptr; // do not extract logits for embedding models such as BERT
 
             // token or sequence embeddings
             embd = gf->nodes[gf->n_nodes - 1];
 
             GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
-        } else {
-            if (strcmp(res->name, "result_output") == 0) {
-                // the token embeddings could be the second to last tensor, or the third to last tensor
-                if (strcmp(embd->name, "result_norm") != 0) {
-                    embd = gf->nodes[gf->n_nodes - 3];
-                    GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
-                }
-            } else {
-                GGML_ASSERT(false && "missing result_output tensor");
+        } else if (cparams.embeddings) {
+            // the embeddings could be in the second to last tensor, or any of the previous tensors
+            int i_embd = gf->n_nodes - 2;
+            for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
+                i_embd = gf->n_nodes - i;
+                if (i_embd < 0) { break; }
+                embd = gf->nodes[i_embd];
+            }
+            GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
+
+            // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
+            if (!cparams.causal_attn) {
+                res = nullptr; // do not extract logits when not needed
+                // skip computing logits
+                // TODO: is this safe?
+                gf->n_nodes = i_embd + 1;
             }
+        } else {
+            embd = nullptr; // do not extract embeddings when not needed
+            GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
         }
         // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
 
@@ -8969,50 +10021,23 @@ static int llama_decode_internal(
         //}
 
         // extract logits
-        // TODO: do not compute and extract logits if only embeddings are needed
-        //       update the graphs to skip "result_output" if logits are not needed
         if (res) {
             ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
             GGML_ASSERT(backend_res != nullptr);
-            if (u_batch.logits) {
-                int32_t i_first = -1;
-                for (uint32_t i = 0; i < n_tokens; i++) {
-                    if (u_batch.logits[i] && i_first == -1) {
-                        i_first = (int32_t) i;
-                    }
-                    if (u_batch.logits[i] == 0 || i == n_tokens - 1) {
-                        if (i_first != -1) {
-                            int i_last = u_batch.logits[i] == 0 ? i : i + 1;
-                            // extract logits for the range [i_first, i_last)
-                            // group the requests to minimize the number of calls to the backend
-                            ggml_backend_tensor_get_async(backend_res, res,
-                                logits_out + n_vocab*(cur_token + i_first),
-                                i_first*n_vocab*sizeof(float),
-                                (i_last - i_first)*n_vocab*sizeof(float));
-                            i_first = -1;
-                        }
-                    }
-#ifndef NDEBUG
-                    logits_valid[cur_token + i] = u_batch.logits[i] != 0;;
-#endif
-                }
-            } else if (lctx.logits_all) {
-                ggml_backend_tensor_get_async(backend_res, res, logits_out + n_vocab*cur_token, 0, n_vocab*n_tokens*sizeof(float));
-#ifndef NDEBUG
-                std::fill(logits_valid.begin() + cur_token, logits_valid.begin() + cur_token + n_tokens, true);
-#endif
-            } else {
-                if (cur_token + n_tokens >= n_tokens_all) {
-                    ggml_backend_tensor_get_async(backend_res, res, logits_out, n_vocab*(n_tokens - 1)*sizeof(float), n_vocab*sizeof(float));
-#ifndef NDEBUG
-                    logits_valid[0] = true;
-#endif
-                }
+            GGML_ASSERT(lctx.logits != nullptr);
+
+            float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
+            const int32_t n_outputs_new = lctx.n_outputs;
+
+            if (n_outputs_new) {
+                GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+                GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
+                ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
             }
         }
 
         // extract embeddings
-        if (cparams.embeddings && embd) {
+        if (embd) {
             ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
             GGML_ASSERT(backend_embd != nullptr);
 
@@ -9020,16 +10045,14 @@ static int llama_decode_internal(
                 case LLAMA_POOLING_TYPE_NONE:
                     {
                         // extract token embeddings
-                        auto & embd_out = lctx.embd;
-
-                        if (u_batch.logits) {
-                            //embd_out.resize(n_embd * n_tokens);
-                            for (uint32_t i = 0; i < n_tokens; i++) {
-                                if (u_batch.logits[i] == 0) {
-                                    continue;
-                                }
-                                ggml_backend_tensor_get_async(backend_embd, embd, embd_out + n_embd*(i + cur_token), (n_embd*i)*sizeof(float), n_embd*sizeof(float));
-                            }
+                        GGML_ASSERT(lctx.embd != nullptr);
+                        float * embd_out = lctx.embd + n_outputs_prev*n_embd;
+                        const int32_t n_outputs_new = lctx.n_outputs;
+
+                        if (n_outputs_new) {
+                            GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+                            GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
+                            ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
                         }
                     } break;
                 case LLAMA_POOLING_TYPE_CLS:
@@ -9056,6 +10079,7 @@ static int llama_decode_internal(
                     } break;
             }
         }
+        n_outputs_prev += lctx.n_outputs;
     }
 
     // wait for the computation to finish (automatically done when obtaining the model output)
@@ -9986,7 +11010,7 @@ struct llm_tokenizer_wpm {
             if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
                 continue;
             }
-            code = to_lower(code);
+            code = unicode_tolower(code);
             if (type == CODEPOINT_TYPE_WHITESPACE) {
                 code = ' ';
             }
@@ -10006,7 +11030,7 @@ struct llm_tokenizer_wpm {
         std::vector<std::string> words;
         while (r < new_str.size()) {
             // if is whitespace
-            if (isspace(new_str[r])) {
+            if (isspace(new_str[r], std::locale::classic())) {
                 if (r > l) words.push_back(new_str.substr(l, (r - l)));
                 l = r + 1;
                 r = l;
@@ -10020,18 +11044,12 @@ struct llm_tokenizer_wpm {
         return words;
     }
 
-    uint32_t to_lower(uint32_t code) {
-        static const std::locale locale("en_US.UTF-8");
-#if defined(_WIN32)
-        if (code > 0xFFFF) {
-            return code;
-        }
-#endif
-        return std::tolower(wchar_t(code), locale);
-    }
-
     bool is_ascii_punct(uint32_t code) {
-        return code < 256 && ispunct(code);
+        if (code > 0xFF) {
+            return false;
+        }
+        auto c = char(static_cast<unsigned char>(code));
+        return ispunct(c, std::locale::classic());
     }
 
     bool is_chinese_char(uint32_t cpt) {
@@ -11739,30 +12757,39 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
     // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
     // with the quantization of the output tensor
     if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
-        int nx = tensor->ne[0];
-        if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
-            new_type = GGML_TYPE_Q8_0;
-        }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
-                 ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
-            new_type = GGML_TYPE_Q5_K;
-        }
-        else if (new_type != GGML_TYPE_Q8_0) {
-            new_type = GGML_TYPE_Q6_K;
+        if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
+            new_type = qs.params->output_tensor_type;
+        } else {
+            int nx = tensor->ne[0];
+            if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
+                new_type = GGML_TYPE_Q8_0;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
+                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+                new_type = GGML_TYPE_Q5_K;
+            }
+            else if (new_type != GGML_TYPE_Q8_0) {
+                new_type = GGML_TYPE_Q6_K;
+            }
         }
     } else if (name == "token_embd.weight") {
-        if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
-            ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
-            new_type = GGML_TYPE_Q2_K;
-        }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
-            new_type = GGML_TYPE_IQ3_S;
-        }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
-            new_type = GGML_TYPE_IQ3_S;
+        if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
+            new_type = qs.params->token_embedding_type;
+        } else {
+            if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
+                ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+                new_type = GGML_TYPE_Q2_K;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
+                new_type = GGML_TYPE_IQ3_S;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+                new_type = GGML_TYPE_IQ3_S;
+            }
         }
     } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
-               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
+               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
         if (name.find("attn_v.weight") != std::string::npos) {
             if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
             else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
@@ -11781,7 +12808,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
             if (qs.model.hparams.n_expert == 8) {
                 new_type = GGML_TYPE_Q5_K;
             } else {
-                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
+                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
                 else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
             }
         }
@@ -11795,13 +12822,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
             new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
         }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
-            new_type = GGML_TYPE_Q4_K;
-        }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
-            new_type = GGML_TYPE_Q4_K;
-        }
-        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
+        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
             new_type = GGML_TYPE_Q4_K;
         }
         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
@@ -11954,7 +12975,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
     if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
         new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
         new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
-        new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) {
+        new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
+        new_type == GGML_TYPE_IQ1_M) {
         int nx = tensor->ne[0];
         int ny = tensor->ne[1];
         if (nx % QK_K != 0) {
@@ -11972,6 +12994,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
             case GGML_TYPE_IQ3_XXS:
             case GGML_TYPE_IQ3_S:
             case GGML_TYPE_IQ1_S:
+            case GGML_TYPE_IQ1_M:
             case GGML_TYPE_Q2_K:
             case GGML_TYPE_Q3_K:
             case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
@@ -12053,6 +13076,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
         case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
         case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
         case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
+        case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
         case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
         case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
         case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
@@ -12075,8 +13099,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
     constexpr bool use_mmap = false;
 #endif
 
-    llama_model_loader ml(fname_inp, use_mmap, NULL);
-    ml.init_mapping(false); // no prefetching?
+    llama_model_kv_override * kv_overrides = nullptr;
+    if (params->kv_overrides) {
+        auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
+        kv_overrides = v->data();
+    }
+    llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
+    ml.init_mappings(false); // no prefetching?
 
     llama_model model;
     llm_load_arch(ml, model);
@@ -12100,33 +13129,45 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
     struct gguf_context * ctx_out = gguf_init_empty();
 
     // copy the KV pairs from the input file
-    gguf_set_kv     (ctx_out, ml.ctx_gguf);
+    gguf_set_kv     (ctx_out, ml.meta);
     gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
     gguf_set_val_u32(ctx_out, "general.file_type", ftype);
 
+    if (params->kv_overrides) {
+        const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
+        for (auto & o : overrides) {
+            if (o.key[0] == 0) break;
+            if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
+                gguf_set_val_f32(ctx_out, o.key, o.float_value);
+            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
+                gguf_set_val_i32(ctx_out, o.key, o.int_value);
+            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
+                gguf_set_val_bool(ctx_out, o.key, o.bool_value);
+            } else {
+                LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
+            }
+        }
+    }
+
     for (int i = 0; i < ml.n_tensors; ++i) {
-        struct ggml_tensor * meta = ml.get_tensor_meta(i);
+        const struct ggml_tensor * meta = ml.get_tensor_meta(i);
 
         const std::string name = ggml_get_name(meta);
 
         // TODO: avoid hardcoded tensor names - use the TN_* constants
         if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
             ++qs.n_attention_wv;
-        }
-        else if (name.find("ffn_down") != std::string::npos) {
+        } else if (name.find("ffn_down") != std::string::npos) {
             ++qs.n_ffn_down;
-        }
-        else if (name.find("ffn_gate") != std::string::npos) {
+        } else if (name.find("ffn_gate") != std::string::npos) {
             ++qs.n_ffn_gate;
-        }
-        else if (name.find("ffn_up") != std::string::npos) {
+        } else if (name.find("ffn_up") != std::string::npos) {
             ++qs.n_ffn_up;
-        }
-        else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
+        } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
             qs.has_output = true;
         }
     }
-    if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
+    if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t) qs.n_attention_wv != model.hparams.n_layer) {
         LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
                 __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
     }
@@ -12145,7 +13186,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
 
     // populate the original tensors so we get an initial meta data
     for (int i = 0; i < ml.n_tensors; ++i) {
-        struct ggml_tensor * meta = ml.get_tensor_meta(i);
+        const struct ggml_tensor * meta = ml.get_tensor_meta(i);
         gguf_add_tensor(ctx_out, meta);
     }
 
@@ -12211,6 +13252,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
             if (!params->pure && ggml_is_quantized(default_type)) {
                 new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
             }
+            else if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
+                new_type = params->token_embedding_type;
+            }
+            else if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
+                new_type = params->output_tensor_type;
+            }
 
             // If we've decided to quantize to the same type the tensor is already
             // in then there's nothing to do.
@@ -12243,6 +13290,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
                  new_type == GGML_TYPE_IQ2_XS  ||
                  new_type == GGML_TYPE_IQ2_S   ||
                  new_type == GGML_TYPE_IQ1_S   ||
+                (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
                 (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
                 LLAMA_LOG_ERROR("\n\n============================================================\n");
                 LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
@@ -12350,7 +13398,7 @@ static int llama_apply_lora_from_file_internal(
     if (path_base_model) {
         LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
         ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
-        ml->init_mapping(/*prefetch*/ false); // no prefetching
+        ml->init_mappings(/*prefetch*/ false); // no prefetching
     }
 
     struct tensor_meta {
@@ -12471,7 +13519,7 @@ static int llama_apply_lora_from_file_internal(
 
         ggml_tensor * base_t;
         if (ml) {
-            if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
+            if (!ml->get_tensor_meta(base_name.c_str())) {
                 LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
                 return 1;
             }
@@ -12655,11 +13703,14 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
     struct llama_model_quantize_params result = {
         /*.nthread                     =*/ 0,
         /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
+        /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
+        /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
         /*.allow_requantize            =*/ false,
         /*.quantize_output_tensor      =*/ true,
         /*.only_copy                   =*/ false,
         /*.pure                        =*/ false,
         /*.imatrix                     =*/ nullptr,
+        /*.kv_overrides                =*/ nullptr,
     };
 
     return result;
@@ -12668,7 +13719,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
 size_t llama_max_devices(void) {
 #if defined(GGML_USE_METAL)
     return 1;
-#elif defined(GGML_USE_CUBLAS)
+#elif defined(GGML_USE_CUDA)
     return GGML_CUDA_MAX_DEVICES;
 #elif defined(GGML_USE_SYCL)
     return GGML_SYCL_MAX_DEVICES;
@@ -12688,8 +13739,8 @@ bool llama_supports_mlock(void) {
 }
 
 bool llama_supports_gpu_offload(void) {
-#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
-    defined(GGML_USE_SYCL)   || defined(GGML_USE_KOMPUTE)
+#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
     // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
     return true;
 #else
@@ -12796,7 +13847,7 @@ struct llama_context * llama_new_context_with_model(
     const auto & hparams = model->hparams;
     auto       & cparams = ctx->cparams;
 
-    // TODO: maybe add n_seq_max here too
+    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
     cparams.n_threads        = params.n_threads;
     cparams.n_threads_batch  = params.n_threads_batch;
     cparams.yarn_ext_factor  = params.yarn_ext_factor;
@@ -12812,6 +13863,9 @@ struct llama_context * llama_new_context_with_model(
     cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
     cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
 
+    // this is necessary due to kv_self.n being padded later during inference
+    cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
+
     // with causal attention, the batch size is limited by the context size
     cparams.n_batch          = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
     cparams.n_ubatch         = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
@@ -12891,28 +13945,26 @@ struct llama_context * llama_new_context_with_model(
             }
             ctx->backends.push_back(ctx->backend_metal);
         }
-#elif defined(GGML_USE_CUBLAS)
-        if (model->n_gpu_layers > 0) {
+#elif defined(GGML_USE_CUDA)
+        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
             // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
-            if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
-                ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
+            ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        } else {
+            // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+            for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
+                ggml_backend_t backend = ggml_backend_cuda_init(device);
                 if (backend == nullptr) {
-                    LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
+                    LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
                     llama_free(ctx);
                     return nullptr;
                 }
                 ctx->backends.push_back(backend);
-            } else {
-                // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
-                for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
-                    ggml_backend_t backend = ggml_backend_cuda_init(device);
-                    if (backend == nullptr) {
-                        LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
-                        llama_free(ctx);
-                        return nullptr;
-                    }
-                    ctx->backends.push_back(backend);
-                }
             }
         }
 #elif defined(GGML_USE_VULKAN)
@@ -12928,30 +13980,28 @@ struct llama_context * llama_new_context_with_model(
             }
         }
 #elif defined(GGML_USE_SYCL)
-        if (model->n_gpu_layers > 0) {
-            // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
-            if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
-                ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+        // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+            ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+            if (backend == nullptr) {
+                int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
+                LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        } else {
+            // LLAMA_SPLIT_LAYER requires a backend for each GPU
+            for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
+                ggml_backend_t backend = ggml_backend_sycl_init(i);
                 if (backend == nullptr) {
-                    int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
-                    LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
+                    int id_list[GGML_SYCL_MAX_DEVICES];
+                    ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
+                    LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
                     llama_free(ctx);
                     return nullptr;
                 }
                 ctx->backends.push_back(backend);
-            } else {
-                // LLAMA_SPLIT_LAYER requires a backend for each GPU
-                for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
-                    ggml_backend_t backend = ggml_backend_sycl_init(i);
-                    if (backend == nullptr) {
-                        int id_list[GGML_SYCL_MAX_DEVICES];
-                        ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
-                        LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
-                        llama_free(ctx);
-                        return nullptr;
-                    }
-                    ctx->backends.push_back(backend);
-                }
             }
         }
 #elif defined(GGML_USE_KOMPUTE)
@@ -12999,25 +14049,12 @@ struct llama_context * llama_new_context_with_model(
 
         // graph outputs buffer
         {
-            // resized during inference, reserve maximum
-            ctx->logits_size = hparams.n_vocab*cparams.n_batch;
-            ctx->embd_size = params.embeddings ? hparams.n_embd*cparams.n_batch : 0;
-
-            const size_t buf_output_size = (ctx->logits_size + ctx->embd_size)*sizeof(float);
-
-            ctx->buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buf_output_size);
-            if (ctx->buf_output == nullptr) {
-                LLAMA_LOG_ERROR("%s: failed to allocate logits buffer\n", __func__);
+            // resized during inference when a batch uses more outputs
+            if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
+                LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
                 llama_free(ctx);
                 return nullptr;
             }
-            ggml_backend_buffer_clear(ctx->buf_output, 0);
-
-
-            ctx->logits = (float *) ggml_backend_buffer_get_base(ctx->buf_output);
-            if (params.embeddings) {
-                ctx->embd = ctx->logits + ctx->logits_size;
-            }
 
             LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
                     ggml_backend_buffer_name(ctx->buf_output),
@@ -13042,7 +14079,7 @@ struct llama_context * llama_new_context_with_model(
 
             // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
             bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
-#ifndef GGML_USE_CUBLAS
+#ifndef GGML_USE_CUDA
             // pipeline parallelism requires support for async compute and events
             // currently this is only implemented in the CUDA backend
             pipeline_parallel = false;
@@ -13070,14 +14107,17 @@ struct llama_context * llama_new_context_with_model(
                 ggml_backend_t backend = ctx->backends[i];
                 ggml_backend_buffer_type_t buft = backend_buft[i];
                 size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
-                LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
-                        ggml_backend_buft_name(buft),
-                        size / 1024.0 / 1024.0);
+                if (size > 1) {
+                    LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
+                            ggml_backend_buft_name(buft),
+                            size / 1024.0 / 1024.0);
+                }
             }
 
             // note: the number of splits during measure is higher than during inference due to the kv shift
             int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
-            LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits);
+            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, gf->n_nodes);
+            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
         }
     }
 
@@ -13147,10 +14187,12 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_ORION:
         case LLM_ARCH_INTERNLM2:
         case LLM_ARCH_MINICPM:
+        case LLM_ARCH_COMMAND_R:
             return LLAMA_ROPE_TYPE_NORM;
 
         // the pairs of head values are offset by n_rot/2
         case LLM_ARCH_FALCON:
+        case LLM_ARCH_GROK:
         case LLM_ARCH_PERSIMMON:
         case LLM_ARCH_BERT:
         case LLM_ARCH_NOMIC_BERT:
@@ -13183,6 +14225,10 @@ int32_t llama_n_embd(const struct llama_model * model) {
     return model->hparams.n_embd;
 }
 
+int32_t llama_n_layer(const struct llama_model * model) {
+    return model->hparams.n_layer;
+}
+
 float llama_rope_freq_scale_train(const struct llama_model * model) {
     return model->hparams.rope_freq_scale_train;
 }
@@ -13282,6 +14328,96 @@ int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const
     }
 }
 
+static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
+    GGML_ASSERT(cvec.tensors.empty());
+    GGML_ASSERT(cvec.ctxs.empty());
+    GGML_ASSERT(cvec.bufs.empty());
+
+    // count layer buffer types
+    std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
+    for (int64_t i = 0; i < model.hparams.n_layer; i++) {
+        buft_layer_count[model.buft_layer[i].buft]++;
+    }
+
+    // allocate contexts
+    std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+    for (auto & it : buft_layer_count) {
+        int n_layers = it.second;
+        struct ggml_init_params params = {
+            /*.mem_size   =*/ n_layers * ggml_tensor_overhead(),
+            /*.mem_buffer =*/ NULL,
+            /*.no_alloc   =*/ true,
+        };
+        ggml_context * ctx = ggml_init(params);
+        if (!ctx) {
+            LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
+            return 1;
+        }
+        ctx_map[it.first] = ctx;
+    }
+
+    // make tensors
+    cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
+    for (size_t il = 1; il < model.hparams.n_layer; il++) {
+        struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
+        ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
+        cvec.tensors.push_back(tensor);
+    }
+
+    // allocate tensors / buffers and zero
+    for (auto it : ctx_map) {
+        ggml_backend_buffer_type_t buft = it.first;
+        ggml_context * ctx = it.second;
+        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+        if (!buf) {
+            LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
+            return false;
+        }
+        ggml_backend_buffer_clear(buf, 0);
+        cvec.ctxs.push_back(ctx);
+        cvec.bufs.push_back(buf);
+    }
+
+    return true;
+}
+
+int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
+    const llama_model & model = lctx->model;
+    llama_control_vector & cvec = lctx->cvec;
+
+    if (data == nullptr) {
+        // disable the current control vector (but leave allocated for later)
+        cvec.layer_start = -1;
+        cvec.layer_end   = -1;
+        return 0;
+    }
+
+    if (n_embd != (int) model.hparams.n_embd) {
+        LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
+        return 1;
+    }
+
+    if (cvec.tensors.empty()) {
+        if (!llama_control_vector_init(cvec, model)) {
+            return 1;
+        }
+    }
+
+    cvec.layer_start = il_start;
+    cvec.layer_end   = il_end;
+
+    for (size_t il = 1; il < model.hparams.n_layer; il++) {
+        assert(cvec.tensors[il] != nullptr);
+
+        const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
+        if (off + n_embd <= len) {
+            ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
+        }
+    }
+
+    return 0;
+}
+
 struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
     struct llama_kv_cache_view result = {
         /*.n_cells            = */ 0,
@@ -13435,27 +14571,33 @@ void llama_kv_cache_update(struct llama_context * ctx) {
 
 // Returns the *maximum* size of the state
 size_t llama_get_state_size(const struct llama_context * ctx) {
+    const auto & cparams = ctx->cparams;
+    const auto & hparams = ctx->model.hparams;
+
     // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
     // for reference, std::mt19937(1337) serializes to 6701 bytes.
     const size_t s_rng_size        = sizeof(size_t);
     const size_t s_rng             = LLAMA_MAX_RNG_STATE;
+    const size_t s_n_outputs       = sizeof(size_t);
+    // assume worst case for outputs although only currently set ones are serialized
+    const size_t s_output_pos      = ctx->cparams.n_batch * sizeof(int32_t);
     const size_t s_logits_size     = sizeof(size_t);
-    // assume worst case for logits although only currently set ones are serialized
-    const size_t s_logits          = ctx->logits_size * sizeof(float);
+    const size_t s_logits          = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
     const size_t s_embedding_size  = sizeof(size_t);
-    const size_t s_embedding       = ctx->embd_size * sizeof(float);
+    const size_t s_embedding       = ctx->embd_size   ? cparams.n_batch * hparams.n_embd  * sizeof(float) : 0;
     const size_t s_kv_buf_size     = sizeof(size_t);
     const size_t s_kv_head         = sizeof(uint32_t);
     const size_t s_kv_size         = sizeof(uint32_t);
     const size_t s_kv_used         = sizeof(uint32_t);
     const size_t s_kv              = ctx->kv_self.total_size();
-    // TODO: assume the max is more than 1 seq_id per KV cell
-    const size_t s_kv_cell         = sizeof(llama_pos) + sizeof(size_t) + sizeof(llama_seq_id);
+    const size_t s_kv_cell         = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
     const size_t s_kv_cells        = ctx->kv_self.size * s_kv_cell;
 
     const size_t s_total = (
         + s_rng_size
         + s_rng
+        + s_n_outputs
+        + s_output_pos
         + s_logits_size
         + s_logits
         + s_embedding_size
@@ -13530,7 +14672,7 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
         std::ostringstream rng_ss;
         rng_ss << ctx->rng;
 
-        const std::string & rng_str = rng_ss.str();
+        const std::string & rng_str  = rng_ss.str();
         const size_t        rng_size = rng_str.size();
 
         GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
@@ -13539,25 +14681,61 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
         data_ctx->write(rng_str.data(), rng_size);
     }
 
-    // copy logits
+    // copy outputs
     {
-        const size_t logits_size = ctx->logits_size;
+        // Can't use ctx->n_outputs because it's not for the
+        // entire last batch when n_ubatch is smaller than n_batch
+        size_t n_outputs = 0;
 
-        data_ctx->write(&logits_size, sizeof(logits_size));
+        // copy output ids
+        {
+            std::vector<int32_t> output_pos;
 
-        if (logits_size) {
-            data_ctx->write(ctx->logits, logits_size * sizeof(float));
+            const size_t    n_batch = ctx->cparams.n_batch;
+            const auto & output_ids = ctx->output_ids;
+
+            output_pos.resize(ctx->output_size);
+
+            // build a more compact representation of the output ids
+            for (size_t i = 0; i < n_batch; ++i) {
+                // map an output id to a position in the batch
+                int32_t pos = output_ids[i];
+                if (pos >= 0) {
+                    if ((size_t) pos >= n_outputs) {
+                        n_outputs = pos + 1;
+                    }
+                    GGML_ASSERT((size_t) pos < ctx->output_size);
+                    output_pos[pos] = i;
+                }
+            }
+
+            data_ctx->write(&n_outputs, sizeof(n_outputs));
+
+            if (n_outputs) {
+                data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
+            }
         }
-    }
 
-    // copy embeddings
-    {
-        const size_t embeddings_size = ctx->embd_size;
+        // copy logits
+        {
+            const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
 
-        data_ctx->write(&embeddings_size, sizeof(embeddings_size));
+            data_ctx->write(&logits_size, sizeof(logits_size));
 
-        if (embeddings_size) {
-            data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
+            if (logits_size) {
+                data_ctx->write(ctx->logits, logits_size * sizeof(float));
+            }
+        }
+
+        // copy embeddings
+        {
+            const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
+
+            data_ctx->write(&embeddings_size, sizeof(embeddings_size));
+
+            if (embeddings_size) {
+                data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
+            }
         }
     }
 
@@ -13570,9 +14748,10 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
         const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
         const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 
-        const size_t   kv_buf_size = kv_self.total_size();
+        // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
         const uint32_t kv_head     = llama_kv_cache_cell_max(kv_self);
         const uint32_t kv_size     = kv_self.size;
+        const size_t   kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
         const uint32_t kv_used     = kv_self.used;
 
         data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
@@ -13581,6 +14760,8 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
         data_ctx->write(&kv_used,     sizeof(kv_used));
 
         if (kv_buf_size) {
+            const size_t pre_kv_buf_size = data_ctx->get_size_written();
+
             std::vector<uint8_t> tmp_buf;
             for (int il = 0; il < (int) n_layer; ++il) {
                 const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
@@ -13610,6 +14791,7 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
                     data_ctx->write(tmp_buf.data(), tmp_buf.size());
                 }
             }
+            GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
         }
 
         for (uint32_t i = 0; i < kv_head; ++i) {
@@ -13654,6 +14836,28 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
         GGML_ASSERT(!rng_ss.fail());
     }
 
+    // set output ids
+    {
+        size_t n_outputs;
+        std::vector<int32_t> output_pos;
+
+        memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
+
+        GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
+
+        if (n_outputs) {
+            output_pos.resize(n_outputs);
+            memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
+            inp += n_outputs * sizeof(int32_t);
+
+            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
+                int32_t id = output_pos[i];
+                GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
+                ctx->output_ids[id] = i;
+            }
+        }
+    }
+
     // set logits
     {
         size_t logits_size;
@@ -13674,7 +14878,7 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
 
         memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
 
-        GGML_ASSERT(ctx->embd_size == embeddings_size);
+        GGML_ASSERT(ctx->embd_size >= embeddings_size);
 
         if (embeddings_size) {
             memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
@@ -13701,8 +14905,18 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
         memcpy(&kv_size,     inp, sizeof(kv_size));     inp += sizeof(kv_size);
         memcpy(&kv_used,     inp, sizeof(kv_used));     inp += sizeof(kv_used);
 
+        if (kv_self.size != kv_size) {
+            // the KV cache needs to be big enough to load all the KV cells from the saved state
+            GGML_ASSERT(kv_self.size >= kv_head);
+
+            LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
+                __func__, kv_head, kv_size, kv_self.size);
+        }
+
         if (kv_buf_size) {
-            GGML_ASSERT(kv_self.total_size() == kv_buf_size);
+            const size_t pre_kv_buf_size = inp - src;
+
+            GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
 
             for (int il = 0; il < (int) n_layer; ++il) {
                 const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
@@ -13722,23 +14936,21 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
 
                 // v is not contiguous, copy row by row
                 const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
-                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
+                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
 
                 for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
                     ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
                     inp += v_row_size;
                 }
             }
+            GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
         }
 
-        GGML_ASSERT(kv_self.size == kv_size);
+        llama_kv_cache_clear(ctx);
 
         ctx->kv_self.head = kv_head;
-        ctx->kv_self.size = kv_size;
         ctx->kv_self.used = kv_used;
 
-        ctx->kv_self.cells.resize(kv_size);
-
         for (uint32_t i = 0; i < kv_head; ++i) {
             llama_pos pos;
             size_t    seq_id_size;
@@ -13755,11 +14967,6 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
                 ctx->kv_self.cells[i].seq_id.insert(seq_id);
             }
         }
-
-        for (uint32_t i = kv_head; i < kv_size; ++i) {
-            ctx->kv_self.cells[i].pos = -1;
-            ctx->kv_self.cells[i].seq_id.clear();
-        }
     }
 
     const size_t nread    = inp - src;
@@ -13965,11 +15172,33 @@ float * llama_get_logits(struct llama_context * ctx) {
 }
 
 float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
-    assert(ctx->logits_valid.at(i));
-
     llama_synchronize(ctx);
 
-    return ctx->logits + i*ctx->model.hparams.n_vocab;
+    try {
+        if (ctx->logits == nullptr) {
+            throw std::runtime_error("no logits");
+        }
+        if ((size_t) i >= ctx->output_ids.size()) {
+            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+        }
+        const int32_t j = ctx->output_ids[i];
+
+        if (j < 0) {
+            throw std::runtime_error(format("batch.logits[%d] != true", i));
+        }
+        if ((size_t) j >= ctx->output_size) {
+            // This should not happen
+            throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
+        }
+
+        return ctx->logits + j*ctx->model.hparams.n_vocab;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+        GGML_ASSERT(false);
+#endif
+        return nullptr;
+    }
 }
 
 float * llama_get_embeddings(struct llama_context * ctx) {
@@ -13981,7 +15210,31 @@ float * llama_get_embeddings(struct llama_context * ctx) {
 float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
     llama_synchronize(ctx);
 
-    return ctx->embd + i*ctx->model.hparams.n_embd;
+    try {
+        if (ctx->embd == nullptr) {
+            throw std::runtime_error("no embeddings");
+        }
+        if ((size_t) i >= ctx->output_ids.size()) {
+            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+        }
+        const int32_t j = ctx->output_ids[i];
+
+        if (j < 0) {
+            throw std::runtime_error(format("batch.logits[%d] != true", i));
+        }
+        if ((size_t) j >= ctx->output_size) {
+            // This should not happen
+            throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
+        }
+
+        return ctx->embd + j*ctx->model.hparams.n_embd;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+        GGML_ASSERT(false);
+#endif
+        return nullptr;
+    }
 }
 
 float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
@@ -14320,6 +15573,30 @@ LLAMA_API int32_t llama_chat_apply_template(
     return res;
 }
 
+LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
+    static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
+    if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
+        return strlen(split_path);
+    }
+    return 0;
+}
+
+int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
+    std::string str_split_path(split_path);
+    char postfix[32];
+    snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
+    std::string str_postfix(postfix);
+
+    // check if dest ends with postfix
+    int size_prefix = str_split_path.size() - str_postfix.size();
+    if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
+        snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
+        return size_prefix;
+    }
+
+    return 0;
+}
+
 struct llama_timings llama_get_timings(struct llama_context * ctx) {
     struct llama_timings result = {
         /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
index 90aa5372e740b264a76169202228ac58cc0029b8..1fe4af495820f864e2ea986c57c1047b1afe1ba8 100644 (file)
@@ -39,7 +39,7 @@
 #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
 
 #define LLAMA_SESSION_MAGIC   LLAMA_FILE_MAGIC_GGSN
-#define LLAMA_SESSION_VERSION 4
+#define LLAMA_SESSION_VERSION 5
 
 #ifdef __cplusplus
 extern "C" {
@@ -117,6 +117,7 @@ extern "C" {
         LLAMA_FTYPE_MOSTLY_IQ2_S         = 28, // except 1d tensors
         LLAMA_FTYPE_MOSTLY_IQ2_M         = 29, // except 1d tensors
         LLAMA_FTYPE_MOSTLY_IQ4_XS        = 30, // except 1d tensors
+        LLAMA_FTYPE_MOSTLY_IQ1_M         = 31, // except 1d tensors
 
         LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
     };
@@ -275,13 +276,16 @@ extern "C" {
 
     // model quantization parameters
     typedef struct llama_model_quantize_params {
-        int32_t nthread;             // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
-        enum llama_ftype ftype;      // quantize to this llama_ftype
-        bool allow_requantize;       // allow quantizing non-f32/f16 tensors
-        bool quantize_output_tensor; // quantize output.weight
-        bool only_copy;              // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
-        bool pure;                   // quantize all tensors to the default type
-        void * imatrix;              // pointer to importance matrix data
+        int32_t nthread;                     // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
+        enum llama_ftype ftype;              // quantize to this llama_ftype
+        enum ggml_type output_tensor_type;   // output tensor type
+        enum ggml_type token_embedding_type; // itoken embeddings tensor type
+        bool allow_requantize;               // allow quantizing non-f32/f16 tensors
+        bool quantize_output_tensor;         // quantize output.weight
+        bool only_copy;                      // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
+        bool pure;                           // quantize all tensors to the default type
+        void * imatrix;                      // pointer to importance matrix data
+        void * kv_overrides;                 // pointer to vector containing overrides
     } llama_model_quantize_params;
 
     // grammar types
@@ -388,6 +392,7 @@ extern "C" {
     LLAMA_API int32_t llama_n_vocab    (const struct llama_model * model);
     LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
     LLAMA_API int32_t llama_n_embd     (const struct llama_model * model);
+    LLAMA_API int32_t llama_n_layer    (const struct llama_model * model);
 
     // Get the model's RoPE frequency scaling factor
     LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@@ -435,10 +440,24 @@ extern "C" {
     // Returns 0 on success
     LLAMA_API int32_t llama_model_apply_lora_from_file(
             const struct llama_model * model,
-                      const char * path_lora,
-                           float   scale,
-                      const char * path_base_model,
-                         int32_t   n_threads);
+                          const char * path_lora,
+                               float   scale,
+                          const char * path_base_model,
+                             int32_t   n_threads);
+
+    // Apply a loaded control vector to a llama_context, or if data is NULL, clear
+    // the currently loaded vector.
+    // n_embd should be the size of a single layer's control, and data should point
+    // to an n_embd x n_layers buffer starting from layer 1.
+    // il_start and il_end are the layer range the vector should apply to (both inclusive)
+    // See llama_control_vector_load in common to load a control vector.
+    LLAMA_API int32_t llama_control_vector_apply(
+            struct llama_context * lctx,
+                     const float * data,
+                          size_t   len,
+                         int32_t   n_embd,
+                         int32_t   il_start,
+                         int32_t   il_end);
 
     //
     // KV cache
@@ -659,23 +678,29 @@ extern "C" {
     LLAMA_API void llama_synchronize(struct llama_context * ctx);
 
     // Token logits obtained from the last call to llama_decode()
-    // The logits for the last token are stored in the last row
-    // Logits for which llama_batch.logits[i] == 0 are undefined
-    // Rows: n_tokens provided with llama_batch
+    // The logits for which llama_batch.logits[i] != 0 are stored contiguously
+    // in the order they have appeared in the batch.
+    // Rows: number of tokens for which llama_batch.logits[i] != 0
     // Cols: n_vocab
     LLAMA_API float * llama_get_logits(struct llama_context * ctx);
 
     // Logits for the ith token. Equivalent to:
-    // llama_get_logits(ctx) + i*n_vocab
+    // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
+    // returns NULL for invalid ids.
     LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
 
-    // Get all output token embeddings
-    // shape: [n_tokens*n_embd] (1-dimensional)
+    // Get all output token embeddings.
+    // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
+    // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
+    // in the order they have appeared in the batch.
+    // shape: [n_outputs*n_embd]
+    // Otherwise, returns NULL.
     LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
 
-    // Get the embeddings for the ith token
-    // llama_get_embeddings(ctx) + i*n_embd
+    // Get the embeddings for the ith token. Equivalent to:
+    // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
     // shape: [n_embd] (1-dimensional)
+    // returns NULL for invalid ids.
     LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
 
     // Get the embeddings for a sequence id
@@ -945,6 +970,16 @@ extern "C" {
                                 int32_t   n_past,
                                 int32_t   n_predict);
 
+    /// @details Build a split GGUF final path for this chunk.
+    ///          llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
+    //  Returns the split_path length.
+    LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
+
+    /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
+    ///          llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
+    //  Returns the split_prefix length.
+    LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
+
     // Performance information
     LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
 
diff --git a/examples/talk-llama/unicode-data.cpp b/examples/talk-llama/unicode-data.cpp
new file mode 100644 (file)
index 0000000..22f8b0f
--- /dev/null
@@ -0,0 +1,1651 @@
+#include "unicode-data.h"
+
+#include <cstdint>
+#include <map>
+#include <utility>
+#include <vector>
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit = {
+{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x00000660, 0x00000669},
+{0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, {0x000009E6, 0x000009EF},
+{0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, {0x00000B66, 0x00000B6F}, {0x00000BE6, 0x00000BEF},
+{0x00000C66, 0x00000C6F}, {0x00000CE6, 0x00000CEF}, {0x00000D66, 0x00000D6F}, {0x00000DE6, 0x00000DEF},
+{0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F29}, {0x00001040, 0x00001049},
+{0x00001090, 0x00001099}, {0x00001369, 0x00001371}, {0x000017E0, 0x000017E9}, {0x00001810, 0x00001819},
+{0x00001946, 0x0000194F}, {0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99},
+{0x00001B50, 0x00001B59}, {0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59},
+{0x00002070, 0x00002070}, {0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002460, 0x00002468},
+{0x00002474, 0x0000247C}, {0x00002488, 0x00002490}, {0x000024EA, 0x000024EA}, {0x000024F5, 0x000024FD},
+{0x000024FF, 0x000024FF}, {0x00002776, 0x0000277E}, {0x00002780, 0x00002788}, {0x0000278A, 0x00002792},
+{0x0000A620, 0x0000A629}, {0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9},
+{0x0000A9F0, 0x0000A9F9}, {0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19},
+{0x000104A0, 0x000104A9}, {0x00010A40, 0x00010A43}, {0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E68},
+{0x00011052, 0x0001105A}, {0x00011066, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F},
+{0x000111D0, 0x000111D9}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, {0x000114D0, 0x000114D9},
+{0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x00011739}, {0x000118E0, 0x000118E9},
+{0x00011950, 0x00011959}, {0x00011C50, 0x00011C59}, {0x00011D50, 0x00011D59}, {0x00011DA0, 0x00011DA9},
+{0x00016A60, 0x00016A69}, {0x00016B50, 0x00016B59}, {0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149},
+{0x0001E2F0, 0x0001E2F9}, {0x0001E950, 0x0001E959}, {0x0001F100, 0x0001F10A}, {0x0001FBF0, 0x0001FBF9},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
+{0x00000041, 0x0000005A}, {0x00000061, 0x0000007A}, {0x000000AA, 0x000000AA}, {0x000000B5, 0x000000B5},
+{0x000000BA, 0x000000BA}, {0x000000C0, 0x000000D6}, {0x000000D8, 0x000000F6}, {0x000000F8, 0x000002C1},
+{0x000002C6, 0x000002D1}, {0x000002E0, 0x000002E4}, {0x000002EC, 0x000002EC}, {0x000002EE, 0x000002EE},
+{0x00000370, 0x00000374}, {0x00000376, 0x00000377}, {0x0000037A, 0x0000037D}, {0x0000037F, 0x0000037F},
+{0x00000386, 0x00000386}, {0x00000388, 0x0000038A}, {0x0000038C, 0x0000038C}, {0x0000038E, 0x000003A1},
+{0x000003A3, 0x000003F5}, {0x000003F7, 0x00000481}, {0x0000048A, 0x0000052F}, {0x00000531, 0x00000556},
+{0x00000559, 0x00000559}, {0x00000560, 0x00000588}, {0x000005D0, 0x000005EA}, {0x000005EF, 0x000005F2},
+{0x00000620, 0x0000064A}, {0x0000066E, 0x0000066F}, {0x00000671, 0x000006D3}, {0x000006D5, 0x000006D5},
+{0x000006E5, 0x000006E6}, {0x000006EE, 0x000006EF}, {0x000006FA, 0x000006FC}, {0x000006FF, 0x000006FF},
+{0x00000710, 0x00000710}, {0x00000712, 0x0000072F}, {0x0000074D, 0x000007A5}, {0x000007B1, 0x000007B1},
+{0x000007CA, 0x000007EA}, {0x000007F4, 0x000007F5}, {0x000007FA, 0x000007FA}, {0x00000800, 0x00000815},
+{0x0000081A, 0x0000081A}, {0x00000824, 0x00000824}, {0x00000828, 0x00000828}, {0x00000840, 0x00000858},
+{0x00000860, 0x0000086A}, {0x000008A0, 0x000008B4}, {0x000008B6, 0x000008C7}, {0x00000904, 0x00000939},
+{0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, {0x00000971, 0x00000980},
+{0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, {0x000009AA, 0x000009B0},
+{0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, {0x000009CE, 0x000009CE},
+{0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, {0x000009FC, 0x000009FC},
+{0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, {0x00000A2A, 0x00000A30},
+{0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, {0x00000A59, 0x00000A5C},
+{0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, {0x00000A8F, 0x00000A91},
+{0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, {0x00000AB5, 0x00000AB9},
+{0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, {0x00000AF9, 0x00000AF9},
+{0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, {0x00000B2A, 0x00000B30},
+{0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, {0x00000B5C, 0x00000B5D},
+{0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, {0x00000B85, 0x00000B8A},
+{0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, {0x00000B9C, 0x00000B9C},
+{0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, {0x00000BAE, 0x00000BB9},
+{0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, {0x00000C12, 0x00000C28},
+{0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, {0x00000C60, 0x00000C61},
+{0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, {0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8},
+{0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, {0x00000CBD, 0x00000CBD}, {0x00000CDE, 0x00000CDE},
+{0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, {0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10},
+{0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, {0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56},
+{0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, {0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1},
+{0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, {0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30},
+{0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, {0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84},
+{0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, {0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0},
+{0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, {0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6},
+{0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, {0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C},
+{0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, {0x0000103F, 0x0000103F}, {0x00001050, 0x00001055},
+{0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, {0x00001065, 0x00001066}, {0x0000106E, 0x00001070},
+{0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, {0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7},
+{0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, {0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D},
+{0x00001250, 0x00001256}, {0x00001258, 0x00001258}, {0x0000125A, 0x0000125D}, {0x00001260, 0x00001288},
+{0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, {0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE},
+{0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, {0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310},
+{0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, {0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5},
+{0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, {0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A},
+{0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, {0x00001700, 0x0000170C}, {0x0000170E, 0x00001711},
+{0x00001720, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, {0x0000176E, 0x00001770},
+{0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, {0x00001820, 0x00001878},
+{0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, {0x000018B0, 0x000018F5},
+{0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, {0x00001980, 0x000019AB},
+{0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, {0x00001AA7, 0x00001AA7},
+{0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4B}, {0x00001B83, 0x00001BA0}, {0x00001BAE, 0x00001BAF},
+{0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, {0x00001C5A, 0x00001C7D},
+{0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, {0x00001CE9, 0x00001CEC},
+{0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, {0x00001D00, 0x00001DBF},
+{0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, {0x00001F48, 0x00001F4D},
+{0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, {0x00001F5D, 0x00001F5D},
+{0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, {0x00001FBE, 0x00001FBE},
+{0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, {0x00001FD6, 0x00001FDB},
+{0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, {0x00002071, 0x00002071},
+{0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, {0x00002107, 0x00002107},
+{0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, {0x00002124, 0x00002124},
+{0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, {0x0000212F, 0x00002139},
+{0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, {0x00002183, 0x00002184},
+{0x00002C00, 0x00002C2E}, {0x00002C30, 0x00002C5E}, {0x00002C60, 0x00002CE4}, {0x00002CEB, 0x00002CEE},
+{0x00002CF2, 0x00002CF3}, {0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D},
+{0x00002D30, 0x00002D67}, {0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6},
+{0x00002DA8, 0x00002DAE}, {0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6},
+{0x00002DC8, 0x00002DCE}, {0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F},
+{0x00003005, 0x00003006}, {0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096},
+{0x0000309D, 0x0000309F}, {0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F},
+{0x00003131, 0x0000318E}, {0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF},
+{0x00004E00, 0x00009FFC}, {0x0000A000, 0x0000A48C}, {0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C},
+{0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, {0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D},
+{0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, {0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7BF},
+{0x0000A7C2, 0x0000A7CA}, {0x0000A7F5, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A},
+{0x0000A80C, 0x0000A822}, {0x0000A840, 0x0000A873}, {0x0000A882, 0x0000A8B3}, {0x0000A8F2, 0x0000A8F7},
+{0x0000A8FB, 0x0000A8FB}, {0x0000A8FD, 0x0000A8FE}, {0x0000A90A, 0x0000A925}, {0x0000A930, 0x0000A946},
+{0x0000A960, 0x0000A97C}, {0x0000A984, 0x0000A9B2}, {0x0000A9CF, 0x0000A9CF}, {0x0000A9E0, 0x0000A9E4},
+{0x0000A9E6, 0x0000A9EF}, {0x0000A9FA, 0x0000A9FE}, {0x0000AA00, 0x0000AA28}, {0x0000AA40, 0x0000AA42},
+{0x0000AA44, 0x0000AA4B}, {0x0000AA60, 0x0000AA76}, {0x0000AA7A, 0x0000AA7A}, {0x0000AA7E, 0x0000AAAF},
+{0x0000AAB1, 0x0000AAB1}, {0x0000AAB5, 0x0000AAB6}, {0x0000AAB9, 0x0000AABD}, {0x0000AAC0, 0x0000AAC0},
+{0x0000AAC2, 0x0000AAC2}, {0x0000AADB, 0x0000AADD}, {0x0000AAE0, 0x0000AAEA}, {0x0000AAF2, 0x0000AAF4},
+{0x0000AB01, 0x0000AB06}, {0x0000AB09, 0x0000AB0E}, {0x0000AB11, 0x0000AB16}, {0x0000AB20, 0x0000AB26},
+{0x0000AB28, 0x0000AB2E}, {0x0000AB30, 0x0000AB5A}, {0x0000AB5C, 0x0000AB69}, {0x0000AB70, 0x0000ABE2},
+{0x0000AC00, 0x0000D7A3}, {0x0000D7B0, 0x0000D7C6}, {0x0000D7CB, 0x0000D7FB}, {0x0000F900, 0x0000FA6D},
+{0x0000FA70, 0x0000FAD9}, {0x0000FB00, 0x0000FB06}, {0x0000FB13, 0x0000FB17}, {0x0000FB1D, 0x0000FB1D},
+{0x0000FB1F, 0x0000FB28}, {0x0000FB2A, 0x0000FB36}, {0x0000FB38, 0x0000FB3C}, {0x0000FB3E, 0x0000FB3E},
+{0x0000FB40, 0x0000FB41}, {0x0000FB43, 0x0000FB44}, {0x0000FB46, 0x0000FBB1}, {0x0000FBD3, 0x0000FD3D},
+{0x0000FD50, 0x0000FD8F}, {0x0000FD92, 0x0000FDC7}, {0x0000FDF0, 0x0000FDFB}, {0x0000FE70, 0x0000FE74},
+{0x0000FE76, 0x0000FEFC}, {0x0000FF21, 0x0000FF3A}, {0x0000FF41, 0x0000FF5A}, {0x0000FF66, 0x0000FFBE},
+{0x0000FFC2, 0x0000FFC7}, {0x0000FFCA, 0x0000FFCF}, {0x0000FFD2, 0x0000FFD7}, {0x0000FFDA, 0x0000FFDC},
+{0x00010000, 0x0001000B}, {0x0001000D, 0x00010026}, {0x00010028, 0x0001003A}, {0x0001003C, 0x0001003D},
+{0x0001003F, 0x0001004D}, {0x00010050, 0x0001005D}, {0x00010080, 0x000100FA}, {0x00010280, 0x0001029C},
+{0x000102A0, 0x000102D0}, {0x00010300, 0x0001031F}, {0x0001032D, 0x00010340}, {0x00010342, 0x00010349},
+{0x00010350, 0x00010375}, {0x00010380, 0x0001039D}, {0x000103A0, 0x000103C3}, {0x000103C8, 0x000103CF},
+{0x00010400, 0x0001049D}, {0x000104B0, 0x000104D3}, {0x000104D8, 0x000104FB}, {0x00010500, 0x00010527},
+{0x00010530, 0x00010563}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767},
+{0x00010800, 0x00010805}, {0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838},
+{0x0001083C, 0x0001083C}, {0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E},
+{0x000108E0, 0x000108F2}, {0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939},
+{0x00010980, 0x000109B7}, {0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13},
+{0x00010A15, 0x00010A17}, {0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C},
+{0x00010AC0, 0x00010AC7}, {0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55},
+{0x00010B60, 0x00010B72}, {0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2},
+{0x00010CC0, 0x00010CF2}, {0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1},
+{0x00010F00, 0x00010F1C}, {0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010FB0, 0x00010FC4},
+{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8},
+{0x00011103, 0x00011126}, {0x00011144, 0x00011144}, {0x00011147, 0x00011147}, {0x00011150, 0x00011172},
+{0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, {0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA},
+{0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, {0x00011213, 0x0001122B}, {0x00011280, 0x00011286},
+{0x00011288, 0x00011288}, {0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8},
+{0x000112B0, 0x000112DE}, {0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328},
+{0x0001132A, 0x00011330}, {0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D},
+{0x00011350, 0x00011350}, {0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A},
+{0x0001145F, 0x00011461}, {0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7},
+{0x00011580, 0x000115AE}, {0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644},
+{0x00011680, 0x000116AA}, {0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011800, 0x0001182B},
+{0x000118A0, 0x000118DF}, {0x000118FF, 0x00011906}, {0x00011909, 0x00011909}, {0x0001190C, 0x00011913},
+{0x00011915, 0x00011916}, {0x00011918, 0x0001192F}, {0x0001193F, 0x0001193F}, {0x00011941, 0x00011941},
+{0x000119A0, 0x000119A7}, {0x000119AA, 0x000119D0}, {0x000119E1, 0x000119E1}, {0x000119E3, 0x000119E3},
+{0x00011A00, 0x00011A00}, {0x00011A0B, 0x00011A32}, {0x00011A3A, 0x00011A3A}, {0x00011A50, 0x00011A50},
+{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AC0, 0x00011AF8}, {0x00011C00, 0x00011C08},
+{0x00011C0A, 0x00011C2E}, {0x00011C40, 0x00011C40}, {0x00011C72, 0x00011C8F}, {0x00011D00, 0x00011D06},
+{0x00011D08, 0x00011D09}, {0x00011D0B, 0x00011D30}, {0x00011D46, 0x00011D46}, {0x00011D60, 0x00011D65},
+{0x00011D67, 0x00011D68}, {0x00011D6A, 0x00011D89}, {0x00011D98, 0x00011D98}, {0x00011EE0, 0x00011EF2},
+{0x00011FB0, 0x00011FB0}, {0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00013000, 0x0001342E},
+{0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, {0x00016AD0, 0x00016AED},
+{0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, {0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F},
+{0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, {0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F},
+{0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, {0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5},
+{0x00018D00, 0x00018D08}, {0x0001B000, 0x0001B11E}, {0x0001B150, 0x0001B152}, {0x0001B164, 0x0001B167},
+{0x0001B170, 0x0001B2FB}, {0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88},
+{0x0001BC90, 0x0001BC99}, {0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F},
+{0x0001D4A2, 0x0001D4A2}, {0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9},
+{0x0001D4BB, 0x0001D4BB}, {0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A},
+{0x0001D50D, 0x0001D514}, {0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E},
+{0x0001D540, 0x0001D544}, {0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5},
+{0x0001D6A8, 0x0001D6C0}, {0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714},
+{0x0001D716, 0x0001D734}, {0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788},
+{0x0001D78A, 0x0001D7A8}, {0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001E100, 0x0001E12C},
+{0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, {0x0001E2C0, 0x0001E2EB}, {0x0001E800, 0x0001E8C4},
+{0x0001E900, 0x0001E943}, {0x0001E94B, 0x0001E94B}, {0x0001EE00, 0x0001EE03}, {0x0001EE05, 0x0001EE1F},
+{0x0001EE21, 0x0001EE22}, {0x0001EE24, 0x0001EE24}, {0x0001EE27, 0x0001EE27}, {0x0001EE29, 0x0001EE32},
+{0x0001EE34, 0x0001EE37}, {0x0001EE39, 0x0001EE39}, {0x0001EE3B, 0x0001EE3B}, {0x0001EE42, 0x0001EE42},
+{0x0001EE47, 0x0001EE47}, {0x0001EE49, 0x0001EE49}, {0x0001EE4B, 0x0001EE4B}, {0x0001EE4D, 0x0001EE4F},
+{0x0001EE51, 0x0001EE52}, {0x0001EE54, 0x0001EE54}, {0x0001EE57, 0x0001EE57}, {0x0001EE59, 0x0001EE59},
+{0x0001EE5B, 0x0001EE5B}, {0x0001EE5D, 0x0001EE5D}, {0x0001EE5F, 0x0001EE5F}, {0x0001EE61, 0x0001EE62},
+{0x0001EE64, 0x0001EE64}, {0x0001EE67, 0x0001EE6A}, {0x0001EE6C, 0x0001EE72}, {0x0001EE74, 0x0001EE77},
+{0x0001EE79, 0x0001EE7C}, {0x0001EE7E, 0x0001EE7E}, {0x0001EE80, 0x0001EE89}, {0x0001EE8B, 0x0001EE9B},
+{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DD},
+{0x0002A700, 0x0002B734}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0},
+{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace = {
+{0x00000009, 0x0000000D}, {0x0000001C, 0x00000020}, {0x00000085, 0x00000085}, {0x000000A0, 0x000000A0},
+{0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, {0x00002028, 0x00002029}, {0x0000202F, 0x0000202F},
+{0x0000205F, 0x0000205F}, {0x00003000, 0x00003000},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark = {
+{0x00000300, 0x0000036F}, {0x00000483, 0x00000489}, {0x00000591, 0x000005BD}, {0x000005BF, 0x000005BF},
+{0x000005C1, 0x000005C2}, {0x000005C4, 0x000005C5}, {0x000005C7, 0x000005C7}, {0x00000610, 0x0000061A},
+{0x0000064B, 0x0000065F}, {0x00000670, 0x00000670}, {0x000006D6, 0x000006DC}, {0x000006DF, 0x000006E4},
+{0x000006E7, 0x000006E8}, {0x000006EA, 0x000006ED}, {0x00000711, 0x00000711}, {0x00000730, 0x0000074A},
+{0x000007A6, 0x000007B0}, {0x000007EB, 0x000007F3}, {0x000007FD, 0x000007FD}, {0x00000816, 0x00000819},
+{0x0000081B, 0x00000823}, {0x00000825, 0x00000827}, {0x00000829, 0x0000082D}, {0x00000859, 0x0000085B},
+{0x000008D3, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, {0x0000093E, 0x0000094F},
+{0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, {0x000009BC, 0x000009BC},
+{0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, {0x000009D7, 0x000009D7},
+{0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, {0x00000A3C, 0x00000A3C},
+{0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, {0x00000A51, 0x00000A51},
+{0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, {0x00000ABC, 0x00000ABC},
+{0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, {0x00000AE2, 0x00000AE3},
+{0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, {0x00000B3E, 0x00000B44},
+{0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, {0x00000B62, 0x00000B63},
+{0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, {0x00000BCA, 0x00000BCD},
+{0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48},
+{0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, {0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83},
+{0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, {0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD},
+{0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C},
+{0x00000D3E, 0x00000D44}, {0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57},
+{0x00000D62, 0x00000D63}, {0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4},
+{0x00000DD6, 0x00000DD6}, {0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31},
+{0x00000E34, 0x00000E3A}, {0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC},
+{0x00000EC8, 0x00000ECD}, {0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37},
+{0x00000F39, 0x00000F39}, {0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87},
+{0x00000F8D, 0x00000F97}, {0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E},
+{0x00001056, 0x00001059}, {0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D},
+{0x00001071, 0x00001074}, {0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D},
+{0x0000135D, 0x0000135F}, {0x00001712, 0x00001714}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753},
+{0x00001772, 0x00001773}, {0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D},
+{0x00001885, 0x00001886}, {0x000018A9, 0x000018A9}, {0x00001920, 0x0000192B}, {0x00001930, 0x0000193B},
+{0x00001A17, 0x00001A1B}, {0x00001A55, 0x00001A5E}, {0x00001A60, 0x00001A7C}, {0x00001A7F, 0x00001A7F},
+{0x00001AB0, 0x00001AC0}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73},
+{0x00001B80, 0x00001B82}, {0x00001BA1, 0x00001BAD}, {0x00001BE6, 0x00001BF3}, {0x00001C24, 0x00001C37},
+{0x00001CD0, 0x00001CD2}, {0x00001CD4, 0x00001CE8}, {0x00001CED, 0x00001CED}, {0x00001CF4, 0x00001CF4},
+{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DF9}, {0x00001DFB, 0x00001DFF}, {0x000020D0, 0x000020F0},
+{0x00002CEF, 0x00002CF1}, {0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F},
+{0x00003099, 0x0000309A}, {0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F},
+{0x0000A6F0, 0x0000A6F1}, {0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B},
+{0x0000A823, 0x0000A827}, {0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5},
+{0x0000A8E0, 0x0000A8F1}, {0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953},
+{0x0000A980, 0x0000A983}, {0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36},
+{0x0000AA43, 0x0000AA43}, {0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0},
+{0x0000AAB2, 0x0000AAB4}, {0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1},
+{0x0000AAEB, 0x0000AAEF}, {0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED},
+{0x0000FB1E, 0x0000FB1E}, {0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD},
+{0x000102E0, 0x000102E0}, {0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06},
+{0x00010A0C, 0x00010A0F}, {0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6},
+{0x00010D24, 0x00010D27}, {0x00010EAB, 0x00010EAC}, {0x00010F46, 0x00010F50}, {0x00011000, 0x00011002},
+{0x00011038, 0x00011046}, {0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x00011100, 0x00011102},
+{0x00011127, 0x00011134}, {0x00011145, 0x00011146}, {0x00011173, 0x00011173}, {0x00011180, 0x00011182},
+{0x000111B3, 0x000111C0}, {0x000111C9, 0x000111CC}, {0x000111CE, 0x000111CF}, {0x0001122C, 0x00011237},
+{0x0001123E, 0x0001123E}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, {0x0001133B, 0x0001133C},
+{0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, {0x00011357, 0x00011357},
+{0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, {0x00011435, 0x00011446},
+{0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, {0x000115B8, 0x000115C0},
+{0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, {0x0001171D, 0x0001172B},
+{0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, {0x0001193B, 0x0001193E},
+{0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, {0x000119DA, 0x000119E0},
+{0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, {0x00011A3B, 0x00011A3E},
+{0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, {0x00011C2F, 0x00011C36},
+{0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, {0x00011D31, 0x00011D36},
+{0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, {0x00011D47, 0x00011D47},
+{0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, {0x00011EF3, 0x00011EF6},
+{0x00016AF0, 0x00016AF4}, {0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87},
+{0x00016F8F, 0x00016F92}, {0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E},
+{0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, {0x0001D185, 0x0001D18B},
+{0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, {0x0001DA3B, 0x0001DA6C},
+{0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, {0x0001DAA1, 0x0001DAAF},
+{0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, {0x0001E023, 0x0001E024},
+{0x0001E026, 0x0001E02A}, {0x0001E130, 0x0001E136}, {0x0001E2EC, 0x0001E2EF}, {0x0001E8D0, 0x0001E8D6},
+{0x0001E944, 0x0001E94A}, {0x000E0100, 0x000E01EF},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation = {
+{0x00000021, 0x00000023}, {0x00000025, 0x0000002A}, {0x0000002C, 0x0000002F}, {0x0000003A, 0x0000003B},
+{0x0000003F, 0x00000040}, {0x0000005B, 0x0000005D}, {0x0000005F, 0x0000005F}, {0x0000007B, 0x0000007B},
+{0x0000007D, 0x0000007D}, {0x000000A1, 0x000000A1}, {0x000000A7, 0x000000A7}, {0x000000AB, 0x000000AB},
+{0x000000B6, 0x000000B7}, {0x000000BB, 0x000000BB}, {0x000000BF, 0x000000BF}, {0x0000037E, 0x0000037E},
+{0x00000387, 0x00000387}, {0x0000055A, 0x0000055F}, {0x00000589, 0x0000058A}, {0x000005BE, 0x000005BE},
+{0x000005C0, 0x000005C0}, {0x000005C3, 0x000005C3}, {0x000005C6, 0x000005C6}, {0x000005F3, 0x000005F4},
+{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061E, 0x0000061F},
+{0x0000066A, 0x0000066D}, {0x000006D4, 0x000006D4}, {0x00000700, 0x0000070D}, {0x000007F7, 0x000007F9},
+{0x00000830, 0x0000083E}, {0x0000085E, 0x0000085E}, {0x00000964, 0x00000965}, {0x00000970, 0x00000970},
+{0x000009FD, 0x000009FD}, {0x00000A76, 0x00000A76}, {0x00000AF0, 0x00000AF0}, {0x00000C77, 0x00000C77},
+{0x00000C84, 0x00000C84}, {0x00000DF4, 0x00000DF4}, {0x00000E4F, 0x00000E4F}, {0x00000E5A, 0x00000E5B},
+{0x00000F04, 0x00000F12}, {0x00000F14, 0x00000F14}, {0x00000F3A, 0x00000F3D}, {0x00000F85, 0x00000F85},
+{0x00000FD0, 0x00000FD4}, {0x00000FD9, 0x00000FDA}, {0x0000104A, 0x0000104F}, {0x000010FB, 0x000010FB},
+{0x00001360, 0x00001368}, {0x00001400, 0x00001400}, {0x0000166E, 0x0000166E}, {0x0000169B, 0x0000169C},
+{0x000016EB, 0x000016ED}, {0x00001735, 0x00001736}, {0x000017D4, 0x000017D6}, {0x000017D8, 0x000017DA},
+{0x00001800, 0x0000180A}, {0x00001944, 0x00001945}, {0x00001A1E, 0x00001A1F}, {0x00001AA0, 0x00001AA6},
+{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001BFC, 0x00001BFF}, {0x00001C3B, 0x00001C3F},
+{0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, {0x00002010, 0x00002027},
+{0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, {0x0000207D, 0x0000207E},
+{0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, {0x00002768, 0x00002775},
+{0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, {0x000029D8, 0x000029DB},
+{0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, {0x00002D70, 0x00002D70},
+{0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E52}, {0x00003001, 0x00003003},
+{0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, {0x0000303D, 0x0000303D},
+{0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, {0x0000A60D, 0x0000A60F},
+{0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, {0x0000A874, 0x0000A877},
+{0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, {0x0000A92E, 0x0000A92F},
+{0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, {0x0000AA5C, 0x0000AA5F},
+{0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, {0x0000FD3E, 0x0000FD3F},
+{0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, {0x0000FE63, 0x0000FE63},
+{0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, {0x0000FF05, 0x0000FF0A},
+{0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, {0x0000FF3B, 0x0000FF3D},
+{0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, {0x0000FF5F, 0x0000FF65},
+{0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, {0x0001056F, 0x0001056F},
+{0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, {0x00010A50, 0x00010A58},
+{0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, {0x00010B99, 0x00010B9C},
+{0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC},
+{0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, {0x00011174, 0x00011175}, {0x000111C5, 0x000111C8},
+{0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, {0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D},
+{0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, {0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D},
+{0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, {0x00011641, 0x00011643}, {0x00011660, 0x0001166C},
+{0x0001173C, 0x0001173E}, {0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2},
+{0x00011A3F, 0x00011A46}, {0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011C41, 0x00011C45},
+{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011FFF, 0x00011FFF}, {0x00012470, 0x00012474},
+{0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, {0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44},
+{0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, {0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B},
+{0x0001E95E, 0x0001E95F},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol = {
+{0x00000024, 0x00000024}, {0x0000002B, 0x0000002B}, {0x0000003C, 0x0000003E}, {0x0000005E, 0x0000005E},
+{0x00000060, 0x00000060}, {0x0000007C, 0x0000007C}, {0x0000007E, 0x0000007E}, {0x000000A2, 0x000000A6},
+{0x000000A8, 0x000000A9}, {0x000000AC, 0x000000AC}, {0x000000AE, 0x000000B1}, {0x000000B4, 0x000000B4},
+{0x000000B8, 0x000000B8}, {0x000000D7, 0x000000D7}, {0x000000F7, 0x000000F7}, {0x000002C2, 0x000002C5},
+{0x000002D2, 0x000002DF}, {0x000002E5, 0x000002EB}, {0x000002ED, 0x000002ED}, {0x000002EF, 0x000002FF},
+{0x00000375, 0x00000375}, {0x00000384, 0x00000385}, {0x000003F6, 0x000003F6}, {0x00000482, 0x00000482},
+{0x0000058D, 0x0000058F}, {0x00000606, 0x00000608}, {0x0000060B, 0x0000060B}, {0x0000060E, 0x0000060F},
+{0x000006DE, 0x000006DE}, {0x000006E9, 0x000006E9}, {0x000006FD, 0x000006FE}, {0x000007F6, 0x000007F6},
+{0x000007FE, 0x000007FF}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, {0x00000AF1, 0x00000AF1},
+{0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, {0x00000D4F, 0x00000D4F},
+{0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, {0x00000F13, 0x00000F13},
+{0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, {0x00000F36, 0x00000F36},
+{0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, {0x00000FCE, 0x00000FCF},
+{0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, {0x0000166D, 0x0000166D},
+{0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, {0x00001B61, 0x00001B6A},
+{0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, {0x00001FCD, 0x00001FCF},
+{0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, {0x00002044, 0x00002044},
+{0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, {0x000020A0, 0x000020BF},
+{0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, {0x00002114, 0x00002114},
+{0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, {0x00002127, 0x00002127},
+{0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, {0x00002140, 0x00002144},
+{0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, {0x00002190, 0x00002307},
+{0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, {0x0000249C, 0x000024E9},
+{0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, {0x000027F0, 0x00002982},
+{0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, {0x00002B76, 0x00002B95},
+{0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, {0x00002E80, 0x00002E99},
+{0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, {0x00003004, 0x00003004},
+{0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, {0x0000303E, 0x0000303F},
+{0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, {0x000031C0, 0x000031E3},
+{0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, {0x00003260, 0x0000327F},
+{0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, {0x0000A490, 0x0000A4C6},
+{0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, {0x0000A828, 0x0000A82B},
+{0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, {0x0000AB6A, 0x0000AB6B},
+{0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC1}, {0x0000FDFC, 0x0000FDFD}, {0x0000FE62, 0x0000FE62},
+{0x0000FE64, 0x0000FE66}, {0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B},
+{0x0000FF1C, 0x0000FF1E}, {0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C},
+{0x0000FF5E, 0x0000FF5E}, {0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD},
+{0x00010137, 0x0001013F}, {0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C},
+{0x000101A0, 0x000101A0}, {0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8},
+{0x0001173F, 0x0001173F}, {0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45},
+{0x0001BC9C, 0x0001BC9C}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164},
+{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1E8},
+{0x0001D200, 0x0001D241}, {0x0001D245, 0x0001D245}, {0x0001D300, 0x0001D356}, {0x0001D6C1, 0x0001D6C1},
+{0x0001D6DB, 0x0001D6DB}, {0x0001D6FB, 0x0001D6FB}, {0x0001D715, 0x0001D715}, {0x0001D735, 0x0001D735},
+{0x0001D74F, 0x0001D74F}, {0x0001D76F, 0x0001D76F}, {0x0001D789, 0x0001D789}, {0x0001D7A9, 0x0001D7A9},
+{0x0001D7C3, 0x0001D7C3}, {0x0001D800, 0x0001D9FF}, {0x0001DA37, 0x0001DA3A}, {0x0001DA6D, 0x0001DA74},
+{0x0001DA76, 0x0001DA83}, {0x0001DA85, 0x0001DA86}, {0x0001E14F, 0x0001E14F}, {0x0001E2FF, 0x0001E2FF},
+{0x0001ECAC, 0x0001ECAC}, {0x0001ECB0, 0x0001ECB0}, {0x0001ED2E, 0x0001ED2E}, {0x0001EEF0, 0x0001EEF1},
+{0x0001F000, 0x0001F02B}, {0x0001F030, 0x0001F093}, {0x0001F0A0, 0x0001F0AE}, {0x0001F0B1, 0x0001F0BF},
+{0x0001F0C1, 0x0001F0CF}, {0x0001F0D1, 0x0001F0F5}, {0x0001F10D, 0x0001F1AD}, {0x0001F1E6, 0x0001F202},
+{0x0001F210, 0x0001F23B}, {0x0001F240, 0x0001F248}, {0x0001F250, 0x0001F251}, {0x0001F260, 0x0001F265},
+{0x0001F300, 0x0001F6D7}, {0x0001F6E0, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F773},
+{0x0001F780, 0x0001F7D8}, {0x0001F7E0, 0x0001F7EB}, {0x0001F800, 0x0001F80B}, {0x0001F810, 0x0001F847},
+{0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, {0x0001F8B0, 0x0001F8B1},
+{0x0001F900, 0x0001F978}, {0x0001F97A, 0x0001F9CB}, {0x0001F9CD, 0x0001FA53}, {0x0001FA60, 0x0001FA6D},
+{0x0001FA70, 0x0001FA74}, {0x0001FA78, 0x0001FA7A}, {0x0001FA80, 0x0001FA86}, {0x0001FA90, 0x0001FAA8},
+{0x0001FAB0, 0x0001FAB6}, {0x0001FAC0, 0x0001FAC2}, {0x0001FAD0, 0x0001FAD6}, {0x0001FB00, 0x0001FB92},
+{0x0001FB94, 0x0001FBCA},
+};
+
+const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control = {
+{0x00000000, 0x00000008}, {0x0000000E, 0x0000001B}, {0x0000007F, 0x00000084}, {0x00000086, 0x0000009F},
+{0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, {0x00000380, 0x00000383}, {0x0000038B, 0x0000038B},
+{0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, {0x00000530, 0x00000530}, {0x00000557, 0x00000558},
+{0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, {0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE},
+{0x000005F5, 0x00000605}, {0x0000061C, 0x0000061D}, {0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F},
+{0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, {0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F},
+{0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, {0x0000085F, 0x0000085F}, {0x0000086B, 0x0000089F},
+{0x000008B5, 0x000008B5}, {0x000008C8, 0x000008D2}, {0x000008E2, 0x000008E2}, {0x00000984, 0x00000984},
+{0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, {0x000009B1, 0x000009B1},
+{0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, {0x000009C9, 0x000009CA},
+{0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, {0x000009E4, 0x000009E5},
+{0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, {0x00000A11, 0x00000A12},
+{0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, {0x00000A37, 0x00000A37},
+{0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, {0x00000A49, 0x00000A4A},
+{0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, {0x00000A5F, 0x00000A65},
+{0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, {0x00000A92, 0x00000A92},
+{0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, {0x00000ABA, 0x00000ABB},
+{0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, {0x00000AD1, 0x00000ADF},
+{0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, {0x00000B04, 0x00000B04},
+{0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, {0x00000B31, 0x00000B31},
+{0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, {0x00000B49, 0x00000B4A},
+{0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, {0x00000B64, 0x00000B65},
+{0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, {0x00000B91, 0x00000B91},
+{0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, {0x00000BA0, 0x00000BA2},
+{0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, {0x00000BC3, 0x00000BC5},
+{0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, {0x00000BD8, 0x00000BE5},
+{0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, {0x00000C29, 0x00000C29},
+{0x00000C3A, 0x00000C3C}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, {0x00000C4E, 0x00000C54},
+{0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5F}, {0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76},
+{0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, {0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4},
+{0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, {0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4},
+{0x00000CD7, 0x00000CDD}, {0x00000CDF, 0x00000CDF}, {0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0},
+{0x00000CF3, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, {0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45},
+{0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, {0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80},
+{0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, {0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC},
+{0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, {0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5},
+{0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, {0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00},
+{0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, {0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85},
+{0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, {0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF},
+{0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, {0x00000ECE, 0x00000ECF}, {0x00000EDA, 0x00000EDB},
+{0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, {0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98},
+{0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, {0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6},
+{0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, {0x00001249, 0x00001249}, {0x0000124E, 0x0000124F},
+{0x00001257, 0x00001257}, {0x00001259, 0x00001259}, {0x0000125E, 0x0000125F}, {0x00001289, 0x00001289},
+{0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, {0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF},
+{0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, {0x000012D7, 0x000012D7}, {0x00001311, 0x00001311},
+{0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, {0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F},
+{0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, {0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF},
+{0x0000170D, 0x0000170D}, {0x00001715, 0x0000171F}, {0x00001737, 0x0000173F}, {0x00001754, 0x0000175F},
+{0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, {0x000017DE, 0x000017DF},
+{0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180F}, {0x0000181A, 0x0000181F},
+{0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, {0x0000191F, 0x0000191F},
+{0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, {0x0000196E, 0x0000196F},
+{0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, {0x000019DB, 0x000019DD},
+{0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, {0x00001A8A, 0x00001A8F},
+{0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001AC1, 0x00001AFF}, {0x00001B4C, 0x00001B4F},
+{0x00001B7D, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, {0x00001C4A, 0x00001C4C},
+{0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, {0x00001CFB, 0x00001CFF},
+{0x00001DFA, 0x00001DFA}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47},
+{0x00001F4E, 0x00001F4F}, {0x00001F58, 0x00001F58}, {0x00001F5A, 0x00001F5A}, {0x00001F5C, 0x00001F5C},
+{0x00001F5E, 0x00001F5E}, {0x00001F7E, 0x00001F7F}, {0x00001FB5, 0x00001FB5}, {0x00001FC5, 0x00001FC5},
+{0x00001FD4, 0x00001FD5}, {0x00001FDC, 0x00001FDC}, {0x00001FF0, 0x00001FF1}, {0x00001FF5, 0x00001FF5},
+{0x00001FFF, 0x00001FFF}, {0x0000200B, 0x0000200F}, {0x0000202A, 0x0000202E}, {0x00002060, 0x0000206F},
+{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C0, 0x000020CF},
+{0x000020F1, 0x000020FF}, {0x0000218C, 0x0000218F}, {0x00002427, 0x0000243F}, {0x0000244B, 0x0000245F},
+{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002C2F, 0x00002C2F}, {0x00002C5F, 0x00002C5F},
+{0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, {0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F},
+{0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, {0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7},
+{0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, {0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7},
+{0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, {0x00002DDF, 0x00002DDF}, {0x00002E53, 0x00002E7F},
+{0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, {0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF},
+{0x00003040, 0x00003040}, {0x00003097, 0x00003098}, {0x00003100, 0x00003104}, {0x00003130, 0x00003130},
+{0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, {0x0000321F, 0x0000321F}, {0x00009FFD, 0x00009FFF},
+{0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, {0x0000A6F8, 0x0000A6FF},
+{0x0000A7C0, 0x0000A7C1}, {0x0000A7CB, 0x0000A7F4}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F},
+{0x0000A878, 0x0000A87F}, {0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E},
+{0x0000A97D, 0x0000A97F}, {0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF},
+{0x0000AA37, 0x0000AA3F}, {0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA},
+{0x0000AAF7, 0x0000AB00}, {0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F},
+{0x0000AB27, 0x0000AB27}, {0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF},
+{0x0000ABFA, 0x0000ABFF}, {0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000F8FF},
+{0x0000FA6E, 0x0000FA6F}, {0x0000FADA, 0x0000FAFF}, {0x0000FB07, 0x0000FB12}, {0x0000FB18, 0x0000FB1C},
+{0x0000FB37, 0x0000FB37}, {0x0000FB3D, 0x0000FB3D}, {0x0000FB3F, 0x0000FB3F}, {0x0000FB42, 0x0000FB42},
+{0x0000FB45, 0x0000FB45}, {0x0000FBC2, 0x0000FBD2}, {0x0000FD40, 0x0000FD4F}, {0x0000FD90, 0x0000FD91},
+{0x0000FDC8, 0x0000FDEF}, {0x0000FDFE, 0x0000FDFF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53},
+{0x0000FE67, 0x0000FE67}, {0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FF00},
+{0x0000FFBF, 0x0000FFC1}, {0x0000FFC8, 0x0000FFC9}, {0x0000FFD0, 0x0000FFD1}, {0x0000FFD8, 0x0000FFD9},
+{0x0000FFDD, 0x0000FFDF}, {0x0000FFE7, 0x0000FFE7}, {0x0000FFEF, 0x0000FFFB}, {0x0000FFFE, 0x0000FFFF},
+{0x0001000C, 0x0001000C}, {0x00010027, 0x00010027}, {0x0001003B, 0x0001003B}, {0x0001003E, 0x0001003E},
+{0x0001004E, 0x0001004F}, {0x0001005E, 0x0001007F}, {0x000100FB, 0x000100FF}, {0x00010103, 0x00010106},
+{0x00010134, 0x00010136}, {0x0001018F, 0x0001018F}, {0x0001019D, 0x0001019F}, {0x000101A1, 0x000101CF},
+{0x000101FE, 0x0001027F}, {0x0001029D, 0x0001029F}, {0x000102D1, 0x000102DF}, {0x000102FC, 0x000102FF},
+{0x00010324, 0x0001032C}, {0x0001034B, 0x0001034F}, {0x0001037B, 0x0001037F}, {0x0001039E, 0x0001039E},
+{0x000103C4, 0x000103C7}, {0x000103D6, 0x000103FF}, {0x0001049E, 0x0001049F}, {0x000104AA, 0x000104AF},
+{0x000104D4, 0x000104D7}, {0x000104FC, 0x000104FF}, {0x00010528, 0x0001052F}, {0x00010564, 0x0001056E},
+{0x00010570, 0x000105FF}, {0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x000107FF},
+{0x00010806, 0x00010807}, {0x00010809, 0x00010809}, {0x00010836, 0x00010836}, {0x00010839, 0x0001083B},
+{0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, {0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF},
+{0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, {0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E},
+{0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, {0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04},
+{0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, {0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37},
+{0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, {0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF},
+{0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, {0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57},
+{0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, {0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF},
+{0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, {0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F},
+{0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, {0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF},
+{0x00010EB2, 0x00010EFF}, {0x00010F28, 0x00010F2F}, {0x00010F5A, 0x00010FAF}, {0x00010FCC, 0x00010FDF},
+{0x00010FF7, 0x00010FFF}, {0x0001104E, 0x00011051}, {0x00011070, 0x0001107E}, {0x000110BD, 0x000110BD},
+{0x000110C2, 0x000110CF}, {0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135},
+{0x00011148, 0x0001114F}, {0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF},
+{0x00011212, 0x00011212}, {0x0001123F, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289},
+{0x0001128E, 0x0001128E}, {0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF},
+{0x000112FA, 0x000112FF}, {0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312},
+{0x00011329, 0x00011329}, {0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A},
+{0x00011345, 0x00011346}, {0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356},
+{0x00011358, 0x0001135C}, {0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF},
+{0x0001145C, 0x0001145C}, {0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F},
+{0x000115B6, 0x000115B7}, {0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F},
+{0x0001166D, 0x0001167F}, {0x000116B9, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C},
+{0x0001172C, 0x0001172F}, {0x00011740, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE},
+{0x00011907, 0x00011908}, {0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917},
+{0x00011936, 0x00011936}, {0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F},
+{0x000119A8, 0x000119A9}, {0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F},
+{0x00011AA3, 0x00011ABF}, {0x00011AF9, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37},
+{0x00011C46, 0x00011C4F}, {0x00011C6D, 0x00011C6F}, {0x00011C90, 0x00011C91}, {0x00011CA8, 0x00011CA8},
+{0x00011CB7, 0x00011CFF}, {0x00011D07, 0x00011D07}, {0x00011D0A, 0x00011D0A}, {0x00011D37, 0x00011D39},
+{0x00011D3B, 0x00011D3B}, {0x00011D3E, 0x00011D3E}, {0x00011D48, 0x00011D4F}, {0x00011D5A, 0x00011D5F},
+{0x00011D66, 0x00011D66}, {0x00011D69, 0x00011D69}, {0x00011D8F, 0x00011D8F}, {0x00011D92, 0x00011D92},
+{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011FAF}, {0x00011FB1, 0x00011FBF},
+{0x00011FF2, 0x00011FFE}, {0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F},
+{0x00012544, 0x00012FFF}, {0x0001342F, 0x000143FF}, {0x00014647, 0x000167FF}, {0x00016A39, 0x00016A3F},
+{0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016A70, 0x00016ACF}, {0x00016AEE, 0x00016AEF},
+{0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, {0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62},
+{0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, {0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E},
+{0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, {0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF},
+{0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, {0x00018D09, 0x0001AFFF}, {0x0001B11F, 0x0001B14F},
+{0x0001B153, 0x0001B163}, {0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F},
+{0x0001BC7D, 0x0001BC7F}, {0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CFFF},
+{0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, {0x0001D173, 0x0001D17A}, {0x0001D1E9, 0x0001D1FF},
+{0x0001D246, 0x0001D2DF}, {0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF},
+{0x0001D455, 0x0001D455}, {0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4},
+{0x0001D4A7, 0x0001D4A8}, {0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC},
+{0x0001D4C4, 0x0001D4C4}, {0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515},
+{0x0001D51D, 0x0001D51D}, {0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545},
+{0x0001D547, 0x0001D549}, {0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD},
+{0x0001DA8C, 0x0001DA9A}, {0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DFFF}, {0x0001E007, 0x0001E007},
+{0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, {0x0001E02B, 0x0001E0FF},
+{0x0001E12D, 0x0001E12F}, {0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E2BF},
+{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, {0x0001E8D7, 0x0001E8FF},
+{0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, {0x0001ECB5, 0x0001ED00},
+{0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, {0x0001EE23, 0x0001EE23},
+{0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, {0x0001EE38, 0x0001EE38},
+{0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, {0x0001EE48, 0x0001EE48},
+{0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, {0x0001EE53, 0x0001EE53},
+{0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, {0x0001EE5C, 0x0001EE5C},
+{0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, {0x0001EE65, 0x0001EE66},
+{0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, {0x0001EE7D, 0x0001EE7D},
+{0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, {0x0001EEA4, 0x0001EEA4},
+{0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, {0x0001F02C, 0x0001F02F},
+{0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, {0x0001F0D0, 0x0001F0D0},
+{0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, {0x0001F23C, 0x0001F23F},
+{0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, {0x0001F6D8, 0x0001F6DF},
+{0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F774, 0x0001F77F}, {0x0001F7D9, 0x0001F7DF},
+{0x0001F7EC, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, {0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F},
+{0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, {0x0001F8B2, 0x0001F8FF}, {0x0001F979, 0x0001F979},
+{0x0001F9CC, 0x0001F9CC}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA75, 0x0001FA77},
+{0x0001FA7B, 0x0001FA7F}, {0x0001FA87, 0x0001FA8F}, {0x0001FAA9, 0x0001FAAF}, {0x0001FAB7, 0x0001FABF},
+{0x0001FAC3, 0x0001FACF}, {0x0001FAD7, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF},
+{0x0001FBFA, 0x0001FFFF}, {0x0002A6DE, 0x0002A6FF}, {0x0002B735, 0x0002B73F}, {0x0002B81E, 0x0002B81F},
+{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x000E00FF},
+{0x000E01F0, 0x0010FFFF},
+};
+
+const std::multimap<uint32_t, uint32_t> unicode_map_nfd = {
+{0x000000C0, 0x00000041}, {0x000000C0, 0x00000300}, {0x000000C1, 0x00000041}, {0x000000C1, 0x00000301},
+{0x000000C2, 0x00000041}, {0x000000C2, 0x00000302}, {0x000000C3, 0x00000041}, {0x000000C3, 0x00000303},
+{0x000000C4, 0x00000041}, {0x000000C4, 0x00000308}, {0x000000C5, 0x00000041}, {0x000000C5, 0x0000030A},
+{0x000000C7, 0x00000043}, {0x000000C7, 0x00000327}, {0x000000C8, 0x00000045}, {0x000000C8, 0x00000300},
+{0x000000C9, 0x00000045}, {0x000000C9, 0x00000301}, {0x000000CA, 0x00000045}, {0x000000CA, 0x00000302},
+{0x000000CB, 0x00000045}, {0x000000CB, 0x00000308}, {0x000000CC, 0x00000049}, {0x000000CC, 0x00000300},
+{0x000000CD, 0x00000049}, {0x000000CD, 0x00000301}, {0x000000CE, 0x00000049}, {0x000000CE, 0x00000302},
+{0x000000CF, 0x00000049}, {0x000000CF, 0x00000308}, {0x000000D1, 0x0000004E}, {0x000000D1, 0x00000303},
+{0x000000D2, 0x0000004F}, {0x000000D2, 0x00000300}, {0x000000D3, 0x0000004F}, {0x000000D3, 0x00000301},
+{0x000000D4, 0x0000004F}, {0x000000D4, 0x00000302}, {0x000000D5, 0x0000004F}, {0x000000D5, 0x00000303},
+{0x000000D6, 0x0000004F}, {0x000000D6, 0x00000308}, {0x000000D9, 0x00000055}, {0x000000D9, 0x00000300},
+{0x000000DA, 0x00000055}, {0x000000DA, 0x00000301}, {0x000000DB, 0x00000055}, {0x000000DB, 0x00000302},
+{0x000000DC, 0x00000055}, {0x000000DC, 0x00000308}, {0x000000DD, 0x00000059}, {0x000000DD, 0x00000301},
+{0x000000E0, 0x00000061}, {0x000000E0, 0x00000300}, {0x000000E1, 0x00000061}, {0x000000E1, 0x00000301},
+{0x000000E2, 0x00000061}, {0x000000E2, 0x00000302}, {0x000000E3, 0x00000061}, {0x000000E3, 0x00000303},
+{0x000000E4, 0x00000061}, {0x000000E4, 0x00000308}, {0x000000E5, 0x00000061}, {0x000000E5, 0x0000030A},
+{0x000000E7, 0x00000063}, {0x000000E7, 0x00000327}, {0x000000E8, 0x00000065}, {0x000000E8, 0x00000300},
+{0x000000E9, 0x00000065}, {0x000000E9, 0x00000301}, {0x000000EA, 0x00000065}, {0x000000EA, 0x00000302},
+{0x000000EB, 0x00000065}, {0x000000EB, 0x00000308}, {0x000000EC, 0x00000069}, {0x000000EC, 0x00000300},
+{0x000000ED, 0x00000069}, {0x000000ED, 0x00000301}, {0x000000EE, 0x00000069}, {0x000000EE, 0x00000302},
+{0x000000EF, 0x00000069}, {0x000000EF, 0x00000308}, {0x000000F1, 0x0000006E}, {0x000000F1, 0x00000303},
+{0x000000F2, 0x0000006F}, {0x000000F2, 0x00000300}, {0x000000F3, 0x0000006F}, {0x000000F3, 0x00000301},
+{0x000000F4, 0x0000006F}, {0x000000F4, 0x00000302}, {0x000000F5, 0x0000006F}, {0x000000F5, 0x00000303},
+{0x000000F6, 0x0000006F}, {0x000000F6, 0x00000308}, {0x000000F9, 0x00000075}, {0x000000F9, 0x00000300},
+{0x000000FA, 0x00000075}, {0x000000FA, 0x00000301}, {0x000000FB, 0x00000075}, {0x000000FB, 0x00000302},
+{0x000000FC, 0x00000075}, {0x000000FC, 0x00000308}, {0x000000FD, 0x00000079}, {0x000000FD, 0x00000301},
+{0x000000FF, 0x00000079}, {0x000000FF, 0x00000308}, {0x00000100, 0x00000041}, {0x00000100, 0x00000304},
+{0x00000101, 0x00000061}, {0x00000101, 0x00000304}, {0x00000102, 0x00000041}, {0x00000102, 0x00000306},
+{0x00000103, 0x00000061}, {0x00000103, 0x00000306}, {0x00000104, 0x00000041}, {0x00000104, 0x00000328},
+{0x00000105, 0x00000061}, {0x00000105, 0x00000328}, {0x00000106, 0x00000043}, {0x00000106, 0x00000301},
+{0x00000107, 0x00000063}, {0x00000107, 0x00000301}, {0x00000108, 0x00000043}, {0x00000108, 0x00000302},
+{0x00000109, 0x00000063}, {0x00000109, 0x00000302}, {0x0000010A, 0x00000043}, {0x0000010A, 0x00000307},
+{0x0000010B, 0x00000063}, {0x0000010B, 0x00000307}, {0x0000010C, 0x00000043}, {0x0000010C, 0x0000030C},
+{0x0000010D, 0x00000063}, {0x0000010D, 0x0000030C}, {0x0000010E, 0x00000044}, {0x0000010E, 0x0000030C},
+{0x0000010F, 0x00000064}, {0x0000010F, 0x0000030C}, {0x00000112, 0x00000045}, {0x00000112, 0x00000304},
+{0x00000113, 0x00000065}, {0x00000113, 0x00000304}, {0x00000114, 0x00000045}, {0x00000114, 0x00000306},
+{0x00000115, 0x00000065}, {0x00000115, 0x00000306}, {0x00000116, 0x00000045}, {0x00000116, 0x00000307},
+{0x00000117, 0x00000065}, {0x00000117, 0x00000307}, {0x00000118, 0x00000045}, {0x00000118, 0x00000328},
+{0x00000119, 0x00000065}, {0x00000119, 0x00000328}, {0x0000011A, 0x00000045}, {0x0000011A, 0x0000030C},
+{0x0000011B, 0x00000065}, {0x0000011B, 0x0000030C}, {0x0000011C, 0x00000047}, {0x0000011C, 0x00000302},
+{0x0000011D, 0x00000067}, {0x0000011D, 0x00000302}, {0x0000011E, 0x00000047}, {0x0000011E, 0x00000306},
+{0x0000011F, 0x00000067}, {0x0000011F, 0x00000306}, {0x00000120, 0x00000047}, {0x00000120, 0x00000307},
+{0x00000121, 0x00000067}, {0x00000121, 0x00000307}, {0x00000122, 0x00000047}, {0x00000122, 0x00000327},
+{0x00000123, 0x00000067}, {0x00000123, 0x00000327}, {0x00000124, 0x00000048}, {0x00000124, 0x00000302},
+{0x00000125, 0x00000068}, {0x00000125, 0x00000302}, {0x00000128, 0x00000049}, {0x00000128, 0x00000303},
+{0x00000129, 0x00000069}, {0x00000129, 0x00000303}, {0x0000012A, 0x00000049}, {0x0000012A, 0x00000304},
+{0x0000012B, 0x00000069}, {0x0000012B, 0x00000304}, {0x0000012C, 0x00000049}, {0x0000012C, 0x00000306},
+{0x0000012D, 0x00000069}, {0x0000012D, 0x00000306}, {0x0000012E, 0x00000049}, {0x0000012E, 0x00000328},
+{0x0000012F, 0x00000069}, {0x0000012F, 0x00000328}, {0x00000130, 0x00000049}, {0x00000130, 0x00000307},
+{0x00000134, 0x0000004A}, {0x00000134, 0x00000302}, {0x00000135, 0x0000006A}, {0x00000135, 0x00000302},
+{0x00000136, 0x0000004B}, {0x00000136, 0x00000327}, {0x00000137, 0x0000006B}, {0x00000137, 0x00000327},
+{0x00000139, 0x0000004C}, {0x00000139, 0x00000301}, {0x0000013A, 0x0000006C}, {0x0000013A, 0x00000301},
+{0x0000013B, 0x0000004C}, {0x0000013B, 0x00000327}, {0x0000013C, 0x0000006C}, {0x0000013C, 0x00000327},
+{0x0000013D, 0x0000004C}, {0x0000013D, 0x0000030C}, {0x0000013E, 0x0000006C}, {0x0000013E, 0x0000030C},
+{0x00000143, 0x0000004E}, {0x00000143, 0x00000301}, {0x00000144, 0x0000006E}, {0x00000144, 0x00000301},
+{0x00000145, 0x0000004E}, {0x00000145, 0x00000327}, {0x00000146, 0x0000006E}, {0x00000146, 0x00000327},
+{0x00000147, 0x0000004E}, {0x00000147, 0x0000030C}, {0x00000148, 0x0000006E}, {0x00000148, 0x0000030C},
+{0x0000014C, 0x0000004F}, {0x0000014C, 0x00000304}, {0x0000014D, 0x0000006F}, {0x0000014D, 0x00000304},
+{0x0000014E, 0x0000004F}, {0x0000014E, 0x00000306}, {0x0000014F, 0x0000006F}, {0x0000014F, 0x00000306},
+{0x00000150, 0x0000004F}, {0x00000150, 0x0000030B}, {0x00000151, 0x0000006F}, {0x00000151, 0x0000030B},
+{0x00000154, 0x00000052}, {0x00000154, 0x00000301}, {0x00000155, 0x00000072}, {0x00000155, 0x00000301},
+{0x00000156, 0x00000052}, {0x00000156, 0x00000327}, {0x00000157, 0x00000072}, {0x00000157, 0x00000327},
+{0x00000158, 0x00000052}, {0x00000158, 0x0000030C}, {0x00000159, 0x00000072}, {0x00000159, 0x0000030C},
+{0x0000015A, 0x00000053}, {0x0000015A, 0x00000301}, {0x0000015B, 0x00000073}, {0x0000015B, 0x00000301},
+{0x0000015C, 0x00000053}, {0x0000015C, 0x00000302}, {0x0000015D, 0x00000073}, {0x0000015D, 0x00000302},
+{0x0000015E, 0x00000053}, {0x0000015E, 0x00000327}, {0x0000015F, 0x00000073}, {0x0000015F, 0x00000327},
+{0x00000160, 0x00000053}, {0x00000160, 0x0000030C}, {0x00000161, 0x00000073}, {0x00000161, 0x0000030C},
+{0x00000162, 0x00000054}, {0x00000162, 0x00000327}, {0x00000163, 0x00000074}, {0x00000163, 0x00000327},
+{0x00000164, 0x00000054}, {0x00000164, 0x0000030C}, {0x00000165, 0x00000074}, {0x00000165, 0x0000030C},
+{0x00000168, 0x00000055}, {0x00000168, 0x00000303}, {0x00000169, 0x00000075}, {0x00000169, 0x00000303},
+{0x0000016A, 0x00000055}, {0x0000016A, 0x00000304}, {0x0000016B, 0x00000075}, {0x0000016B, 0x00000304},
+{0x0000016C, 0x00000055}, {0x0000016C, 0x00000306}, {0x0000016D, 0x00000075}, {0x0000016D, 0x00000306},
+{0x0000016E, 0x00000055}, {0x0000016E, 0x0000030A}, {0x0000016F, 0x00000075}, {0x0000016F, 0x0000030A},
+{0x00000170, 0x00000055}, {0x00000170, 0x0000030B}, {0x00000171, 0x00000075}, {0x00000171, 0x0000030B},
+{0x00000172, 0x00000055}, {0x00000172, 0x00000328}, {0x00000173, 0x00000075}, {0x00000173, 0x00000328},
+{0x00000174, 0x00000057}, {0x00000174, 0x00000302}, {0x00000175, 0x00000077}, {0x00000175, 0x00000302},
+{0x00000176, 0x00000059}, {0x00000176, 0x00000302}, {0x00000177, 0x00000079}, {0x00000177, 0x00000302},
+{0x00000178, 0x00000059}, {0x00000178, 0x00000308}, {0x00000179, 0x0000005A}, {0x00000179, 0x00000301},
+{0x0000017A, 0x0000007A}, {0x0000017A, 0x00000301}, {0x0000017B, 0x0000005A}, {0x0000017B, 0x00000307},
+{0x0000017C, 0x0000007A}, {0x0000017C, 0x00000307}, {0x0000017D, 0x0000005A}, {0x0000017D, 0x0000030C},
+{0x0000017E, 0x0000007A}, {0x0000017E, 0x0000030C}, {0x000001A0, 0x0000004F}, {0x000001A0, 0x0000031B},
+{0x000001A1, 0x0000006F}, {0x000001A1, 0x0000031B}, {0x000001AF, 0x00000055}, {0x000001AF, 0x0000031B},
+{0x000001B0, 0x00000075}, {0x000001B0, 0x0000031B}, {0x000001CD, 0x00000041}, {0x000001CD, 0x0000030C},
+{0x000001CE, 0x00000061}, {0x000001CE, 0x0000030C}, {0x000001CF, 0x00000049}, {0x000001CF, 0x0000030C},
+{0x000001D0, 0x00000069}, {0x000001D0, 0x0000030C}, {0x000001D1, 0x0000004F}, {0x000001D1, 0x0000030C},
+{0x000001D2, 0x0000006F}, {0x000001D2, 0x0000030C}, {0x000001D3, 0x00000055}, {0x000001D3, 0x0000030C},
+{0x000001D4, 0x00000075}, {0x000001D4, 0x0000030C}, {0x000001D5, 0x00000055}, {0x000001D5, 0x00000308},
+{0x000001D5, 0x00000304}, {0x000001D6, 0x00000075}, {0x000001D6, 0x00000308}, {0x000001D6, 0x00000304},
+{0x000001D7, 0x00000055}, {0x000001D7, 0x00000308}, {0x000001D7, 0x00000301}, {0x000001D8, 0x00000075},
+{0x000001D8, 0x00000308}, {0x000001D8, 0x00000301}, {0x000001D9, 0x00000055}, {0x000001D9, 0x00000308},
+{0x000001D9, 0x0000030C}, {0x000001DA, 0x00000075}, {0x000001DA, 0x00000308}, {0x000001DA, 0x0000030C},
+{0x000001DB, 0x00000055}, {0x000001DB, 0x00000308}, {0x000001DB, 0x00000300}, {0x000001DC, 0x00000075},
+{0x000001DC, 0x00000308}, {0x000001DC, 0x00000300}, {0x000001DE, 0x00000041}, {0x000001DE, 0x00000308},
+{0x000001DE, 0x00000304}, {0x000001DF, 0x00000061}, {0x000001DF, 0x00000308}, {0x000001DF, 0x00000304},
+{0x000001E0, 0x00000041}, {0x000001E0, 0x00000307}, {0x000001E0, 0x00000304}, {0x000001E1, 0x00000061},
+{0x000001E1, 0x00000307}, {0x000001E1, 0x00000304}, {0x000001E2, 0x000000C6}, {0x000001E2, 0x00000304},
+{0x000001E3, 0x000000E6}, {0x000001E3, 0x00000304}, {0x000001E6, 0x00000047}, {0x000001E6, 0x0000030C},
+{0x000001E7, 0x00000067}, {0x000001E7, 0x0000030C}, {0x000001E8, 0x0000004B}, {0x000001E8, 0x0000030C},
+{0x000001E9, 0x0000006B}, {0x000001E9, 0x0000030C}, {0x000001EA, 0x0000004F}, {0x000001EA, 0x00000328},
+{0x000001EB, 0x0000006F}, {0x000001EB, 0x00000328}, {0x000001EC, 0x0000004F}, {0x000001EC, 0x00000328},
+{0x000001EC, 0x00000304}, {0x000001ED, 0x0000006F}, {0x000001ED, 0x00000328}, {0x000001ED, 0x00000304},
+{0x000001EE, 0x000001B7}, {0x000001EE, 0x0000030C}, {0x000001EF, 0x00000292}, {0x000001EF, 0x0000030C},
+{0x000001F0, 0x0000006A}, {0x000001F0, 0x0000030C}, {0x000001F4, 0x00000047}, {0x000001F4, 0x00000301},
+{0x000001F5, 0x00000067}, {0x000001F5, 0x00000301}, {0x000001F8, 0x0000004E}, {0x000001F8, 0x00000300},
+{0x000001F9, 0x0000006E}, {0x000001F9, 0x00000300}, {0x000001FA, 0x00000041}, {0x000001FA, 0x0000030A},
+{0x000001FA, 0x00000301}, {0x000001FB, 0x00000061}, {0x000001FB, 0x0000030A}, {0x000001FB, 0x00000301},
+{0x000001FC, 0x000000C6}, {0x000001FC, 0x00000301}, {0x000001FD, 0x000000E6}, {0x000001FD, 0x00000301},
+{0x000001FE, 0x000000D8}, {0x000001FE, 0x00000301}, {0x000001FF, 0x000000F8}, {0x000001FF, 0x00000301},
+{0x00000200, 0x00000041}, {0x00000200, 0x0000030F}, {0x00000201, 0x00000061}, {0x00000201, 0x0000030F},
+{0x00000202, 0x00000041}, {0x00000202, 0x00000311}, {0x00000203, 0x00000061}, {0x00000203, 0x00000311},
+{0x00000204, 0x00000045}, {0x00000204, 0x0000030F}, {0x00000205, 0x00000065}, {0x00000205, 0x0000030F},
+{0x00000206, 0x00000045}, {0x00000206, 0x00000311}, {0x00000207, 0x00000065}, {0x00000207, 0x00000311},
+{0x00000208, 0x00000049}, {0x00000208, 0x0000030F}, {0x00000209, 0x00000069}, {0x00000209, 0x0000030F},
+{0x0000020A, 0x00000049}, {0x0000020A, 0x00000311}, {0x0000020B, 0x00000069}, {0x0000020B, 0x00000311},
+{0x0000020C, 0x0000004F}, {0x0000020C, 0x0000030F}, {0x0000020D, 0x0000006F}, {0x0000020D, 0x0000030F},
+{0x0000020E, 0x0000004F}, {0x0000020E, 0x00000311}, {0x0000020F, 0x0000006F}, {0x0000020F, 0x00000311},
+{0x00000210, 0x00000052}, {0x00000210, 0x0000030F}, {0x00000211, 0x00000072}, {0x00000211, 0x0000030F},
+{0x00000212, 0x00000052}, {0x00000212, 0x00000311}, {0x00000213, 0x00000072}, {0x00000213, 0x00000311},
+{0x00000214, 0x00000055}, {0x00000214, 0x0000030F}, {0x00000215, 0x00000075}, {0x00000215, 0x0000030F},
+{0x00000216, 0x00000055}, {0x00000216, 0x00000311}, {0x00000217, 0x00000075}, {0x00000217, 0x00000311},
+{0x00000218, 0x00000053}, {0x00000218, 0x00000326}, {0x00000219, 0x00000073}, {0x00000219, 0x00000326},
+{0x0000021A, 0x00000054}, {0x0000021A, 0x00000326}, {0x0000021B, 0x00000074}, {0x0000021B, 0x00000326},
+{0x0000021E, 0x00000048}, {0x0000021E, 0x0000030C}, {0x0000021F, 0x00000068}, {0x0000021F, 0x0000030C},
+{0x00000226, 0x00000041}, {0x00000226, 0x00000307}, {0x00000227, 0x00000061}, {0x00000227, 0x00000307},
+{0x00000228, 0x00000045}, {0x00000228, 0x00000327}, {0x00000229, 0x00000065}, {0x00000229, 0x00000327},
+{0x0000022A, 0x0000004F}, {0x0000022A, 0x00000308}, {0x0000022A, 0x00000304}, {0x0000022B, 0x0000006F},
+{0x0000022B, 0x00000308}, {0x0000022B, 0x00000304}, {0x0000022C, 0x0000004F}, {0x0000022C, 0x00000303},
+{0x0000022C, 0x00000304}, {0x0000022D, 0x0000006F}, {0x0000022D, 0x00000303}, {0x0000022D, 0x00000304},
+{0x0000022E, 0x0000004F}, {0x0000022E, 0x00000307}, {0x0000022F, 0x0000006F}, {0x0000022F, 0x00000307},
+{0x00000230, 0x0000004F}, {0x00000230, 0x00000307}, {0x00000230, 0x00000304}, {0x00000231, 0x0000006F},
+{0x00000231, 0x00000307}, {0x00000231, 0x00000304}, {0x00000232, 0x00000059}, {0x00000232, 0x00000304},
+{0x00000233, 0x00000079}, {0x00000233, 0x00000304}, {0x00000340, 0x00000300}, {0x00000341, 0x00000301},
+{0x00000343, 0x00000313}, {0x00000344, 0x00000308}, {0x00000344, 0x00000301}, {0x00000374, 0x000002B9},
+{0x0000037E, 0x0000003B}, {0x00000385, 0x000000A8}, {0x00000385, 0x00000301}, {0x00000386, 0x00000391},
+{0x00000386, 0x00000301}, {0x00000387, 0x000000B7}, {0x00000388, 0x00000395}, {0x00000388, 0x00000301},
+{0x00000389, 0x00000397}, {0x00000389, 0x00000301}, {0x0000038A, 0x00000399}, {0x0000038A, 0x00000301},
+{0x0000038C, 0x0000039F}, {0x0000038C, 0x00000301}, {0x0000038E, 0x000003A5}, {0x0000038E, 0x00000301},
+{0x0000038F, 0x000003A9}, {0x0000038F, 0x00000301}, {0x00000390, 0x000003B9}, {0x00000390, 0x00000308},
+{0x00000390, 0x00000301}, {0x000003AA, 0x00000399}, {0x000003AA, 0x00000308}, {0x000003AB, 0x000003A5},
+{0x000003AB, 0x00000308}, {0x000003AC, 0x000003B1}, {0x000003AC, 0x00000301}, {0x000003AD, 0x000003B5},
+{0x000003AD, 0x00000301}, {0x000003AE, 0x000003B7}, {0x000003AE, 0x00000301}, {0x000003AF, 0x000003B9},
+{0x000003AF, 0x00000301}, {0x000003B0, 0x000003C5}, {0x000003B0, 0x00000308}, {0x000003B0, 0x00000301},
+{0x000003CA, 0x000003B9}, {0x000003CA, 0x00000308}, {0x000003CB, 0x000003C5}, {0x000003CB, 0x00000308},
+{0x000003CC, 0x000003BF}, {0x000003CC, 0x00000301}, {0x000003CD, 0x000003C5}, {0x000003CD, 0x00000301},
+{0x000003CE, 0x000003C9}, {0x000003CE, 0x00000301}, {0x000003D3, 0x000003D2}, {0x000003D3, 0x00000301},
+{0x000003D4, 0x000003D2}, {0x000003D4, 0x00000308}, {0x00000400, 0x00000415}, {0x00000400, 0x00000300},
+{0x00000401, 0x00000415}, {0x00000401, 0x00000308}, {0x00000403, 0x00000413}, {0x00000403, 0x00000301},
+{0x00000407, 0x00000406}, {0x00000407, 0x00000308}, {0x0000040C, 0x0000041A}, {0x0000040C, 0x00000301},
+{0x0000040D, 0x00000418}, {0x0000040D, 0x00000300}, {0x0000040E, 0x00000423}, {0x0000040E, 0x00000306},
+{0x00000419, 0x00000418}, {0x00000419, 0x00000306}, {0x00000439, 0x00000438}, {0x00000439, 0x00000306},
+{0x00000450, 0x00000435}, {0x00000450, 0x00000300}, {0x00000451, 0x00000435}, {0x00000451, 0x00000308},
+{0x00000453, 0x00000433}, {0x00000453, 0x00000301}, {0x00000457, 0x00000456}, {0x00000457, 0x00000308},
+{0x0000045C, 0x0000043A}, {0x0000045C, 0x00000301}, {0x0000045D, 0x00000438}, {0x0000045D, 0x00000300},
+{0x0000045E, 0x00000443}, {0x0000045E, 0x00000306}, {0x00000476, 0x00000474}, {0x00000476, 0x0000030F},
+{0x00000477, 0x00000475}, {0x00000477, 0x0000030F}, {0x000004C1, 0x00000416}, {0x000004C1, 0x00000306},
+{0x000004C2, 0x00000436}, {0x000004C2, 0x00000306}, {0x000004D0, 0x00000410}, {0x000004D0, 0x00000306},
+{0x000004D1, 0x00000430}, {0x000004D1, 0x00000306}, {0x000004D2, 0x00000410}, {0x000004D2, 0x00000308},
+{0x000004D3, 0x00000430}, {0x000004D3, 0x00000308}, {0x000004D6, 0x00000415}, {0x000004D6, 0x00000306},
+{0x000004D7, 0x00000435}, {0x000004D7, 0x00000306}, {0x000004DA, 0x000004D8}, {0x000004DA, 0x00000308},
+{0x000004DB, 0x000004D9}, {0x000004DB, 0x00000308}, {0x000004DC, 0x00000416}, {0x000004DC, 0x00000308},
+{0x000004DD, 0x00000436}, {0x000004DD, 0x00000308}, {0x000004DE, 0x00000417}, {0x000004DE, 0x00000308},
+{0x000004DF, 0x00000437}, {0x000004DF, 0x00000308}, {0x000004E2, 0x00000418}, {0x000004E2, 0x00000304},
+{0x000004E3, 0x00000438}, {0x000004E3, 0x00000304}, {0x000004E4, 0x00000418}, {0x000004E4, 0x00000308},
+{0x000004E5, 0x00000438}, {0x000004E5, 0x00000308}, {0x000004E6, 0x0000041E}, {0x000004E6, 0x00000308},
+{0x000004E7, 0x0000043E}, {0x000004E7, 0x00000308}, {0x000004EA, 0x000004E8}, {0x000004EA, 0x00000308},
+{0x000004EB, 0x000004E9}, {0x000004EB, 0x00000308}, {0x000004EC, 0x0000042D}, {0x000004EC, 0x00000308},
+{0x000004ED, 0x0000044D}, {0x000004ED, 0x00000308}, {0x000004EE, 0x00000423}, {0x000004EE, 0x00000304},
+{0x000004EF, 0x00000443}, {0x000004EF, 0x00000304}, {0x000004F0, 0x00000423}, {0x000004F0, 0x00000308},
+{0x000004F1, 0x00000443}, {0x000004F1, 0x00000308}, {0x000004F2, 0x00000423}, {0x000004F2, 0x0000030B},
+{0x000004F3, 0x00000443}, {0x000004F3, 0x0000030B}, {0x000004F4, 0x00000427}, {0x000004F4, 0x00000308},
+{0x000004F5, 0x00000447}, {0x000004F5, 0x00000308}, {0x000004F8, 0x0000042B}, {0x000004F8, 0x00000308},
+{0x000004F9, 0x0000044B}, {0x000004F9, 0x00000308}, {0x00000622, 0x00000627}, {0x00000622, 0x00000653},
+{0x00000623, 0x00000627}, {0x00000623, 0x00000654}, {0x00000624, 0x00000648}, {0x00000624, 0x00000654},
+{0x00000625, 0x00000627}, {0x00000625, 0x00000655}, {0x00000626, 0x0000064A}, {0x00000626, 0x00000654},
+{0x000006C0, 0x000006D5}, {0x000006C0, 0x00000654}, {0x000006C2, 0x000006C1}, {0x000006C2, 0x00000654},
+{0x000006D3, 0x000006D2}, {0x000006D3, 0x00000654}, {0x00000929, 0x00000928}, {0x00000929, 0x0000093C},
+{0x00000931, 0x00000930}, {0x00000931, 0x0000093C}, {0x00000934, 0x00000933}, {0x00000934, 0x0000093C},
+{0x00000958, 0x00000915}, {0x00000958, 0x0000093C}, {0x00000959, 0x00000916}, {0x00000959, 0x0000093C},
+{0x0000095A, 0x00000917}, {0x0000095A, 0x0000093C}, {0x0000095B, 0x0000091C}, {0x0000095B, 0x0000093C},
+{0x0000095C, 0x00000921}, {0x0000095C, 0x0000093C}, {0x0000095D, 0x00000922}, {0x0000095D, 0x0000093C},
+{0x0000095E, 0x0000092B}, {0x0000095E, 0x0000093C}, {0x0000095F, 0x0000092F}, {0x0000095F, 0x0000093C},
+{0x000009CB, 0x000009C7}, {0x000009CB, 0x000009BE}, {0x000009CC, 0x000009C7}, {0x000009CC, 0x000009D7},
+{0x000009DC, 0x000009A1}, {0x000009DC, 0x000009BC}, {0x000009DD, 0x000009A2}, {0x000009DD, 0x000009BC},
+{0x000009DF, 0x000009AF}, {0x000009DF, 0x000009BC}, {0x00000A33, 0x00000A32}, {0x00000A33, 0x00000A3C},
+{0x00000A36, 0x00000A38}, {0x00000A36, 0x00000A3C}, {0x00000A59, 0x00000A16}, {0x00000A59, 0x00000A3C},
+{0x00000A5A, 0x00000A17}, {0x00000A5A, 0x00000A3C}, {0x00000A5B, 0x00000A1C}, {0x00000A5B, 0x00000A3C},
+{0x00000A5E, 0x00000A2B}, {0x00000A5E, 0x00000A3C}, {0x00000B48, 0x00000B47}, {0x00000B48, 0x00000B56},
+{0x00000B4B, 0x00000B47}, {0x00000B4B, 0x00000B3E}, {0x00000B4C, 0x00000B47}, {0x00000B4C, 0x00000B57},
+{0x00000B5C, 0x00000B21}, {0x00000B5C, 0x00000B3C}, {0x00000B5D, 0x00000B22}, {0x00000B5D, 0x00000B3C},
+{0x00000B94, 0x00000B92}, {0x00000B94, 0x00000BD7}, {0x00000BCA, 0x00000BC6}, {0x00000BCA, 0x00000BBE},
+{0x00000BCB, 0x00000BC7}, {0x00000BCB, 0x00000BBE}, {0x00000BCC, 0x00000BC6}, {0x00000BCC, 0x00000BD7},
+{0x00000C48, 0x00000C46}, {0x00000C48, 0x00000C56}, {0x00000CC0, 0x00000CBF}, {0x00000CC0, 0x00000CD5},
+{0x00000CC7, 0x00000CC6}, {0x00000CC7, 0x00000CD5}, {0x00000CC8, 0x00000CC6}, {0x00000CC8, 0x00000CD6},
+{0x00000CCA, 0x00000CC6}, {0x00000CCA, 0x00000CC2}, {0x00000CCB, 0x00000CC6}, {0x00000CCB, 0x00000CC2},
+{0x00000CCB, 0x00000CD5}, {0x00000D4A, 0x00000D46}, {0x00000D4A, 0x00000D3E}, {0x00000D4B, 0x00000D47},
+{0x00000D4B, 0x00000D3E}, {0x00000D4C, 0x00000D46}, {0x00000D4C, 0x00000D57}, {0x00000DDA, 0x00000DD9},
+{0x00000DDA, 0x00000DCA}, {0x00000DDC, 0x00000DD9}, {0x00000DDC, 0x00000DCF}, {0x00000DDD, 0x00000DD9},
+{0x00000DDD, 0x00000DCF}, {0x00000DDD, 0x00000DCA}, {0x00000DDE, 0x00000DD9}, {0x00000DDE, 0x00000DDF},
+{0x00000F43, 0x00000F42}, {0x00000F43, 0x00000FB7}, {0x00000F4D, 0x00000F4C}, {0x00000F4D, 0x00000FB7},
+{0x00000F52, 0x00000F51}, {0x00000F52, 0x00000FB7}, {0x00000F57, 0x00000F56}, {0x00000F57, 0x00000FB7},
+{0x00000F5C, 0x00000F5B}, {0x00000F5C, 0x00000FB7}, {0x00000F69, 0x00000F40}, {0x00000F69, 0x00000FB5},
+{0x00000F73, 0x00000F71}, {0x00000F73, 0x00000F72}, {0x00000F75, 0x00000F71}, {0x00000F75, 0x00000F74},
+{0x00000F76, 0x00000FB2}, {0x00000F76, 0x00000F80}, {0x00000F78, 0x00000FB3}, {0x00000F78, 0x00000F80},
+{0x00000F81, 0x00000F71}, {0x00000F81, 0x00000F80}, {0x00000F93, 0x00000F92}, {0x00000F93, 0x00000FB7},
+{0x00000F9D, 0x00000F9C}, {0x00000F9D, 0x00000FB7}, {0x00000FA2, 0x00000FA1}, {0x00000FA2, 0x00000FB7},
+{0x00000FA7, 0x00000FA6}, {0x00000FA7, 0x00000FB7}, {0x00000FAC, 0x00000FAB}, {0x00000FAC, 0x00000FB7},
+{0x00000FB9, 0x00000F90}, {0x00000FB9, 0x00000FB5}, {0x00001026, 0x00001025}, {0x00001026, 0x0000102E},
+{0x00001B06, 0x00001B05}, {0x00001B06, 0x00001B35}, {0x00001B08, 0x00001B07}, {0x00001B08, 0x00001B35},
+{0x00001B0A, 0x00001B09}, {0x00001B0A, 0x00001B35}, {0x00001B0C, 0x00001B0B}, {0x00001B0C, 0x00001B35},
+{0x00001B0E, 0x00001B0D}, {0x00001B0E, 0x00001B35}, {0x00001B12, 0x00001B11}, {0x00001B12, 0x00001B35},
+{0x00001B3B, 0x00001B3A}, {0x00001B3B, 0x00001B35}, {0x00001B3D, 0x00001B3C}, {0x00001B3D, 0x00001B35},
+{0x00001B40, 0x00001B3E}, {0x00001B40, 0x00001B35}, {0x00001B41, 0x00001B3F}, {0x00001B41, 0x00001B35},
+{0x00001B43, 0x00001B42}, {0x00001B43, 0x00001B35}, {0x00001E00, 0x00000041}, {0x00001E00, 0x00000325},
+{0x00001E01, 0x00000061}, {0x00001E01, 0x00000325}, {0x00001E02, 0x00000042}, {0x00001E02, 0x00000307},
+{0x00001E03, 0x00000062}, {0x00001E03, 0x00000307}, {0x00001E04, 0x00000042}, {0x00001E04, 0x00000323},
+{0x00001E05, 0x00000062}, {0x00001E05, 0x00000323}, {0x00001E06, 0x00000042}, {0x00001E06, 0x00000331},
+{0x00001E07, 0x00000062}, {0x00001E07, 0x00000331}, {0x00001E08, 0x00000043}, {0x00001E08, 0x00000327},
+{0x00001E08, 0x00000301}, {0x00001E09, 0x00000063}, {0x00001E09, 0x00000327}, {0x00001E09, 0x00000301},
+{0x00001E0A, 0x00000044}, {0x00001E0A, 0x00000307}, {0x00001E0B, 0x00000064}, {0x00001E0B, 0x00000307},
+{0x00001E0C, 0x00000044}, {0x00001E0C, 0x00000323}, {0x00001E0D, 0x00000064}, {0x00001E0D, 0x00000323},
+{0x00001E0E, 0x00000044}, {0x00001E0E, 0x00000331}, {0x00001E0F, 0x00000064}, {0x00001E0F, 0x00000331},
+{0x00001E10, 0x00000044}, {0x00001E10, 0x00000327}, {0x00001E11, 0x00000064}, {0x00001E11, 0x00000327},
+{0x00001E12, 0x00000044}, {0x00001E12, 0x0000032D}, {0x00001E13, 0x00000064}, {0x00001E13, 0x0000032D},
+{0x00001E14, 0x00000045}, {0x00001E14, 0x00000304}, {0x00001E14, 0x00000300}, {0x00001E15, 0x00000065},
+{0x00001E15, 0x00000304}, {0x00001E15, 0x00000300}, {0x00001E16, 0x00000045}, {0x00001E16, 0x00000304},
+{0x00001E16, 0x00000301}, {0x00001E17, 0x00000065}, {0x00001E17, 0x00000304}, {0x00001E17, 0x00000301},
+{0x00001E18, 0x00000045}, {0x00001E18, 0x0000032D}, {0x00001E19, 0x00000065}, {0x00001E19, 0x0000032D},
+{0x00001E1A, 0x00000045}, {0x00001E1A, 0x00000330}, {0x00001E1B, 0x00000065}, {0x00001E1B, 0x00000330},
+{0x00001E1C, 0x00000045}, {0x00001E1C, 0x00000327}, {0x00001E1C, 0x00000306}, {0x00001E1D, 0x00000065},
+{0x00001E1D, 0x00000327}, {0x00001E1D, 0x00000306}, {0x00001E1E, 0x00000046}, {0x00001E1E, 0x00000307},
+{0x00001E1F, 0x00000066}, {0x00001E1F, 0x00000307}, {0x00001E20, 0x00000047}, {0x00001E20, 0x00000304},
+{0x00001E21, 0x00000067}, {0x00001E21, 0x00000304}, {0x00001E22, 0x00000048}, {0x00001E22, 0x00000307},
+{0x00001E23, 0x00000068}, {0x00001E23, 0x00000307}, {0x00001E24, 0x00000048}, {0x00001E24, 0x00000323},
+{0x00001E25, 0x00000068}, {0x00001E25, 0x00000323}, {0x00001E26, 0x00000048}, {0x00001E26, 0x00000308},
+{0x00001E27, 0x00000068}, {0x00001E27, 0x00000308}, {0x00001E28, 0x00000048}, {0x00001E28, 0x00000327},
+{0x00001E29, 0x00000068}, {0x00001E29, 0x00000327}, {0x00001E2A, 0x00000048}, {0x00001E2A, 0x0000032E},
+{0x00001E2B, 0x00000068}, {0x00001E2B, 0x0000032E}, {0x00001E2C, 0x00000049}, {0x00001E2C, 0x00000330},
+{0x00001E2D, 0x00000069}, {0x00001E2D, 0x00000330}, {0x00001E2E, 0x00000049}, {0x00001E2E, 0x00000308},
+{0x00001E2E, 0x00000301}, {0x00001E2F, 0x00000069}, {0x00001E2F, 0x00000308}, {0x00001E2F, 0x00000301},
+{0x00001E30, 0x0000004B}, {0x00001E30, 0x00000301}, {0x00001E31, 0x0000006B}, {0x00001E31, 0x00000301},
+{0x00001E32, 0x0000004B}, {0x00001E32, 0x00000323}, {0x00001E33, 0x0000006B}, {0x00001E33, 0x00000323},
+{0x00001E34, 0x0000004B}, {0x00001E34, 0x00000331}, {0x00001E35, 0x0000006B}, {0x00001E35, 0x00000331},
+{0x00001E36, 0x0000004C}, {0x00001E36, 0x00000323}, {0x00001E37, 0x0000006C}, {0x00001E37, 0x00000323},
+{0x00001E38, 0x0000004C}, {0x00001E38, 0x00000323}, {0x00001E38, 0x00000304}, {0x00001E39, 0x0000006C},
+{0x00001E39, 0x00000323}, {0x00001E39, 0x00000304}, {0x00001E3A, 0x0000004C}, {0x00001E3A, 0x00000331},
+{0x00001E3B, 0x0000006C}, {0x00001E3B, 0x00000331}, {0x00001E3C, 0x0000004C}, {0x00001E3C, 0x0000032D},
+{0x00001E3D, 0x0000006C}, {0x00001E3D, 0x0000032D}, {0x00001E3E, 0x0000004D}, {0x00001E3E, 0x00000301},
+{0x00001E3F, 0x0000006D}, {0x00001E3F, 0x00000301}, {0x00001E40, 0x0000004D}, {0x00001E40, 0x00000307},
+{0x00001E41, 0x0000006D}, {0x00001E41, 0x00000307}, {0x00001E42, 0x0000004D}, {0x00001E42, 0x00000323},
+{0x00001E43, 0x0000006D}, {0x00001E43, 0x00000323}, {0x00001E44, 0x0000004E}, {0x00001E44, 0x00000307},
+{0x00001E45, 0x0000006E}, {0x00001E45, 0x00000307}, {0x00001E46, 0x0000004E}, {0x00001E46, 0x00000323},
+{0x00001E47, 0x0000006E}, {0x00001E47, 0x00000323}, {0x00001E48, 0x0000004E}, {0x00001E48, 0x00000331},
+{0x00001E49, 0x0000006E}, {0x00001E49, 0x00000331}, {0x00001E4A, 0x0000004E}, {0x00001E4A, 0x0000032D},
+{0x00001E4B, 0x0000006E}, {0x00001E4B, 0x0000032D}, {0x00001E4C, 0x0000004F}, {0x00001E4C, 0x00000303},
+{0x00001E4C, 0x00000301}, {0x00001E4D, 0x0000006F}, {0x00001E4D, 0x00000303}, {0x00001E4D, 0x00000301},
+{0x00001E4E, 0x0000004F}, {0x00001E4E, 0x00000303}, {0x00001E4E, 0x00000308}, {0x00001E4F, 0x0000006F},
+{0x00001E4F, 0x00000303}, {0x00001E4F, 0x00000308}, {0x00001E50, 0x0000004F}, {0x00001E50, 0x00000304},
+{0x00001E50, 0x00000300}, {0x00001E51, 0x0000006F}, {0x00001E51, 0x00000304}, {0x00001E51, 0x00000300},
+{0x00001E52, 0x0000004F}, {0x00001E52, 0x00000304}, {0x00001E52, 0x00000301}, {0x00001E53, 0x0000006F},
+{0x00001E53, 0x00000304}, {0x00001E53, 0x00000301}, {0x00001E54, 0x00000050}, {0x00001E54, 0x00000301},
+{0x00001E55, 0x00000070}, {0x00001E55, 0x00000301}, {0x00001E56, 0x00000050}, {0x00001E56, 0x00000307},
+{0x00001E57, 0x00000070}, {0x00001E57, 0x00000307}, {0x00001E58, 0x00000052}, {0x00001E58, 0x00000307},
+{0x00001E59, 0x00000072}, {0x00001E59, 0x00000307}, {0x00001E5A, 0x00000052}, {0x00001E5A, 0x00000323},
+{0x00001E5B, 0x00000072}, {0x00001E5B, 0x00000323}, {0x00001E5C, 0x00000052}, {0x00001E5C, 0x00000323},
+{0x00001E5C, 0x00000304}, {0x00001E5D, 0x00000072}, {0x00001E5D, 0x00000323}, {0x00001E5D, 0x00000304},
+{0x00001E5E, 0x00000052}, {0x00001E5E, 0x00000331}, {0x00001E5F, 0x00000072}, {0x00001E5F, 0x00000331},
+{0x00001E60, 0x00000053}, {0x00001E60, 0x00000307}, {0x00001E61, 0x00000073}, {0x00001E61, 0x00000307},
+{0x00001E62, 0x00000053}, {0x00001E62, 0x00000323}, {0x00001E63, 0x00000073}, {0x00001E63, 0x00000323},
+{0x00001E64, 0x00000053}, {0x00001E64, 0x00000301}, {0x00001E64, 0x00000307}, {0x00001E65, 0x00000073},
+{0x00001E65, 0x00000301}, {0x00001E65, 0x00000307}, {0x00001E66, 0x00000053}, {0x00001E66, 0x0000030C},
+{0x00001E66, 0x00000307}, {0x00001E67, 0x00000073}, {0x00001E67, 0x0000030C}, {0x00001E67, 0x00000307},
+{0x00001E68, 0x00000053}, {0x00001E68, 0x00000323}, {0x00001E68, 0x00000307}, {0x00001E69, 0x00000073},
+{0x00001E69, 0x00000323}, {0x00001E69, 0x00000307}, {0x00001E6A, 0x00000054}, {0x00001E6A, 0x00000307},
+{0x00001E6B, 0x00000074}, {0x00001E6B, 0x00000307}, {0x00001E6C, 0x00000054}, {0x00001E6C, 0x00000323},
+{0x00001E6D, 0x00000074}, {0x00001E6D, 0x00000323}, {0x00001E6E, 0x00000054}, {0x00001E6E, 0x00000331},
+{0x00001E6F, 0x00000074}, {0x00001E6F, 0x00000331}, {0x00001E70, 0x00000054}, {0x00001E70, 0x0000032D},
+{0x00001E71, 0x00000074}, {0x00001E71, 0x0000032D}, {0x00001E72, 0x00000055}, {0x00001E72, 0x00000324},
+{0x00001E73, 0x00000075}, {0x00001E73, 0x00000324}, {0x00001E74, 0x00000055}, {0x00001E74, 0x00000330},
+{0x00001E75, 0x00000075}, {0x00001E75, 0x00000330}, {0x00001E76, 0x00000055}, {0x00001E76, 0x0000032D},
+{0x00001E77, 0x00000075}, {0x00001E77, 0x0000032D}, {0x00001E78, 0x00000055}, {0x00001E78, 0x00000303},
+{0x00001E78, 0x00000301}, {0x00001E79, 0x00000075}, {0x00001E79, 0x00000303}, {0x00001E79, 0x00000301},
+{0x00001E7A, 0x00000055}, {0x00001E7A, 0x00000304}, {0x00001E7A, 0x00000308}, {0x00001E7B, 0x00000075},
+{0x00001E7B, 0x00000304}, {0x00001E7B, 0x00000308}, {0x00001E7C, 0x00000056}, {0x00001E7C, 0x00000303},
+{0x00001E7D, 0x00000076}, {0x00001E7D, 0x00000303}, {0x00001E7E, 0x00000056}, {0x00001E7E, 0x00000323},
+{0x00001E7F, 0x00000076}, {0x00001E7F, 0x00000323}, {0x00001E80, 0x00000057}, {0x00001E80, 0x00000300},
+{0x00001E81, 0x00000077}, {0x00001E81, 0x00000300}, {0x00001E82, 0x00000057}, {0x00001E82, 0x00000301},
+{0x00001E83, 0x00000077}, {0x00001E83, 0x00000301}, {0x00001E84, 0x00000057}, {0x00001E84, 0x00000308},
+{0x00001E85, 0x00000077}, {0x00001E85, 0x00000308}, {0x00001E86, 0x00000057}, {0x00001E86, 0x00000307},
+{0x00001E87, 0x00000077}, {0x00001E87, 0x00000307}, {0x00001E88, 0x00000057}, {0x00001E88, 0x00000323},
+{0x00001E89, 0x00000077}, {0x00001E89, 0x00000323}, {0x00001E8A, 0x00000058}, {0x00001E8A, 0x00000307},
+{0x00001E8B, 0x00000078}, {0x00001E8B, 0x00000307}, {0x00001E8C, 0x00000058}, {0x00001E8C, 0x00000308},
+{0x00001E8D, 0x00000078}, {0x00001E8D, 0x00000308}, {0x00001E8E, 0x00000059}, {0x00001E8E, 0x00000307},
+{0x00001E8F, 0x00000079}, {0x00001E8F, 0x00000307}, {0x00001E90, 0x0000005A}, {0x00001E90, 0x00000302},
+{0x00001E91, 0x0000007A}, {0x00001E91, 0x00000302}, {0x00001E92, 0x0000005A}, {0x00001E92, 0x00000323},
+{0x00001E93, 0x0000007A}, {0x00001E93, 0x00000323}, {0x00001E94, 0x0000005A}, {0x00001E94, 0x00000331},
+{0x00001E95, 0x0000007A}, {0x00001E95, 0x00000331}, {0x00001E96, 0x00000068}, {0x00001E96, 0x00000331},
+{0x00001E97, 0x00000074}, {0x00001E97, 0x00000308}, {0x00001E98, 0x00000077}, {0x00001E98, 0x0000030A},
+{0x00001E99, 0x00000079}, {0x00001E99, 0x0000030A}, {0x00001E9B, 0x0000017F}, {0x00001E9B, 0x00000307},
+{0x00001EA0, 0x00000041}, {0x00001EA0, 0x00000323}, {0x00001EA1, 0x00000061}, {0x00001EA1, 0x00000323},
+{0x00001EA2, 0x00000041}, {0x00001EA2, 0x00000309}, {0x00001EA3, 0x00000061}, {0x00001EA3, 0x00000309},
+{0x00001EA4, 0x00000041}, {0x00001EA4, 0x00000302}, {0x00001EA4, 0x00000301}, {0x00001EA5, 0x00000061},
+{0x00001EA5, 0x00000302}, {0x00001EA5, 0x00000301}, {0x00001EA6, 0x00000041}, {0x00001EA6, 0x00000302},
+{0x00001EA6, 0x00000300}, {0x00001EA7, 0x00000061}, {0x00001EA7, 0x00000302}, {0x00001EA7, 0x00000300},
+{0x00001EA8, 0x00000041}, {0x00001EA8, 0x00000302}, {0x00001EA8, 0x00000309}, {0x00001EA9, 0x00000061},
+{0x00001EA9, 0x00000302}, {0x00001EA9, 0x00000309}, {0x00001EAA, 0x00000041}, {0x00001EAA, 0x00000302},
+{0x00001EAA, 0x00000303}, {0x00001EAB, 0x00000061}, {0x00001EAB, 0x00000302}, {0x00001EAB, 0x00000303},
+{0x00001EAC, 0x00000041}, {0x00001EAC, 0x00000323}, {0x00001EAC, 0x00000302}, {0x00001EAD, 0x00000061},
+{0x00001EAD, 0x00000323}, {0x00001EAD, 0x00000302}, {0x00001EAE, 0x00000041}, {0x00001EAE, 0x00000306},
+{0x00001EAE, 0x00000301}, {0x00001EAF, 0x00000061}, {0x00001EAF, 0x00000306}, {0x00001EAF, 0x00000301},
+{0x00001EB0, 0x00000041}, {0x00001EB0, 0x00000306}, {0x00001EB0, 0x00000300}, {0x00001EB1, 0x00000061},
+{0x00001EB1, 0x00000306}, {0x00001EB1, 0x00000300}, {0x00001EB2, 0x00000041}, {0x00001EB2, 0x00000306},
+{0x00001EB2, 0x00000309}, {0x00001EB3, 0x00000061}, {0x00001EB3, 0x00000306}, {0x00001EB3, 0x00000309},
+{0x00001EB4, 0x00000041}, {0x00001EB4, 0x00000306}, {0x00001EB4, 0x00000303}, {0x00001EB5, 0x00000061},
+{0x00001EB5, 0x00000306}, {0x00001EB5, 0x00000303}, {0x00001EB6, 0x00000041}, {0x00001EB6, 0x00000323},
+{0x00001EB6, 0x00000306}, {0x00001EB7, 0x00000061}, {0x00001EB7, 0x00000323}, {0x00001EB7, 0x00000306},
+{0x00001EB8, 0x00000045}, {0x00001EB8, 0x00000323}, {0x00001EB9, 0x00000065}, {0x00001EB9, 0x00000323},
+{0x00001EBA, 0x00000045}, {0x00001EBA, 0x00000309}, {0x00001EBB, 0x00000065}, {0x00001EBB, 0x00000309},
+{0x00001EBC, 0x00000045}, {0x00001EBC, 0x00000303}, {0x00001EBD, 0x00000065}, {0x00001EBD, 0x00000303},
+{0x00001EBE, 0x00000045}, {0x00001EBE, 0x00000302}, {0x00001EBE, 0x00000301}, {0x00001EBF, 0x00000065},
+{0x00001EBF, 0x00000302}, {0x00001EBF, 0x00000301}, {0x00001EC0, 0x00000045}, {0x00001EC0, 0x00000302},
+{0x00001EC0, 0x00000300}, {0x00001EC1, 0x00000065}, {0x00001EC1, 0x00000302}, {0x00001EC1, 0x00000300},
+{0x00001EC2, 0x00000045}, {0x00001EC2, 0x00000302}, {0x00001EC2, 0x00000309}, {0x00001EC3, 0x00000065},
+{0x00001EC3, 0x00000302}, {0x00001EC3, 0x00000309}, {0x00001EC4, 0x00000045}, {0x00001EC4, 0x00000302},
+{0x00001EC4, 0x00000303}, {0x00001EC5, 0x00000065}, {0x00001EC5, 0x00000302}, {0x00001EC5, 0x00000303},
+{0x00001EC6, 0x00000045}, {0x00001EC6, 0x00000323}, {0x00001EC6, 0x00000302}, {0x00001EC7, 0x00000065},
+{0x00001EC7, 0x00000323}, {0x00001EC7, 0x00000302}, {0x00001EC8, 0x00000049}, {0x00001EC8, 0x00000309},
+{0x00001EC9, 0x00000069}, {0x00001EC9, 0x00000309}, {0x00001ECA, 0x00000049}, {0x00001ECA, 0x00000323},
+{0x00001ECB, 0x00000069}, {0x00001ECB, 0x00000323}, {0x00001ECC, 0x0000004F}, {0x00001ECC, 0x00000323},
+{0x00001ECD, 0x0000006F}, {0x00001ECD, 0x00000323}, {0x00001ECE, 0x0000004F}, {0x00001ECE, 0x00000309},
+{0x00001ECF, 0x0000006F}, {0x00001ECF, 0x00000309}, {0x00001ED0, 0x0000004F}, {0x00001ED0, 0x00000302},
+{0x00001ED0, 0x00000301}, {0x00001ED1, 0x0000006F}, {0x00001ED1, 0x00000302}, {0x00001ED1, 0x00000301},
+{0x00001ED2, 0x0000004F}, {0x00001ED2, 0x00000302}, {0x00001ED2, 0x00000300}, {0x00001ED3, 0x0000006F},
+{0x00001ED3, 0x00000302}, {0x00001ED3, 0x00000300}, {0x00001ED4, 0x0000004F}, {0x00001ED4, 0x00000302},
+{0x00001ED4, 0x00000309}, {0x00001ED5, 0x0000006F}, {0x00001ED5, 0x00000302}, {0x00001ED5, 0x00000309},
+{0x00001ED6, 0x0000004F}, {0x00001ED6, 0x00000302}, {0x00001ED6, 0x00000303}, {0x00001ED7, 0x0000006F},
+{0x00001ED7, 0x00000302}, {0x00001ED7, 0x00000303}, {0x00001ED8, 0x0000004F}, {0x00001ED8, 0x00000323},
+{0x00001ED8, 0x00000302}, {0x00001ED9, 0x0000006F}, {0x00001ED9, 0x00000323}, {0x00001ED9, 0x00000302},
+{0x00001EDA, 0x0000004F}, {0x00001EDA, 0x0000031B}, {0x00001EDA, 0x00000301}, {0x00001EDB, 0x0000006F},
+{0x00001EDB, 0x0000031B}, {0x00001EDB, 0x00000301}, {0x00001EDC, 0x0000004F}, {0x00001EDC, 0x0000031B},
+{0x00001EDC, 0x00000300}, {0x00001EDD, 0x0000006F}, {0x00001EDD, 0x0000031B}, {0x00001EDD, 0x00000300},
+{0x00001EDE, 0x0000004F}, {0x00001EDE, 0x0000031B}, {0x00001EDE, 0x00000309}, {0x00001EDF, 0x0000006F},
+{0x00001EDF, 0x0000031B}, {0x00001EDF, 0x00000309}, {0x00001EE0, 0x0000004F}, {0x00001EE0, 0x0000031B},
+{0x00001EE0, 0x00000303}, {0x00001EE1, 0x0000006F}, {0x00001EE1, 0x0000031B}, {0x00001EE1, 0x00000303},
+{0x00001EE2, 0x0000004F}, {0x00001EE2, 0x0000031B}, {0x00001EE2, 0x00000323}, {0x00001EE3, 0x0000006F},
+{0x00001EE3, 0x0000031B}, {0x00001EE3, 0x00000323}, {0x00001EE4, 0x00000055}, {0x00001EE4, 0x00000323},
+{0x00001EE5, 0x00000075}, {0x00001EE5, 0x00000323}, {0x00001EE6, 0x00000055}, {0x00001EE6, 0x00000309},
+{0x00001EE7, 0x00000075}, {0x00001EE7, 0x00000309}, {0x00001EE8, 0x00000055}, {0x00001EE8, 0x0000031B},
+{0x00001EE8, 0x00000301}, {0x00001EE9, 0x00000075}, {0x00001EE9, 0x0000031B}, {0x00001EE9, 0x00000301},
+{0x00001EEA, 0x00000055}, {0x00001EEA, 0x0000031B}, {0x00001EEA, 0x00000300}, {0x00001EEB, 0x00000075},
+{0x00001EEB, 0x0000031B}, {0x00001EEB, 0x00000300}, {0x00001EEC, 0x00000055}, {0x00001EEC, 0x0000031B},
+{0x00001EEC, 0x00000309}, {0x00001EED, 0x00000075}, {0x00001EED, 0x0000031B}, {0x00001EED, 0x00000309},
+{0x00001EEE, 0x00000055}, {0x00001EEE, 0x0000031B}, {0x00001EEE, 0x00000303}, {0x00001EEF, 0x00000075},
+{0x00001EEF, 0x0000031B}, {0x00001EEF, 0x00000303}, {0x00001EF0, 0x00000055}, {0x00001EF0, 0x0000031B},
+{0x00001EF0, 0x00000323}, {0x00001EF1, 0x00000075}, {0x00001EF1, 0x0000031B}, {0x00001EF1, 0x00000323},
+{0x00001EF2, 0x00000059}, {0x00001EF2, 0x00000300}, {0x00001EF3, 0x00000079}, {0x00001EF3, 0x00000300},
+{0x00001EF4, 0x00000059}, {0x00001EF4, 0x00000323}, {0x00001EF5, 0x00000079}, {0x00001EF5, 0x00000323},
+{0x00001EF6, 0x00000059}, {0x00001EF6, 0x00000309}, {0x00001EF7, 0x00000079}, {0x00001EF7, 0x00000309},
+{0x00001EF8, 0x00000059}, {0x00001EF8, 0x00000303}, {0x00001EF9, 0x00000079}, {0x00001EF9, 0x00000303},
+{0x00001F00, 0x000003B1}, {0x00001F00, 0x00000313}, {0x00001F01, 0x000003B1}, {0x00001F01, 0x00000314},
+{0x00001F02, 0x000003B1}, {0x00001F02, 0x00000313}, {0x00001F02, 0x00000300}, {0x00001F03, 0x000003B1},
+{0x00001F03, 0x00000314}, {0x00001F03, 0x00000300}, {0x00001F04, 0x000003B1}, {0x00001F04, 0x00000313},
+{0x00001F04, 0x00000301}, {0x00001F05, 0x000003B1}, {0x00001F05, 0x00000314}, {0x00001F05, 0x00000301},
+{0x00001F06, 0x000003B1}, {0x00001F06, 0x00000313}, {0x00001F06, 0x00000342}, {0x00001F07, 0x000003B1},
+{0x00001F07, 0x00000314}, {0x00001F07, 0x00000342}, {0x00001F08, 0x00000391}, {0x00001F08, 0x00000313},
+{0x00001F09, 0x00000391}, {0x00001F09, 0x00000314}, {0x00001F0A, 0x00000391}, {0x00001F0A, 0x00000313},
+{0x00001F0A, 0x00000300}, {0x00001F0B, 0x00000391}, {0x00001F0B, 0x00000314}, {0x00001F0B, 0x00000300},
+{0x00001F0C, 0x00000391}, {0x00001F0C, 0x00000313}, {0x00001F0C, 0x00000301}, {0x00001F0D, 0x00000391},
+{0x00001F0D, 0x00000314}, {0x00001F0D, 0x00000301}, {0x00001F0E, 0x00000391}, {0x00001F0E, 0x00000313},
+{0x00001F0E, 0x00000342}, {0x00001F0F, 0x00000391}, {0x00001F0F, 0x00000314}, {0x00001F0F, 0x00000342},
+{0x00001F10, 0x000003B5}, {0x00001F10, 0x00000313}, {0x00001F11, 0x000003B5}, {0x00001F11, 0x00000314},
+{0x00001F12, 0x000003B5}, {0x00001F12, 0x00000313}, {0x00001F12, 0x00000300}, {0x00001F13, 0x000003B5},
+{0x00001F13, 0x00000314}, {0x00001F13, 0x00000300}, {0x00001F14, 0x000003B5}, {0x00001F14, 0x00000313},
+{0x00001F14, 0x00000301}, {0x00001F15, 0x000003B5}, {0x00001F15, 0x00000314}, {0x00001F15, 0x00000301},
+{0x00001F18, 0x00000395}, {0x00001F18, 0x00000313}, {0x00001F19, 0x00000395}, {0x00001F19, 0x00000314},
+{0x00001F1A, 0x00000395}, {0x00001F1A, 0x00000313}, {0x00001F1A, 0x00000300}, {0x00001F1B, 0x00000395},
+{0x00001F1B, 0x00000314}, {0x00001F1B, 0x00000300}, {0x00001F1C, 0x00000395}, {0x00001F1C, 0x00000313},
+{0x00001F1C, 0x00000301}, {0x00001F1D, 0x00000395}, {0x00001F1D, 0x00000314}, {0x00001F1D, 0x00000301},
+{0x00001F20, 0x000003B7}, {0x00001F20, 0x00000313}, {0x00001F21, 0x000003B7}, {0x00001F21, 0x00000314},
+{0x00001F22, 0x000003B7}, {0x00001F22, 0x00000313}, {0x00001F22, 0x00000300}, {0x00001F23, 0x000003B7},
+{0x00001F23, 0x00000314}, {0x00001F23, 0x00000300}, {0x00001F24, 0x000003B7}, {0x00001F24, 0x00000313},
+{0x00001F24, 0x00000301}, {0x00001F25, 0x000003B7}, {0x00001F25, 0x00000314}, {0x00001F25, 0x00000301},
+{0x00001F26, 0x000003B7}, {0x00001F26, 0x00000313}, {0x00001F26, 0x00000342}, {0x00001F27, 0x000003B7},
+{0x00001F27, 0x00000314}, {0x00001F27, 0x00000342}, {0x00001F28, 0x00000397}, {0x00001F28, 0x00000313},
+{0x00001F29, 0x00000397}, {0x00001F29, 0x00000314}, {0x00001F2A, 0x00000397}, {0x00001F2A, 0x00000313},
+{0x00001F2A, 0x00000300}, {0x00001F2B, 0x00000397}, {0x00001F2B, 0x00000314}, {0x00001F2B, 0x00000300},
+{0x00001F2C, 0x00000397}, {0x00001F2C, 0x00000313}, {0x00001F2C, 0x00000301}, {0x00001F2D, 0x00000397},
+{0x00001F2D, 0x00000314}, {0x00001F2D, 0x00000301}, {0x00001F2E, 0x00000397}, {0x00001F2E, 0x00000313},
+{0x00001F2E, 0x00000342}, {0x00001F2F, 0x00000397}, {0x00001F2F, 0x00000314}, {0x00001F2F, 0x00000342},
+{0x00001F30, 0x000003B9}, {0x00001F30, 0x00000313}, {0x00001F31, 0x000003B9}, {0x00001F31, 0x00000314},
+{0x00001F32, 0x000003B9}, {0x00001F32, 0x00000313}, {0x00001F32, 0x00000300}, {0x00001F33, 0x000003B9},
+{0x00001F33, 0x00000314}, {0x00001F33, 0x00000300}, {0x00001F34, 0x000003B9}, {0x00001F34, 0x00000313},
+{0x00001F34, 0x00000301}, {0x00001F35, 0x000003B9}, {0x00001F35, 0x00000314}, {0x00001F35, 0x00000301},
+{0x00001F36, 0x000003B9}, {0x00001F36, 0x00000313}, {0x00001F36, 0x00000342}, {0x00001F37, 0x000003B9},
+{0x00001F37, 0x00000314}, {0x00001F37, 0x00000342}, {0x00001F38, 0x00000399}, {0x00001F38, 0x00000313},
+{0x00001F39, 0x00000399}, {0x00001F39, 0x00000314}, {0x00001F3A, 0x00000399}, {0x00001F3A, 0x00000313},
+{0x00001F3A, 0x00000300}, {0x00001F3B, 0x00000399}, {0x00001F3B, 0x00000314}, {0x00001F3B, 0x00000300},
+{0x00001F3C, 0x00000399}, {0x00001F3C, 0x00000313}, {0x00001F3C, 0x00000301}, {0x00001F3D, 0x00000399},
+{0x00001F3D, 0x00000314}, {0x00001F3D, 0x00000301}, {0x00001F3E, 0x00000399}, {0x00001F3E, 0x00000313},
+{0x00001F3E, 0x00000342}, {0x00001F3F, 0x00000399}, {0x00001F3F, 0x00000314}, {0x00001F3F, 0x00000342},
+{0x00001F40, 0x000003BF}, {0x00001F40, 0x00000313}, {0x00001F41, 0x000003BF}, {0x00001F41, 0x00000314},
+{0x00001F42, 0x000003BF}, {0x00001F42, 0x00000313}, {0x00001F42, 0x00000300}, {0x00001F43, 0x000003BF},
+{0x00001F43, 0x00000314}, {0x00001F43, 0x00000300}, {0x00001F44, 0x000003BF}, {0x00001F44, 0x00000313},
+{0x00001F44, 0x00000301}, {0x00001F45, 0x000003BF}, {0x00001F45, 0x00000314}, {0x00001F45, 0x00000301},
+{0x00001F48, 0x0000039F}, {0x00001F48, 0x00000313}, {0x00001F49, 0x0000039F}, {0x00001F49, 0x00000314},
+{0x00001F4A, 0x0000039F}, {0x00001F4A, 0x00000313}, {0x00001F4A, 0x00000300}, {0x00001F4B, 0x0000039F},
+{0x00001F4B, 0x00000314}, {0x00001F4B, 0x00000300}, {0x00001F4C, 0x0000039F}, {0x00001F4C, 0x00000313},
+{0x00001F4C, 0x00000301}, {0x00001F4D, 0x0000039F}, {0x00001F4D, 0x00000314}, {0x00001F4D, 0x00000301},
+{0x00001F50, 0x000003C5}, {0x00001F50, 0x00000313}, {0x00001F51, 0x000003C5}, {0x00001F51, 0x00000314},
+{0x00001F52, 0x000003C5}, {0x00001F52, 0x00000313}, {0x00001F52, 0x00000300}, {0x00001F53, 0x000003C5},
+{0x00001F53, 0x00000314}, {0x00001F53, 0x00000300}, {0x00001F54, 0x000003C5}, {0x00001F54, 0x00000313},
+{0x00001F54, 0x00000301}, {0x00001F55, 0x000003C5}, {0x00001F55, 0x00000314}, {0x00001F55, 0x00000301},
+{0x00001F56, 0x000003C5}, {0x00001F56, 0x00000313}, {0x00001F56, 0x00000342}, {0x00001F57, 0x000003C5},
+{0x00001F57, 0x00000314}, {0x00001F57, 0x00000342}, {0x00001F59, 0x000003A5}, {0x00001F59, 0x00000314},
+{0x00001F5B, 0x000003A5}, {0x00001F5B, 0x00000314}, {0x00001F5B, 0x00000300}, {0x00001F5D, 0x000003A5},
+{0x00001F5D, 0x00000314}, {0x00001F5D, 0x00000301}, {0x00001F5F, 0x000003A5}, {0x00001F5F, 0x00000314},
+{0x00001F5F, 0x00000342}, {0x00001F60, 0x000003C9}, {0x00001F60, 0x00000313}, {0x00001F61, 0x000003C9},
+{0x00001F61, 0x00000314}, {0x00001F62, 0x000003C9}, {0x00001F62, 0x00000313}, {0x00001F62, 0x00000300},
+{0x00001F63, 0x000003C9}, {0x00001F63, 0x00000314}, {0x00001F63, 0x00000300}, {0x00001F64, 0x000003C9},
+{0x00001F64, 0x00000313}, {0x00001F64, 0x00000301}, {0x00001F65, 0x000003C9}, {0x00001F65, 0x00000314},
+{0x00001F65, 0x00000301}, {0x00001F66, 0x000003C9}, {0x00001F66, 0x00000313}, {0x00001F66, 0x00000342},
+{0x00001F67, 0x000003C9}, {0x00001F67, 0x00000314}, {0x00001F67, 0x00000342}, {0x00001F68, 0x000003A9},
+{0x00001F68, 0x00000313}, {0x00001F69, 0x000003A9}, {0x00001F69, 0x00000314}, {0x00001F6A, 0x000003A9},
+{0x00001F6A, 0x00000313}, {0x00001F6A, 0x00000300}, {0x00001F6B, 0x000003A9}, {0x00001F6B, 0x00000314},
+{0x00001F6B, 0x00000300}, {0x00001F6C, 0x000003A9}, {0x00001F6C, 0x00000313}, {0x00001F6C, 0x00000301},
+{0x00001F6D, 0x000003A9}, {0x00001F6D, 0x00000314}, {0x00001F6D, 0x00000301}, {0x00001F6E, 0x000003A9},
+{0x00001F6E, 0x00000313}, {0x00001F6E, 0x00000342}, {0x00001F6F, 0x000003A9}, {0x00001F6F, 0x00000314},
+{0x00001F6F, 0x00000342}, {0x00001F70, 0x000003B1}, {0x00001F70, 0x00000300}, {0x00001F71, 0x000003B1},
+{0x00001F71, 0x00000301}, {0x00001F72, 0x000003B5}, {0x00001F72, 0x00000300}, {0x00001F73, 0x000003B5},
+{0x00001F73, 0x00000301}, {0x00001F74, 0x000003B7}, {0x00001F74, 0x00000300}, {0x00001F75, 0x000003B7},
+{0x00001F75, 0x00000301}, {0x00001F76, 0x000003B9}, {0x00001F76, 0x00000300}, {0x00001F77, 0x000003B9},
+{0x00001F77, 0x00000301}, {0x00001F78, 0x000003BF}, {0x00001F78, 0x00000300}, {0x00001F79, 0x000003BF},
+{0x00001F79, 0x00000301}, {0x00001F7A, 0x000003C5}, {0x00001F7A, 0x00000300}, {0x00001F7B, 0x000003C5},
+{0x00001F7B, 0x00000301}, {0x00001F7C, 0x000003C9}, {0x00001F7C, 0x00000300}, {0x00001F7D, 0x000003C9},
+{0x00001F7D, 0x00000301}, {0x00001F80, 0x000003B1}, {0x00001F80, 0x00000313}, {0x00001F80, 0x00000345},
+{0x00001F81, 0x000003B1}, {0x00001F81, 0x00000314}, {0x00001F81, 0x00000345}, {0x00001F82, 0x000003B1},
+{0x00001F82, 0x00000313}, {0x00001F82, 0x00000300}, {0x00001F82, 0x00000345}, {0x00001F83, 0x000003B1},
+{0x00001F83, 0x00000314}, {0x00001F83, 0x00000300}, {0x00001F83, 0x00000345}, {0x00001F84, 0x000003B1},
+{0x00001F84, 0x00000313}, {0x00001F84, 0x00000301}, {0x00001F84, 0x00000345}, {0x00001F85, 0x000003B1},
+{0x00001F85, 0x00000314}, {0x00001F85, 0x00000301}, {0x00001F85, 0x00000345}, {0x00001F86, 0x000003B1},
+{0x00001F86, 0x00000313}, {0x00001F86, 0x00000342}, {0x00001F86, 0x00000345}, {0x00001F87, 0x000003B1},
+{0x00001F87, 0x00000314}, {0x00001F87, 0x00000342}, {0x00001F87, 0x00000345}, {0x00001F88, 0x00000391},
+{0x00001F88, 0x00000313}, {0x00001F88, 0x00000345}, {0x00001F89, 0x00000391}, {0x00001F89, 0x00000314},
+{0x00001F89, 0x00000345}, {0x00001F8A, 0x00000391}, {0x00001F8A, 0x00000313}, {0x00001F8A, 0x00000300},
+{0x00001F8A, 0x00000345}, {0x00001F8B, 0x00000391}, {0x00001F8B, 0x00000314}, {0x00001F8B, 0x00000300},
+{0x00001F8B, 0x00000345}, {0x00001F8C, 0x00000391}, {0x00001F8C, 0x00000313}, {0x00001F8C, 0x00000301},
+{0x00001F8C, 0x00000345}, {0x00001F8D, 0x00000391}, {0x00001F8D, 0x00000314}, {0x00001F8D, 0x00000301},
+{0x00001F8D, 0x00000345}, {0x00001F8E, 0x00000391}, {0x00001F8E, 0x00000313}, {0x00001F8E, 0x00000342},
+{0x00001F8E, 0x00000345}, {0x00001F8F, 0x00000391}, {0x00001F8F, 0x00000314}, {0x00001F8F, 0x00000342},
+{0x00001F8F, 0x00000345}, {0x00001F90, 0x000003B7}, {0x00001F90, 0x00000313}, {0x00001F90, 0x00000345},
+{0x00001F91, 0x000003B7}, {0x00001F91, 0x00000314}, {0x00001F91, 0x00000345}, {0x00001F92, 0x000003B7},
+{0x00001F92, 0x00000313}, {0x00001F92, 0x00000300}, {0x00001F92, 0x00000345}, {0x00001F93, 0x000003B7},
+{0x00001F93, 0x00000314}, {0x00001F93, 0x00000300}, {0x00001F93, 0x00000345}, {0x00001F94, 0x000003B7},
+{0x00001F94, 0x00000313}, {0x00001F94, 0x00000301}, {0x00001F94, 0x00000345}, {0x00001F95, 0x000003B7},
+{0x00001F95, 0x00000314}, {0x00001F95, 0x00000301}, {0x00001F95, 0x00000345}, {0x00001F96, 0x000003B7},
+{0x00001F96, 0x00000313}, {0x00001F96, 0x00000342}, {0x00001F96, 0x00000345}, {0x00001F97, 0x000003B7},
+{0x00001F97, 0x00000314}, {0x00001F97, 0x00000342}, {0x00001F97, 0x00000345}, {0x00001F98, 0x00000397},
+{0x00001F98, 0x00000313}, {0x00001F98, 0x00000345}, {0x00001F99, 0x00000397}, {0x00001F99, 0x00000314},
+{0x00001F99, 0x00000345}, {0x00001F9A, 0x00000397}, {0x00001F9A, 0x00000313}, {0x00001F9A, 0x00000300},
+{0x00001F9A, 0x00000345}, {0x00001F9B, 0x00000397}, {0x00001F9B, 0x00000314}, {0x00001F9B, 0x00000300},
+{0x00001F9B, 0x00000345}, {0x00001F9C, 0x00000397}, {0x00001F9C, 0x00000313}, {0x00001F9C, 0x00000301},
+{0x00001F9C, 0x00000345}, {0x00001F9D, 0x00000397}, {0x00001F9D, 0x00000314}, {0x00001F9D, 0x00000301},
+{0x00001F9D, 0x00000345}, {0x00001F9E, 0x00000397}, {0x00001F9E, 0x00000313}, {0x00001F9E, 0x00000342},
+{0x00001F9E, 0x00000345}, {0x00001F9F, 0x00000397}, {0x00001F9F, 0x00000314}, {0x00001F9F, 0x00000342},
+{0x00001F9F, 0x00000345}, {0x00001FA0, 0x000003C9}, {0x00001FA0, 0x00000313}, {0x00001FA0, 0x00000345},
+{0x00001FA1, 0x000003C9}, {0x00001FA1, 0x00000314}, {0x00001FA1, 0x00000345}, {0x00001FA2, 0x000003C9},
+{0x00001FA2, 0x00000313}, {0x00001FA2, 0x00000300}, {0x00001FA2, 0x00000345}, {0x00001FA3, 0x000003C9},
+{0x00001FA3, 0x00000314}, {0x00001FA3, 0x00000300}, {0x00001FA3, 0x00000345}, {0x00001FA4, 0x000003C9},
+{0x00001FA4, 0x00000313}, {0x00001FA4, 0x00000301}, {0x00001FA4, 0x00000345}, {0x00001FA5, 0x000003C9},
+{0x00001FA5, 0x00000314}, {0x00001FA5, 0x00000301}, {0x00001FA5, 0x00000345}, {0x00001FA6, 0x000003C9},
+{0x00001FA6, 0x00000313}, {0x00001FA6, 0x00000342}, {0x00001FA6, 0x00000345}, {0x00001FA7, 0x000003C9},
+{0x00001FA7, 0x00000314}, {0x00001FA7, 0x00000342}, {0x00001FA7, 0x00000345}, {0x00001FA8, 0x000003A9},
+{0x00001FA8, 0x00000313}, {0x00001FA8, 0x00000345}, {0x00001FA9, 0x000003A9}, {0x00001FA9, 0x00000314},
+{0x00001FA9, 0x00000345}, {0x00001FAA, 0x000003A9}, {0x00001FAA, 0x00000313}, {0x00001FAA, 0x00000300},
+{0x00001FAA, 0x00000345}, {0x00001FAB, 0x000003A9}, {0x00001FAB, 0x00000314}, {0x00001FAB, 0x00000300},
+{0x00001FAB, 0x00000345}, {0x00001FAC, 0x000003A9}, {0x00001FAC, 0x00000313}, {0x00001FAC, 0x00000301},
+{0x00001FAC, 0x00000345}, {0x00001FAD, 0x000003A9}, {0x00001FAD, 0x00000314}, {0x00001FAD, 0x00000301},
+{0x00001FAD, 0x00000345}, {0x00001FAE, 0x000003A9}, {0x00001FAE, 0x00000313}, {0x00001FAE, 0x00000342},
+{0x00001FAE, 0x00000345}, {0x00001FAF, 0x000003A9}, {0x00001FAF, 0x00000314}, {0x00001FAF, 0x00000342},
+{0x00001FAF, 0x00000345}, {0x00001FB0, 0x000003B1}, {0x00001FB0, 0x00000306}, {0x00001FB1, 0x000003B1},
+{0x00001FB1, 0x00000304}, {0x00001FB2, 0x000003B1}, {0x00001FB2, 0x00000300}, {0x00001FB2, 0x00000345},
+{0x00001FB3, 0x000003B1}, {0x00001FB3, 0x00000345}, {0x00001FB4, 0x000003B1}, {0x00001FB4, 0x00000301},
+{0x00001FB4, 0x00000345}, {0x00001FB6, 0x000003B1}, {0x00001FB6, 0x00000342}, {0x00001FB7, 0x000003B1},
+{0x00001FB7, 0x00000342}, {0x00001FB7, 0x00000345}, {0x00001FB8, 0x00000391}, {0x00001FB8, 0x00000306},
+{0x00001FB9, 0x00000391}, {0x00001FB9, 0x00000304}, {0x00001FBA, 0x00000391}, {0x00001FBA, 0x00000300},
+{0x00001FBB, 0x00000391}, {0x00001FBB, 0x00000301}, {0x00001FBC, 0x00000391}, {0x00001FBC, 0x00000345},
+{0x00001FBE, 0x000003B9}, {0x00001FC1, 0x000000A8}, {0x00001FC1, 0x00000342}, {0x00001FC2, 0x000003B7},
+{0x00001FC2, 0x00000300}, {0x00001FC2, 0x00000345}, {0x00001FC3, 0x000003B7}, {0x00001FC3, 0x00000345},
+{0x00001FC4, 0x000003B7}, {0x00001FC4, 0x00000301}, {0x00001FC4, 0x00000345}, {0x00001FC6, 0x000003B7},
+{0x00001FC6, 0x00000342}, {0x00001FC7, 0x000003B7}, {0x00001FC7, 0x00000342}, {0x00001FC7, 0x00000345},
+{0x00001FC8, 0x00000395}, {0x00001FC8, 0x00000300}, {0x00001FC9, 0x00000395}, {0x00001FC9, 0x00000301},
+{0x00001FCA, 0x00000397}, {0x00001FCA, 0x00000300}, {0x00001FCB, 0x00000397}, {0x00001FCB, 0x00000301},
+{0x00001FCC, 0x00000397}, {0x00001FCC, 0x00000345}, {0x00001FCD, 0x00001FBF}, {0x00001FCD, 0x00000300},
+{0x00001FCE, 0x00001FBF}, {0x00001FCE, 0x00000301}, {0x00001FCF, 0x00001FBF}, {0x00001FCF, 0x00000342},
+{0x00001FD0, 0x000003B9}, {0x00001FD0, 0x00000306}, {0x00001FD1, 0x000003B9}, {0x00001FD1, 0x00000304},
+{0x00001FD2, 0x000003B9}, {0x00001FD2, 0x00000308}, {0x00001FD2, 0x00000300}, {0x00001FD3, 0x000003B9},
+{0x00001FD3, 0x00000308}, {0x00001FD3, 0x00000301}, {0x00001FD6, 0x000003B9}, {0x00001FD6, 0x00000342},
+{0x00001FD7, 0x000003B9}, {0x00001FD7, 0x00000308}, {0x00001FD7, 0x00000342}, {0x00001FD8, 0x00000399},
+{0x00001FD8, 0x00000306}, {0x00001FD9, 0x00000399}, {0x00001FD9, 0x00000304}, {0x00001FDA, 0x00000399},
+{0x00001FDA, 0x00000300}, {0x00001FDB, 0x00000399}, {0x00001FDB, 0x00000301}, {0x00001FDD, 0x00001FFE},
+{0x00001FDD, 0x00000300}, {0x00001FDE, 0x00001FFE}, {0x00001FDE, 0x00000301}, {0x00001FDF, 0x00001FFE},
+{0x00001FDF, 0x00000342}, {0x00001FE0, 0x000003C5}, {0x00001FE0, 0x00000306}, {0x00001FE1, 0x000003C5},
+{0x00001FE1, 0x00000304}, {0x00001FE2, 0x000003C5}, {0x00001FE2, 0x00000308}, {0x00001FE2, 0x00000300},
+{0x00001FE3, 0x000003C5}, {0x00001FE3, 0x00000308}, {0x00001FE3, 0x00000301}, {0x00001FE4, 0x000003C1},
+{0x00001FE4, 0x00000313}, {0x00001FE5, 0x000003C1}, {0x00001FE5, 0x00000314}, {0x00001FE6, 0x000003C5},
+{0x00001FE6, 0x00000342}, {0x00001FE7, 0x000003C5}, {0x00001FE7, 0x00000308}, {0x00001FE7, 0x00000342},
+{0x00001FE8, 0x000003A5}, {0x00001FE8, 0x00000306}, {0x00001FE9, 0x000003A5}, {0x00001FE9, 0x00000304},
+{0x00001FEA, 0x000003A5}, {0x00001FEA, 0x00000300}, {0x00001FEB, 0x000003A5}, {0x00001FEB, 0x00000301},
+{0x00001FEC, 0x000003A1}, {0x00001FEC, 0x00000314}, {0x00001FED, 0x000000A8}, {0x00001FED, 0x00000300},
+{0x00001FEE, 0x000000A8}, {0x00001FEE, 0x00000301}, {0x00001FEF, 0x00000060}, {0x00001FF2, 0x000003C9},
+{0x00001FF2, 0x00000300}, {0x00001FF2, 0x00000345}, {0x00001FF3, 0x000003C9}, {0x00001FF3, 0x00000345},
+{0x00001FF4, 0x000003C9}, {0x00001FF4, 0x00000301}, {0x00001FF4, 0x00000345}, {0x00001FF6, 0x000003C9},
+{0x00001FF6, 0x00000342}, {0x00001FF7, 0x000003C9}, {0x00001FF7, 0x00000342}, {0x00001FF7, 0x00000345},
+{0x00001FF8, 0x0000039F}, {0x00001FF8, 0x00000300}, {0x00001FF9, 0x0000039F}, {0x00001FF9, 0x00000301},
+{0x00001FFA, 0x000003A9}, {0x00001FFA, 0x00000300}, {0x00001FFB, 0x000003A9}, {0x00001FFB, 0x00000301},
+{0x00001FFC, 0x000003A9}, {0x00001FFC, 0x00000345}, {0x00001FFD, 0x000000B4}, {0x00002000, 0x00002002},
+{0x00002001, 0x00002003}, {0x00002126, 0x000003A9}, {0x0000212A, 0x0000004B}, {0x0000212B, 0x00000041},
+{0x0000212B, 0x0000030A}, {0x0000219A, 0x00002190}, {0x0000219A, 0x00000338}, {0x0000219B, 0x00002192},
+{0x0000219B, 0x00000338}, {0x000021AE, 0x00002194}, {0x000021AE, 0x00000338}, {0x000021CD, 0x000021D0},
+{0x000021CD, 0x00000338}, {0x000021CE, 0x000021D4}, {0x000021CE, 0x00000338}, {0x000021CF, 0x000021D2},
+{0x000021CF, 0x00000338}, {0x00002204, 0x00002203}, {0x00002204, 0x00000338}, {0x00002209, 0x00002208},
+{0x00002209, 0x00000338}, {0x0000220C, 0x0000220B}, {0x0000220C, 0x00000338}, {0x00002224, 0x00002223},
+{0x00002224, 0x00000338}, {0x00002226, 0x00002225}, {0x00002226, 0x00000338}, {0x00002241, 0x0000223C},
+{0x00002241, 0x00000338}, {0x00002244, 0x00002243}, {0x00002244, 0x00000338}, {0x00002247, 0x00002245},
+{0x00002247, 0x00000338}, {0x00002249, 0x00002248}, {0x00002249, 0x00000338}, {0x00002260, 0x0000003D},
+{0x00002260, 0x00000338}, {0x00002262, 0x00002261}, {0x00002262, 0x00000338}, {0x0000226D, 0x0000224D},
+{0x0000226D, 0x00000338}, {0x0000226E, 0x0000003C}, {0x0000226E, 0x00000338}, {0x0000226F, 0x0000003E},
+{0x0000226F, 0x00000338}, {0x00002270, 0x00002264}, {0x00002270, 0x00000338}, {0x00002271, 0x00002265},
+{0x00002271, 0x00000338}, {0x00002274, 0x00002272}, {0x00002274, 0x00000338}, {0x00002275, 0x00002273},
+{0x00002275, 0x00000338}, {0x00002278, 0x00002276}, {0x00002278, 0x00000338}, {0x00002279, 0x00002277},
+{0x00002279, 0x00000338}, {0x00002280, 0x0000227A}, {0x00002280, 0x00000338}, {0x00002281, 0x0000227B},
+{0x00002281, 0x00000338}, {0x00002284, 0x00002282}, {0x00002284, 0x00000338}, {0x00002285, 0x00002283},
+{0x00002285, 0x00000338}, {0x00002288, 0x00002286}, {0x00002288, 0x00000338}, {0x00002289, 0x00002287},
+{0x00002289, 0x00000338}, {0x000022AC, 0x000022A2}, {0x000022AC, 0x00000338}, {0x000022AD, 0x000022A8},
+{0x000022AD, 0x00000338}, {0x000022AE, 0x000022A9}, {0x000022AE, 0x00000338}, {0x000022AF, 0x000022AB},
+{0x000022AF, 0x00000338}, {0x000022E0, 0x0000227C}, {0x000022E0, 0x00000338}, {0x000022E1, 0x0000227D},
+{0x000022E1, 0x00000338}, {0x000022E2, 0x00002291}, {0x000022E2, 0x00000338}, {0x000022E3, 0x00002292},
+{0x000022E3, 0x00000338}, {0x000022EA, 0x000022B2}, {0x000022EA, 0x00000338}, {0x000022EB, 0x000022B3},
+{0x000022EB, 0x00000338}, {0x000022EC, 0x000022B4}, {0x000022EC, 0x00000338}, {0x000022ED, 0x000022B5},
+{0x000022ED, 0x00000338}, {0x00002329, 0x00003008}, {0x0000232A, 0x00003009}, {0x00002ADC, 0x00002ADD},
+{0x00002ADC, 0x00000338}, {0x0000304C, 0x0000304B}, {0x0000304C, 0x00003099}, {0x0000304E, 0x0000304D},
+{0x0000304E, 0x00003099}, {0x00003050, 0x0000304F}, {0x00003050, 0x00003099}, {0x00003052, 0x00003051},
+{0x00003052, 0x00003099}, {0x00003054, 0x00003053}, {0x00003054, 0x00003099}, {0x00003056, 0x00003055},
+{0x00003056, 0x00003099}, {0x00003058, 0x00003057}, {0x00003058, 0x00003099}, {0x0000305A, 0x00003059},
+{0x0000305A, 0x00003099}, {0x0000305C, 0x0000305B}, {0x0000305C, 0x00003099}, {0x0000305E, 0x0000305D},
+{0x0000305E, 0x00003099}, {0x00003060, 0x0000305F}, {0x00003060, 0x00003099}, {0x00003062, 0x00003061},
+{0x00003062, 0x00003099}, {0x00003065, 0x00003064}, {0x00003065, 0x00003099}, {0x00003067, 0x00003066},
+{0x00003067, 0x00003099}, {0x00003069, 0x00003068}, {0x00003069, 0x00003099}, {0x00003070, 0x0000306F},
+{0x00003070, 0x00003099}, {0x00003071, 0x0000306F}, {0x00003071, 0x0000309A}, {0x00003073, 0x00003072},
+{0x00003073, 0x00003099}, {0x00003074, 0x00003072}, {0x00003074, 0x0000309A}, {0x00003076, 0x00003075},
+{0x00003076, 0x00003099}, {0x00003077, 0x00003075}, {0x00003077, 0x0000309A}, {0x00003079, 0x00003078},
+{0x00003079, 0x00003099}, {0x0000307A, 0x00003078}, {0x0000307A, 0x0000309A}, {0x0000307C, 0x0000307B},
+{0x0000307C, 0x00003099}, {0x0000307D, 0x0000307B}, {0x0000307D, 0x0000309A}, {0x00003094, 0x00003046},
+{0x00003094, 0x00003099}, {0x0000309E, 0x0000309D}, {0x0000309E, 0x00003099}, {0x000030AC, 0x000030AB},
+{0x000030AC, 0x00003099}, {0x000030AE, 0x000030AD}, {0x000030AE, 0x00003099}, {0x000030B0, 0x000030AF},
+{0x000030B0, 0x00003099}, {0x000030B2, 0x000030B1}, {0x000030B2, 0x00003099}, {0x000030B4, 0x000030B3},
+{0x000030B4, 0x00003099}, {0x000030B6, 0x000030B5}, {0x000030B6, 0x00003099}, {0x000030B8, 0x000030B7},
+{0x000030B8, 0x00003099}, {0x000030BA, 0x000030B9}, {0x000030BA, 0x00003099}, {0x000030BC, 0x000030BB},
+{0x000030BC, 0x00003099}, {0x000030BE, 0x000030BD}, {0x000030BE, 0x00003099}, {0x000030C0, 0x000030BF},
+{0x000030C0, 0x00003099}, {0x000030C2, 0x000030C1}, {0x000030C2, 0x00003099}, {0x000030C5, 0x000030C4},
+{0x000030C5, 0x00003099}, {0x000030C7, 0x000030C6}, {0x000030C7, 0x00003099}, {0x000030C9, 0x000030C8},
+{0x000030C9, 0x00003099}, {0x000030D0, 0x000030CF}, {0x000030D0, 0x00003099}, {0x000030D1, 0x000030CF},
+{0x000030D1, 0x0000309A}, {0x000030D3, 0x000030D2}, {0x000030D3, 0x00003099}, {0x000030D4, 0x000030D2},
+{0x000030D4, 0x0000309A}, {0x000030D6, 0x000030D5}, {0x000030D6, 0x00003099}, {0x000030D7, 0x000030D5},
+{0x000030D7, 0x0000309A}, {0x000030D9, 0x000030D8}, {0x000030D9, 0x00003099}, {0x000030DA, 0x000030D8},
+{0x000030DA, 0x0000309A}, {0x000030DC, 0x000030DB}, {0x000030DC, 0x00003099}, {0x000030DD, 0x000030DB},
+{0x000030DD, 0x0000309A}, {0x000030F4, 0x000030A6}, {0x000030F4, 0x00003099}, {0x000030F7, 0x000030EF},
+{0x000030F7, 0x00003099}, {0x000030F8, 0x000030F0}, {0x000030F8, 0x00003099}, {0x000030F9, 0x000030F1},
+{0x000030F9, 0x00003099}, {0x000030FA, 0x000030F2}, {0x000030FA, 0x00003099}, {0x000030FE, 0x000030FD},
+{0x000030FE, 0x00003099}, {0x0000F900, 0x00008C48}, {0x0000F901, 0x000066F4}, {0x0000F902, 0x00008ECA},
+{0x0000F903, 0x00008CC8}, {0x0000F904, 0x00006ED1}, {0x0000F905, 0x00004E32}, {0x0000F906, 0x000053E5},
+{0x0000F907, 0x00009F9C}, {0x0000F908, 0x00009F9C}, {0x0000F909, 0x00005951}, {0x0000F90A, 0x000091D1},
+{0x0000F90B, 0x00005587}, {0x0000F90C, 0x00005948}, {0x0000F90D, 0x000061F6}, {0x0000F90E, 0x00007669},
+{0x0000F90F, 0x00007F85}, {0x0000F910, 0x0000863F}, {0x0000F911, 0x000087BA}, {0x0000F912, 0x000088F8},
+{0x0000F913, 0x0000908F}, {0x0000F914, 0x00006A02}, {0x0000F915, 0x00006D1B}, {0x0000F916, 0x000070D9},
+{0x0000F917, 0x000073DE}, {0x0000F918, 0x0000843D}, {0x0000F919, 0x0000916A}, {0x0000F91A, 0x000099F1},
+{0x0000F91B, 0x00004E82}, {0x0000F91C, 0x00005375}, {0x0000F91D, 0x00006B04}, {0x0000F91E, 0x0000721B},
+{0x0000F91F, 0x0000862D}, {0x0000F920, 0x00009E1E}, {0x0000F921, 0x00005D50}, {0x0000F922, 0x00006FEB},
+{0x0000F923, 0x000085CD}, {0x0000F924, 0x00008964}, {0x0000F925, 0x000062C9}, {0x0000F926, 0x000081D8},
+{0x0000F927, 0x0000881F}, {0x0000F928, 0x00005ECA}, {0x0000F929, 0x00006717}, {0x0000F92A, 0x00006D6A},
+{0x0000F92B, 0x000072FC}, {0x0000F92C, 0x000090CE}, {0x0000F92D, 0x00004F86}, {0x0000F92E, 0x000051B7},
+{0x0000F92F, 0x000052DE}, {0x0000F930, 0x000064C4}, {0x0000F931, 0x00006AD3}, {0x0000F932, 0x00007210},
+{0x0000F933, 0x000076E7}, {0x0000F934, 0x00008001}, {0x0000F935, 0x00008606}, {0x0000F936, 0x0000865C},
+{0x0000F937, 0x00008DEF}, {0x0000F938, 0x00009732}, {0x0000F939, 0x00009B6F}, {0x0000F93A, 0x00009DFA},
+{0x0000F93B, 0x0000788C}, {0x0000F93C, 0x0000797F}, {0x0000F93D, 0x00007DA0}, {0x0000F93E, 0x000083C9},
+{0x0000F93F, 0x00009304}, {0x0000F940, 0x00009E7F}, {0x0000F941, 0x00008AD6}, {0x0000F942, 0x000058DF},
+{0x0000F943, 0x00005F04}, {0x0000F944, 0x00007C60}, {0x0000F945, 0x0000807E}, {0x0000F946, 0x00007262},
+{0x0000F947, 0x000078CA}, {0x0000F948, 0x00008CC2}, {0x0000F949, 0x000096F7}, {0x0000F94A, 0x000058D8},
+{0x0000F94B, 0x00005C62}, {0x0000F94C, 0x00006A13}, {0x0000F94D, 0x00006DDA}, {0x0000F94E, 0x00006F0F},
+{0x0000F94F, 0x00007D2F}, {0x0000F950, 0x00007E37}, {0x0000F951, 0x0000964B}, {0x0000F952, 0x000052D2},
+{0x0000F953, 0x0000808B}, {0x0000F954, 0x000051DC}, {0x0000F955, 0x000051CC}, {0x0000F956, 0x00007A1C},
+{0x0000F957, 0x00007DBE}, {0x0000F958, 0x000083F1}, {0x0000F959, 0x00009675}, {0x0000F95A, 0x00008B80},
+{0x0000F95B, 0x000062CF}, {0x0000F95C, 0x00006A02}, {0x0000F95D, 0x00008AFE}, {0x0000F95E, 0x00004E39},
+{0x0000F95F, 0x00005BE7}, {0x0000F960, 0x00006012}, {0x0000F961, 0x00007387}, {0x0000F962, 0x00007570},
+{0x0000F963, 0x00005317}, {0x0000F964, 0x000078FB}, {0x0000F965, 0x00004FBF}, {0x0000F966, 0x00005FA9},
+{0x0000F967, 0x00004E0D}, {0x0000F968, 0x00006CCC}, {0x0000F969, 0x00006578}, {0x0000F96A, 0x00007D22},
+{0x0000F96B, 0x000053C3}, {0x0000F96C, 0x0000585E}, {0x0000F96D, 0x00007701}, {0x0000F96E, 0x00008449},
+{0x0000F96F, 0x00008AAA}, {0x0000F970, 0x00006BBA}, {0x0000F971, 0x00008FB0}, {0x0000F972, 0x00006C88},
+{0x0000F973, 0x000062FE}, {0x0000F974, 0x000082E5}, {0x0000F975, 0x000063A0}, {0x0000F976, 0x00007565},
+{0x0000F977, 0x00004EAE}, {0x0000F978, 0x00005169}, {0x0000F979, 0x000051C9}, {0x0000F97A, 0x00006881},
+{0x0000F97B, 0x00007CE7}, {0x0000F97C, 0x0000826F}, {0x0000F97D, 0x00008AD2}, {0x0000F97E, 0x000091CF},
+{0x0000F97F, 0x000052F5}, {0x0000F980, 0x00005442}, {0x0000F981, 0x00005973}, {0x0000F982, 0x00005EEC},
+{0x0000F983, 0x000065C5}, {0x0000F984, 0x00006FFE}, {0x0000F985, 0x0000792A}, {0x0000F986, 0x000095AD},
+{0x0000F987, 0x00009A6A}, {0x0000F988, 0x00009E97}, {0x0000F989, 0x00009ECE}, {0x0000F98A, 0x0000529B},
+{0x0000F98B, 0x000066C6}, {0x0000F98C, 0x00006B77}, {0x0000F98D, 0x00008F62}, {0x0000F98E, 0x00005E74},
+{0x0000F98F, 0x00006190}, {0x0000F990, 0x00006200}, {0x0000F991, 0x0000649A}, {0x0000F992, 0x00006F23},
+{0x0000F993, 0x00007149}, {0x0000F994, 0x00007489}, {0x0000F995, 0x000079CA}, {0x0000F996, 0x00007DF4},
+{0x0000F997, 0x0000806F}, {0x0000F998, 0x00008F26}, {0x0000F999, 0x000084EE}, {0x0000F99A, 0x00009023},
+{0x0000F99B, 0x0000934A}, {0x0000F99C, 0x00005217}, {0x0000F99D, 0x000052A3}, {0x0000F99E, 0x000054BD},
+{0x0000F99F, 0x000070C8}, {0x0000F9A0, 0x000088C2}, {0x0000F9A1, 0x00008AAA}, {0x0000F9A2, 0x00005EC9},
+{0x0000F9A3, 0x00005FF5}, {0x0000F9A4, 0x0000637B}, {0x0000F9A5, 0x00006BAE}, {0x0000F9A6, 0x00007C3E},
+{0x0000F9A7, 0x00007375}, {0x0000F9A8, 0x00004EE4}, {0x0000F9A9, 0x000056F9}, {0x0000F9AA, 0x00005BE7},
+{0x0000F9AB, 0x00005DBA}, {0x0000F9AC, 0x0000601C}, {0x0000F9AD, 0x000073B2}, {0x0000F9AE, 0x00007469},
+{0x0000F9AF, 0x00007F9A}, {0x0000F9B0, 0x00008046}, {0x0000F9B1, 0x00009234}, {0x0000F9B2, 0x000096F6},
+{0x0000F9B3, 0x00009748}, {0x0000F9B4, 0x00009818}, {0x0000F9B5, 0x00004F8B}, {0x0000F9B6, 0x000079AE},
+{0x0000F9B7, 0x000091B4}, {0x0000F9B8, 0x000096B8}, {0x0000F9B9, 0x000060E1}, {0x0000F9BA, 0x00004E86},
+{0x0000F9BB, 0x000050DA}, {0x0000F9BC, 0x00005BEE}, {0x0000F9BD, 0x00005C3F}, {0x0000F9BE, 0x00006599},
+{0x0000F9BF, 0x00006A02}, {0x0000F9C0, 0x000071CE}, {0x0000F9C1, 0x00007642}, {0x0000F9C2, 0x000084FC},
+{0x0000F9C3, 0x0000907C}, {0x0000F9C4, 0x00009F8D}, {0x0000F9C5, 0x00006688}, {0x0000F9C6, 0x0000962E},
+{0x0000F9C7, 0x00005289}, {0x0000F9C8, 0x0000677B}, {0x0000F9C9, 0x000067F3}, {0x0000F9CA, 0x00006D41},
+{0x0000F9CB, 0x00006E9C}, {0x0000F9CC, 0x00007409}, {0x0000F9CD, 0x00007559}, {0x0000F9CE, 0x0000786B},
+{0x0000F9CF, 0x00007D10}, {0x0000F9D0, 0x0000985E}, {0x0000F9D1, 0x0000516D}, {0x0000F9D2, 0x0000622E},
+{0x0000F9D3, 0x00009678}, {0x0000F9D4, 0x0000502B}, {0x0000F9D5, 0x00005D19}, {0x0000F9D6, 0x00006DEA},
+{0x0000F9D7, 0x00008F2A}, {0x0000F9D8, 0x00005F8B}, {0x0000F9D9, 0x00006144}, {0x0000F9DA, 0x00006817},
+{0x0000F9DB, 0x00007387}, {0x0000F9DC, 0x00009686}, {0x0000F9DD, 0x00005229}, {0x0000F9DE, 0x0000540F},
+{0x0000F9DF, 0x00005C65}, {0x0000F9E0, 0x00006613}, {0x0000F9E1, 0x0000674E}, {0x0000F9E2, 0x000068A8},
+{0x0000F9E3, 0x00006CE5}, {0x0000F9E4, 0x00007406}, {0x0000F9E5, 0x000075E2}, {0x0000F9E6, 0x00007F79},
+{0x0000F9E7, 0x000088CF}, {0x0000F9E8, 0x000088E1}, {0x0000F9E9, 0x000091CC}, {0x0000F9EA, 0x000096E2},
+{0x0000F9EB, 0x0000533F}, {0x0000F9EC, 0x00006EBA}, {0x0000F9ED, 0x0000541D}, {0x0000F9EE, 0x000071D0},
+{0x0000F9EF, 0x00007498}, {0x0000F9F0, 0x000085FA}, {0x0000F9F1, 0x000096A3}, {0x0000F9F2, 0x00009C57},
+{0x0000F9F3, 0x00009E9F}, {0x0000F9F4, 0x00006797}, {0x0000F9F5, 0x00006DCB}, {0x0000F9F6, 0x000081E8},
+{0x0000F9F7, 0x00007ACB}, {0x0000F9F8, 0x00007B20}, {0x0000F9F9, 0x00007C92}, {0x0000F9FA, 0x000072C0},
+{0x0000F9FB, 0x00007099}, {0x0000F9FC, 0x00008B58}, {0x0000F9FD, 0x00004EC0}, {0x0000F9FE, 0x00008336},
+{0x0000F9FF, 0x0000523A}, {0x0000FA00, 0x00005207}, {0x0000FA01, 0x00005EA6}, {0x0000FA02, 0x000062D3},
+{0x0000FA03, 0x00007CD6}, {0x0000FA04, 0x00005B85}, {0x0000FA05, 0x00006D1E}, {0x0000FA06, 0x000066B4},
+{0x0000FA07, 0x00008F3B}, {0x0000FA08, 0x0000884C}, {0x0000FA09, 0x0000964D}, {0x0000FA0A, 0x0000898B},
+{0x0000FA0B, 0x00005ED3}, {0x0000FA0C, 0x00005140}, {0x0000FA0D, 0x000055C0}, {0x0000FA10, 0x0000585A},
+{0x0000FA12, 0x00006674}, {0x0000FA15, 0x000051DE}, {0x0000FA16, 0x0000732A}, {0x0000FA17, 0x000076CA},
+{0x0000FA18, 0x0000793C}, {0x0000FA19, 0x0000795E}, {0x0000FA1A, 0x00007965}, {0x0000FA1B, 0x0000798F},
+{0x0000FA1C, 0x00009756}, {0x0000FA1D, 0x00007CBE}, {0x0000FA1E, 0x00007FBD}, {0x0000FA20, 0x00008612},
+{0x0000FA22, 0x00008AF8}, {0x0000FA25, 0x00009038}, {0x0000FA26, 0x000090FD}, {0x0000FA2A, 0x000098EF},
+{0x0000FA2B, 0x000098FC}, {0x0000FA2C, 0x00009928}, {0x0000FA2D, 0x00009DB4}, {0x0000FA2E, 0x000090DE},
+{0x0000FA2F, 0x000096B7}, {0x0000FA30, 0x00004FAE}, {0x0000FA31, 0x000050E7}, {0x0000FA32, 0x0000514D},
+{0x0000FA33, 0x000052C9}, {0x0000FA34, 0x000052E4}, {0x0000FA35, 0x00005351}, {0x0000FA36, 0x0000559D},
+{0x0000FA37, 0x00005606}, {0x0000FA38, 0x00005668}, {0x0000FA39, 0x00005840}, {0x0000FA3A, 0x000058A8},
+{0x0000FA3B, 0x00005C64}, {0x0000FA3C, 0x00005C6E}, {0x0000FA3D, 0x00006094}, {0x0000FA3E, 0x00006168},
+{0x0000FA3F, 0x0000618E}, {0x0000FA40, 0x000061F2}, {0x0000FA41, 0x0000654F}, {0x0000FA42, 0x000065E2},
+{0x0000FA43, 0x00006691}, {0x0000FA44, 0x00006885}, {0x0000FA45, 0x00006D77}, {0x0000FA46, 0x00006E1A},
+{0x0000FA47, 0x00006F22}, {0x0000FA48, 0x0000716E}, {0x0000FA49, 0x0000722B}, {0x0000FA4A, 0x00007422},
+{0x0000FA4B, 0x00007891}, {0x0000FA4C, 0x0000793E}, {0x0000FA4D, 0x00007949}, {0x0000FA4E, 0x00007948},
+{0x0000FA4F, 0x00007950}, {0x0000FA50, 0x00007956}, {0x0000FA51, 0x0000795D}, {0x0000FA52, 0x0000798D},
+{0x0000FA53, 0x0000798E}, {0x0000FA54, 0x00007A40}, {0x0000FA55, 0x00007A81}, {0x0000FA56, 0x00007BC0},
+{0x0000FA57, 0x00007DF4}, {0x0000FA58, 0x00007E09}, {0x0000FA59, 0x00007E41}, {0x0000FA5A, 0x00007F72},
+{0x0000FA5B, 0x00008005}, {0x0000FA5C, 0x000081ED}, {0x0000FA5D, 0x00008279}, {0x0000FA5E, 0x00008279},
+{0x0000FA5F, 0x00008457}, {0x0000FA60, 0x00008910}, {0x0000FA61, 0x00008996}, {0x0000FA62, 0x00008B01},
+{0x0000FA63, 0x00008B39}, {0x0000FA64, 0x00008CD3}, {0x0000FA65, 0x00008D08}, {0x0000FA66, 0x00008FB6},
+{0x0000FA67, 0x00009038}, {0x0000FA68, 0x000096E3}, {0x0000FA69, 0x000097FF}, {0x0000FA6A, 0x0000983B},
+{0x0000FA6B, 0x00006075}, {0x0000FA6C, 0x000242EE}, {0x0000FA6D, 0x00008218}, {0x0000FA70, 0x00004E26},
+{0x0000FA71, 0x000051B5}, {0x0000FA72, 0x00005168}, {0x0000FA73, 0x00004F80}, {0x0000FA74, 0x00005145},
+{0x0000FA75, 0x00005180}, {0x0000FA76, 0x000052C7}, {0x0000FA77, 0x000052FA}, {0x0000FA78, 0x0000559D},
+{0x0000FA79, 0x00005555}, {0x0000FA7A, 0x00005599}, {0x0000FA7B, 0x000055E2}, {0x0000FA7C, 0x0000585A},
+{0x0000FA7D, 0x000058B3}, {0x0000FA7E, 0x00005944}, {0x0000FA7F, 0x00005954}, {0x0000FA80, 0x00005A62},
+{0x0000FA81, 0x00005B28}, {0x0000FA82, 0x00005ED2}, {0x0000FA83, 0x00005ED9}, {0x0000FA84, 0x00005F69},
+{0x0000FA85, 0x00005FAD}, {0x0000FA86, 0x000060D8}, {0x0000FA87, 0x0000614E}, {0x0000FA88, 0x00006108},
+{0x0000FA89, 0x0000618E}, {0x0000FA8A, 0x00006160}, {0x0000FA8B, 0x000061F2}, {0x0000FA8C, 0x00006234},
+{0x0000FA8D, 0x000063C4}, {0x0000FA8E, 0x0000641C}, {0x0000FA8F, 0x00006452}, {0x0000FA90, 0x00006556},
+{0x0000FA91, 0x00006674}, {0x0000FA92, 0x00006717}, {0x0000FA93, 0x0000671B}, {0x0000FA94, 0x00006756},
+{0x0000FA95, 0x00006B79}, {0x0000FA96, 0x00006BBA}, {0x0000FA97, 0x00006D41}, {0x0000FA98, 0x00006EDB},
+{0x0000FA99, 0x00006ECB}, {0x0000FA9A, 0x00006F22}, {0x0000FA9B, 0x0000701E}, {0x0000FA9C, 0x0000716E},
+{0x0000FA9D, 0x000077A7}, {0x0000FA9E, 0x00007235}, {0x0000FA9F, 0x000072AF}, {0x0000FAA0, 0x0000732A},
+{0x0000FAA1, 0x00007471}, {0x0000FAA2, 0x00007506}, {0x0000FAA3, 0x0000753B}, {0x0000FAA4, 0x0000761D},
+{0x0000FAA5, 0x0000761F}, {0x0000FAA6, 0x000076CA}, {0x0000FAA7, 0x000076DB}, {0x0000FAA8, 0x000076F4},
+{0x0000FAA9, 0x0000774A}, {0x0000FAAA, 0x00007740}, {0x0000FAAB, 0x000078CC}, {0x0000FAAC, 0x00007AB1},
+{0x0000FAAD, 0x00007BC0}, {0x0000FAAE, 0x00007C7B}, {0x0000FAAF, 0x00007D5B}, {0x0000FAB0, 0x00007DF4},
+{0x0000FAB1, 0x00007F3E}, {0x0000FAB2, 0x00008005}, {0x0000FAB3, 0x00008352}, {0x0000FAB4, 0x000083EF},
+{0x0000FAB5, 0x00008779}, {0x0000FAB6, 0x00008941}, {0x0000FAB7, 0x00008986}, {0x0000FAB8, 0x00008996},
+{0x0000FAB9, 0x00008ABF}, {0x0000FABA, 0x00008AF8}, {0x0000FABB, 0x00008ACB}, {0x0000FABC, 0x00008B01},
+{0x0000FABD, 0x00008AFE}, {0x0000FABE, 0x00008AED}, {0x0000FABF, 0x00008B39}, {0x0000FAC0, 0x00008B8A},
+{0x0000FAC1, 0x00008D08}, {0x0000FAC2, 0x00008F38}, {0x0000FAC3, 0x00009072}, {0x0000FAC4, 0x00009199},
+{0x0000FAC5, 0x00009276}, {0x0000FAC6, 0x0000967C}, {0x0000FAC7, 0x000096E3}, {0x0000FAC8, 0x00009756},
+{0x0000FAC9, 0x000097DB}, {0x0000FACA, 0x000097FF}, {0x0000FACB, 0x0000980B}, {0x0000FACC, 0x0000983B},
+{0x0000FACD, 0x00009B12}, {0x0000FACE, 0x00009F9C}, {0x0000FACF, 0x0002284A}, {0x0000FAD0, 0x00022844},
+{0x0000FAD1, 0x000233D5}, {0x0000FAD2, 0x00003B9D}, {0x0000FAD3, 0x00004018}, {0x0000FAD4, 0x00004039},
+{0x0000FAD5, 0x00025249}, {0x0000FAD6, 0x00025CD0}, {0x0000FAD7, 0x00027ED3}, {0x0000FAD8, 0x00009F43},
+{0x0000FAD9, 0x00009F8E}, {0x0000FB1D, 0x000005D9}, {0x0000FB1D, 0x000005B4}, {0x0000FB1F, 0x000005F2},
+{0x0000FB1F, 0x000005B7}, {0x0000FB2A, 0x000005E9}, {0x0000FB2A, 0x000005C1}, {0x0000FB2B, 0x000005E9},
+{0x0000FB2B, 0x000005C2}, {0x0000FB2C, 0x000005E9}, {0x0000FB2C, 0x000005BC}, {0x0000FB2C, 0x000005C1},
+{0x0000FB2D, 0x000005E9}, {0x0000FB2D, 0x000005BC}, {0x0000FB2D, 0x000005C2}, {0x0000FB2E, 0x000005D0},
+{0x0000FB2E, 0x000005B7}, {0x0000FB2F, 0x000005D0}, {0x0000FB2F, 0x000005B8}, {0x0000FB30, 0x000005D0},
+{0x0000FB30, 0x000005BC}, {0x0000FB31, 0x000005D1}, {0x0000FB31, 0x000005BC}, {0x0000FB32, 0x000005D2},
+{0x0000FB32, 0x000005BC}, {0x0000FB33, 0x000005D3}, {0x0000FB33, 0x000005BC}, {0x0000FB34, 0x000005D4},
+{0x0000FB34, 0x000005BC}, {0x0000FB35, 0x000005D5}, {0x0000FB35, 0x000005BC}, {0x0000FB36, 0x000005D6},
+{0x0000FB36, 0x000005BC}, {0x0000FB38, 0x000005D8}, {0x0000FB38, 0x000005BC}, {0x0000FB39, 0x000005D9},
+{0x0000FB39, 0x000005BC}, {0x0000FB3A, 0x000005DA}, {0x0000FB3A, 0x000005BC}, {0x0000FB3B, 0x000005DB},
+{0x0000FB3B, 0x000005BC}, {0x0000FB3C, 0x000005DC}, {0x0000FB3C, 0x000005BC}, {0x0000FB3E, 0x000005DE},
+{0x0000FB3E, 0x000005BC}, {0x0000FB40, 0x000005E0}, {0x0000FB40, 0x000005BC}, {0x0000FB41, 0x000005E1},
+{0x0000FB41, 0x000005BC}, {0x0000FB43, 0x000005E3}, {0x0000FB43, 0x000005BC}, {0x0000FB44, 0x000005E4},
+{0x0000FB44, 0x000005BC}, {0x0000FB46, 0x000005E6}, {0x0000FB46, 0x000005BC}, {0x0000FB47, 0x000005E7},
+{0x0000FB47, 0x000005BC}, {0x0000FB48, 0x000005E8}, {0x0000FB48, 0x000005BC}, {0x0000FB49, 0x000005E9},
+{0x0000FB49, 0x000005BC}, {0x0000FB4A, 0x000005EA}, {0x0000FB4A, 0x000005BC}, {0x0000FB4B, 0x000005D5},
+{0x0000FB4B, 0x000005B9}, {0x0000FB4C, 0x000005D1}, {0x0000FB4C, 0x000005BF}, {0x0000FB4D, 0x000005DB},
+{0x0000FB4D, 0x000005BF}, {0x0000FB4E, 0x000005E4}, {0x0000FB4E, 0x000005BF}, {0x0001109A, 0x00011099},
+{0x0001109A, 0x000110BA}, {0x0001109C, 0x0001109B}, {0x0001109C, 0x000110BA}, {0x000110AB, 0x000110A5},
+{0x000110AB, 0x000110BA}, {0x0001112E, 0x00011131}, {0x0001112E, 0x00011127}, {0x0001112F, 0x00011132},
+{0x0001112F, 0x00011127}, {0x0001134B, 0x00011347}, {0x0001134B, 0x0001133E}, {0x0001134C, 0x00011347},
+{0x0001134C, 0x00011357}, {0x000114BB, 0x000114B9}, {0x000114BB, 0x000114BA}, {0x000114BC, 0x000114B9},
+{0x000114BC, 0x000114B0}, {0x000114BE, 0x000114B9}, {0x000114BE, 0x000114BD}, {0x000115BA, 0x000115B8},
+{0x000115BA, 0x000115AF}, {0x000115BB, 0x000115B9}, {0x000115BB, 0x000115AF}, {0x0001D15E, 0x0001D157},
+{0x0001D15E, 0x0001D165}, {0x0001D15F, 0x0001D158}, {0x0001D15F, 0x0001D165}, {0x0001D160, 0x0001D158},
+{0x0001D160, 0x0001D165}, {0x0001D160, 0x0001D16E}, {0x0001D161, 0x0001D158}, {0x0001D161, 0x0001D165},
+{0x0001D161, 0x0001D16F}, {0x0001D162, 0x0001D158}, {0x0001D162, 0x0001D165}, {0x0001D162, 0x0001D170},
+{0x0001D163, 0x0001D158}, {0x0001D163, 0x0001D165}, {0x0001D163, 0x0001D171}, {0x0001D164, 0x0001D158},
+{0x0001D164, 0x0001D165}, {0x0001D164, 0x0001D172}, {0x0001D1BB, 0x0001D1B9}, {0x0001D1BB, 0x0001D165},
+{0x0001D1BC, 0x0001D1BA}, {0x0001D1BC, 0x0001D165}, {0x0001D1BD, 0x0001D1B9}, {0x0001D1BD, 0x0001D165},
+{0x0001D1BD, 0x0001D16E}, {0x0001D1BE, 0x0001D1BA}, {0x0001D1BE, 0x0001D165}, {0x0001D1BE, 0x0001D16E},
+{0x0001D1BF, 0x0001D1B9}, {0x0001D1BF, 0x0001D165}, {0x0001D1BF, 0x0001D16F}, {0x0001D1C0, 0x0001D1BA},
+{0x0001D1C0, 0x0001D165}, {0x0001D1C0, 0x0001D16F}, {0x0002F800, 0x00004E3D}, {0x0002F801, 0x00004E38},
+{0x0002F802, 0x00004E41}, {0x0002F803, 0x00020122}, {0x0002F804, 0x00004F60}, {0x0002F805, 0x00004FAE},
+{0x0002F806, 0x00004FBB}, {0x0002F807, 0x00005002}, {0x0002F808, 0x0000507A}, {0x0002F809, 0x00005099},
+{0x0002F80A, 0x000050E7}, {0x0002F80B, 0x000050CF}, {0x0002F80C, 0x0000349E}, {0x0002F80D, 0x0002063A},
+{0x0002F80E, 0x0000514D}, {0x0002F80F, 0x00005154}, {0x0002F810, 0x00005164}, {0x0002F811, 0x00005177},
+{0x0002F812, 0x0002051C}, {0x0002F813, 0x000034B9}, {0x0002F814, 0x00005167}, {0x0002F815, 0x0000518D},
+{0x0002F816, 0x0002054B}, {0x0002F817, 0x00005197}, {0x0002F818, 0x000051A4}, {0x0002F819, 0x00004ECC},
+{0x0002F81A, 0x000051AC}, {0x0002F81B, 0x000051B5}, {0x0002F81C, 0x000291DF}, {0x0002F81D, 0x000051F5},
+{0x0002F81E, 0x00005203}, {0x0002F81F, 0x000034DF}, {0x0002F820, 0x0000523B}, {0x0002F821, 0x00005246},
+{0x0002F822, 0x00005272}, {0x0002F823, 0x00005277}, {0x0002F824, 0x00003515}, {0x0002F825, 0x000052C7},
+{0x0002F826, 0x000052C9}, {0x0002F827, 0x000052E4}, {0x0002F828, 0x000052FA}, {0x0002F829, 0x00005305},
+{0x0002F82A, 0x00005306}, {0x0002F82B, 0x00005317}, {0x0002F82C, 0x00005349}, {0x0002F82D, 0x00005351},
+{0x0002F82E, 0x0000535A}, {0x0002F82F, 0x00005373}, {0x0002F830, 0x0000537D}, {0x0002F831, 0x0000537F},
+{0x0002F832, 0x0000537F}, {0x0002F833, 0x0000537F}, {0x0002F834, 0x00020A2C}, {0x0002F835, 0x00007070},
+{0x0002F836, 0x000053CA}, {0x0002F837, 0x000053DF}, {0x0002F838, 0x00020B63}, {0x0002F839, 0x000053EB},
+{0x0002F83A, 0x000053F1}, {0x0002F83B, 0x00005406}, {0x0002F83C, 0x0000549E}, {0x0002F83D, 0x00005438},
+{0x0002F83E, 0x00005448}, {0x0002F83F, 0x00005468}, {0x0002F840, 0x000054A2}, {0x0002F841, 0x000054F6},
+{0x0002F842, 0x00005510}, {0x0002F843, 0x00005553}, {0x0002F844, 0x00005563}, {0x0002F845, 0x00005584},
+{0x0002F846, 0x00005584}, {0x0002F847, 0x00005599}, {0x0002F848, 0x000055AB}, {0x0002F849, 0x000055B3},
+{0x0002F84A, 0x000055C2}, {0x0002F84B, 0x00005716}, {0x0002F84C, 0x00005606}, {0x0002F84D, 0x00005717},
+{0x0002F84E, 0x00005651}, {0x0002F84F, 0x00005674}, {0x0002F850, 0x00005207}, {0x0002F851, 0x000058EE},
+{0x0002F852, 0x000057CE}, {0x0002F853, 0x000057F4}, {0x0002F854, 0x0000580D}, {0x0002F855, 0x0000578B},
+{0x0002F856, 0x00005832}, {0x0002F857, 0x00005831}, {0x0002F858, 0x000058AC}, {0x0002F859, 0x000214E4},
+{0x0002F85A, 0x000058F2}, {0x0002F85B, 0x000058F7}, {0x0002F85C, 0x00005906}, {0x0002F85D, 0x0000591A},
+{0x0002F85E, 0x00005922}, {0x0002F85F, 0x00005962}, {0x0002F860, 0x000216A8}, {0x0002F861, 0x000216EA},
+{0x0002F862, 0x000059EC}, {0x0002F863, 0x00005A1B}, {0x0002F864, 0x00005A27}, {0x0002F865, 0x000059D8},
+{0x0002F866, 0x00005A66}, {0x0002F867, 0x000036EE}, {0x0002F868, 0x000036FC}, {0x0002F869, 0x00005B08},
+{0x0002F86A, 0x00005B3E}, {0x0002F86B, 0x00005B3E}, {0x0002F86C, 0x000219C8}, {0x0002F86D, 0x00005BC3},
+{0x0002F86E, 0x00005BD8}, {0x0002F86F, 0x00005BE7}, {0x0002F870, 0x00005BF3}, {0x0002F871, 0x00021B18},
+{0x0002F872, 0x00005BFF}, {0x0002F873, 0x00005C06}, {0x0002F874, 0x00005F53}, {0x0002F875, 0x00005C22},
+{0x0002F876, 0x00003781}, {0x0002F877, 0x00005C60}, {0x0002F878, 0x00005C6E}, {0x0002F879, 0x00005CC0},
+{0x0002F87A, 0x00005C8D}, {0x0002F87B, 0x00021DE4}, {0x0002F87C, 0x00005D43}, {0x0002F87D, 0x00021DE6},
+{0x0002F87E, 0x00005D6E}, {0x0002F87F, 0x00005D6B}, {0x0002F880, 0x00005D7C}, {0x0002F881, 0x00005DE1},
+{0x0002F882, 0x00005DE2}, {0x0002F883, 0x0000382F}, {0x0002F884, 0x00005DFD}, {0x0002F885, 0x00005E28},
+{0x0002F886, 0x00005E3D}, {0x0002F887, 0x00005E69}, {0x0002F888, 0x00003862}, {0x0002F889, 0x00022183},
+{0x0002F88A, 0x0000387C}, {0x0002F88B, 0x00005EB0}, {0x0002F88C, 0x00005EB3}, {0x0002F88D, 0x00005EB6},
+{0x0002F88E, 0x00005ECA}, {0x0002F88F, 0x0002A392}, {0x0002F890, 0x00005EFE}, {0x0002F891, 0x00022331},
+{0x0002F892, 0x00022331}, {0x0002F893, 0x00008201}, {0x0002F894, 0x00005F22}, {0x0002F895, 0x00005F22},
+{0x0002F896, 0x000038C7}, {0x0002F897, 0x000232B8}, {0x0002F898, 0x000261DA}, {0x0002F899, 0x00005F62},
+{0x0002F89A, 0x00005F6B}, {0x0002F89B, 0x000038E3}, {0x0002F89C, 0x00005F9A}, {0x0002F89D, 0x00005FCD},
+{0x0002F89E, 0x00005FD7}, {0x0002F89F, 0x00005FF9}, {0x0002F8A0, 0x00006081}, {0x0002F8A1, 0x0000393A},
+{0x0002F8A2, 0x0000391C}, {0x0002F8A3, 0x00006094}, {0x0002F8A4, 0x000226D4}, {0x0002F8A5, 0x000060C7},
+{0x0002F8A6, 0x00006148}, {0x0002F8A7, 0x0000614C}, {0x0002F8A8, 0x0000614E}, {0x0002F8A9, 0x0000614C},
+{0x0002F8AA, 0x0000617A}, {0x0002F8AB, 0x0000618E}, {0x0002F8AC, 0x000061B2}, {0x0002F8AD, 0x000061A4},
+{0x0002F8AE, 0x000061AF}, {0x0002F8AF, 0x000061DE}, {0x0002F8B0, 0x000061F2}, {0x0002F8B1, 0x000061F6},
+{0x0002F8B2, 0x00006210}, {0x0002F8B3, 0x0000621B}, {0x0002F8B4, 0x0000625D}, {0x0002F8B5, 0x000062B1},
+{0x0002F8B6, 0x000062D4}, {0x0002F8B7, 0x00006350}, {0x0002F8B8, 0x00022B0C}, {0x0002F8B9, 0x0000633D},
+{0x0002F8BA, 0x000062FC}, {0x0002F8BB, 0x00006368}, {0x0002F8BC, 0x00006383}, {0x0002F8BD, 0x000063E4},
+{0x0002F8BE, 0x00022BF1}, {0x0002F8BF, 0x00006422}, {0x0002F8C0, 0x000063C5}, {0x0002F8C1, 0x000063A9},
+{0x0002F8C2, 0x00003A2E}, {0x0002F8C3, 0x00006469}, {0x0002F8C4, 0x0000647E}, {0x0002F8C5, 0x0000649D},
+{0x0002F8C6, 0x00006477}, {0x0002F8C7, 0x00003A6C}, {0x0002F8C8, 0x0000654F}, {0x0002F8C9, 0x0000656C},
+{0x0002F8CA, 0x0002300A}, {0x0002F8CB, 0x000065E3}, {0x0002F8CC, 0x000066F8}, {0x0002F8CD, 0x00006649},
+{0x0002F8CE, 0x00003B19}, {0x0002F8CF, 0x00006691}, {0x0002F8D0, 0x00003B08}, {0x0002F8D1, 0x00003AE4},
+{0x0002F8D2, 0x00005192}, {0x0002F8D3, 0x00005195}, {0x0002F8D4, 0x00006700}, {0x0002F8D5, 0x0000669C},
+{0x0002F8D6, 0x000080AD}, {0x0002F8D7, 0x000043D9}, {0x0002F8D8, 0x00006717}, {0x0002F8D9, 0x0000671B},
+{0x0002F8DA, 0x00006721}, {0x0002F8DB, 0x0000675E}, {0x0002F8DC, 0x00006753}, {0x0002F8DD, 0x000233C3},
+{0x0002F8DE, 0x00003B49}, {0x0002F8DF, 0x000067FA}, {0x0002F8E0, 0x00006785}, {0x0002F8E1, 0x00006852},
+{0x0002F8E2, 0x00006885}, {0x0002F8E3, 0x0002346D}, {0x0002F8E4, 0x0000688E}, {0x0002F8E5, 0x0000681F},
+{0x0002F8E6, 0x00006914}, {0x0002F8E7, 0x00003B9D}, {0x0002F8E8, 0x00006942}, {0x0002F8E9, 0x000069A3},
+{0x0002F8EA, 0x000069EA}, {0x0002F8EB, 0x00006AA8}, {0x0002F8EC, 0x000236A3}, {0x0002F8ED, 0x00006ADB},
+{0x0002F8EE, 0x00003C18}, {0x0002F8EF, 0x00006B21}, {0x0002F8F0, 0x000238A7}, {0x0002F8F1, 0x00006B54},
+{0x0002F8F2, 0x00003C4E}, {0x0002F8F3, 0x00006B72}, {0x0002F8F4, 0x00006B9F}, {0x0002F8F5, 0x00006BBA},
+{0x0002F8F6, 0x00006BBB}, {0x0002F8F7, 0x00023A8D}, {0x0002F8F8, 0x00021D0B}, {0x0002F8F9, 0x00023AFA},
+{0x0002F8FA, 0x00006C4E}, {0x0002F8FB, 0x00023CBC}, {0x0002F8FC, 0x00006CBF}, {0x0002F8FD, 0x00006CCD},
+{0x0002F8FE, 0x00006C67}, {0x0002F8FF, 0x00006D16}, {0x0002F900, 0x00006D3E}, {0x0002F901, 0x00006D77},
+{0x0002F902, 0x00006D41}, {0x0002F903, 0x00006D69}, {0x0002F904, 0x00006D78}, {0x0002F905, 0x00006D85},
+{0x0002F906, 0x00023D1E}, {0x0002F907, 0x00006D34}, {0x0002F908, 0x00006E2F}, {0x0002F909, 0x00006E6E},
+{0x0002F90A, 0x00003D33}, {0x0002F90B, 0x00006ECB}, {0x0002F90C, 0x00006EC7}, {0x0002F90D, 0x00023ED1},
+{0x0002F90E, 0x00006DF9}, {0x0002F90F, 0x00006F6E}, {0x0002F910, 0x00023F5E}, {0x0002F911, 0x00023F8E},
+{0x0002F912, 0x00006FC6}, {0x0002F913, 0x00007039}, {0x0002F914, 0x0000701E}, {0x0002F915, 0x0000701B},
+{0x0002F916, 0x00003D96}, {0x0002F917, 0x0000704A}, {0x0002F918, 0x0000707D}, {0x0002F919, 0x00007077},
+{0x0002F91A, 0x000070AD}, {0x0002F91B, 0x00020525}, {0x0002F91C, 0x00007145}, {0x0002F91D, 0x00024263},
+{0x0002F91E, 0x0000719C}, {0x0002F91F, 0x000243AB}, {0x0002F920, 0x00007228}, {0x0002F921, 0x00007235},
+{0x0002F922, 0x00007250}, {0x0002F923, 0x00024608}, {0x0002F924, 0x00007280}, {0x0002F925, 0x00007295},
+{0x0002F926, 0x00024735}, {0x0002F927, 0x00024814}, {0x0002F928, 0x0000737A}, {0x0002F929, 0x0000738B},
+{0x0002F92A, 0x00003EAC}, {0x0002F92B, 0x000073A5}, {0x0002F92C, 0x00003EB8}, {0x0002F92D, 0x00003EB8},
+{0x0002F92E, 0x00007447}, {0x0002F92F, 0x0000745C}, {0x0002F930, 0x00007471}, {0x0002F931, 0x00007485},
+{0x0002F932, 0x000074CA}, {0x0002F933, 0x00003F1B}, {0x0002F934, 0x00007524}, {0x0002F935, 0x00024C36},
+{0x0002F936, 0x0000753E}, {0x0002F937, 0x00024C92}, {0x0002F938, 0x00007570}, {0x0002F939, 0x0002219F},
+{0x0002F93A, 0x00007610}, {0x0002F93B, 0x00024FA1}, {0x0002F93C, 0x00024FB8}, {0x0002F93D, 0x00025044},
+{0x0002F93E, 0x00003FFC}, {0x0002F93F, 0x00004008}, {0x0002F940, 0x000076F4}, {0x0002F941, 0x000250F3},
+{0x0002F942, 0x000250F2}, {0x0002F943, 0x00025119}, {0x0002F944, 0x00025133}, {0x0002F945, 0x0000771E},
+{0x0002F946, 0x0000771F}, {0x0002F947, 0x0000771F}, {0x0002F948, 0x0000774A}, {0x0002F949, 0x00004039},
+{0x0002F94A, 0x0000778B}, {0x0002F94B, 0x00004046}, {0x0002F94C, 0x00004096}, {0x0002F94D, 0x0002541D},
+{0x0002F94E, 0x0000784E}, {0x0002F94F, 0x0000788C}, {0x0002F950, 0x000078CC}, {0x0002F951, 0x000040E3},
+{0x0002F952, 0x00025626}, {0x0002F953, 0x00007956}, {0x0002F954, 0x0002569A}, {0x0002F955, 0x000256C5},
+{0x0002F956, 0x0000798F}, {0x0002F957, 0x000079EB}, {0x0002F958, 0x0000412F}, {0x0002F959, 0x00007A40},
+{0x0002F95A, 0x00007A4A}, {0x0002F95B, 0x00007A4F}, {0x0002F95C, 0x0002597C}, {0x0002F95D, 0x00025AA7},
+{0x0002F95E, 0x00025AA7}, {0x0002F95F, 0x00007AEE}, {0x0002F960, 0x00004202}, {0x0002F961, 0x00025BAB},
+{0x0002F962, 0x00007BC6}, {0x0002F963, 0x00007BC9}, {0x0002F964, 0x00004227}, {0x0002F965, 0x00025C80},
+{0x0002F966, 0x00007CD2}, {0x0002F967, 0x000042A0}, {0x0002F968, 0x00007CE8}, {0x0002F969, 0x00007CE3},
+{0x0002F96A, 0x00007D00}, {0x0002F96B, 0x00025F86}, {0x0002F96C, 0x00007D63}, {0x0002F96D, 0x00004301},
+{0x0002F96E, 0x00007DC7}, {0x0002F96F, 0x00007E02}, {0x0002F970, 0x00007E45}, {0x0002F971, 0x00004334},
+{0x0002F972, 0x00026228}, {0x0002F973, 0x00026247}, {0x0002F974, 0x00004359}, {0x0002F975, 0x000262D9},
+{0x0002F976, 0x00007F7A}, {0x0002F977, 0x0002633E}, {0x0002F978, 0x00007F95}, {0x0002F979, 0x00007FFA},
+{0x0002F97A, 0x00008005}, {0x0002F97B, 0x000264DA}, {0x0002F97C, 0x00026523}, {0x0002F97D, 0x00008060},
+{0x0002F97E, 0x000265A8}, {0x0002F97F, 0x00008070}, {0x0002F980, 0x0002335F}, {0x0002F981, 0x000043D5},
+{0x0002F982, 0x000080B2}, {0x0002F983, 0x00008103}, {0x0002F984, 0x0000440B}, {0x0002F985, 0x0000813E},
+{0x0002F986, 0x00005AB5}, {0x0002F987, 0x000267A7}, {0x0002F988, 0x000267B5}, {0x0002F989, 0x00023393},
+{0x0002F98A, 0x0002339C}, {0x0002F98B, 0x00008201}, {0x0002F98C, 0x00008204}, {0x0002F98D, 0x00008F9E},
+{0x0002F98E, 0x0000446B}, {0x0002F98F, 0x00008291}, {0x0002F990, 0x0000828B}, {0x0002F991, 0x0000829D},
+{0x0002F992, 0x000052B3}, {0x0002F993, 0x000082B1}, {0x0002F994, 0x000082B3}, {0x0002F995, 0x000082BD},
+{0x0002F996, 0x000082E6}, {0x0002F997, 0x00026B3C}, {0x0002F998, 0x000082E5}, {0x0002F999, 0x0000831D},
+{0x0002F99A, 0x00008363}, {0x0002F99B, 0x000083AD}, {0x0002F99C, 0x00008323}, {0x0002F99D, 0x000083BD},
+{0x0002F99E, 0x000083E7}, {0x0002F99F, 0x00008457}, {0x0002F9A0, 0x00008353}, {0x0002F9A1, 0x000083CA},
+{0x0002F9A2, 0x000083CC}, {0x0002F9A3, 0x000083DC}, {0x0002F9A4, 0x00026C36}, {0x0002F9A5, 0x00026D6B},
+{0x0002F9A6, 0x00026CD5}, {0x0002F9A7, 0x0000452B}, {0x0002F9A8, 0x000084F1}, {0x0002F9A9, 0x000084F3},
+{0x0002F9AA, 0x00008516}, {0x0002F9AB, 0x000273CA}, {0x0002F9AC, 0x00008564}, {0x0002F9AD, 0x00026F2C},
+{0x0002F9AE, 0x0000455D}, {0x0002F9AF, 0x00004561}, {0x0002F9B0, 0x00026FB1}, {0x0002F9B1, 0x000270D2},
+{0x0002F9B2, 0x0000456B}, {0x0002F9B3, 0x00008650}, {0x0002F9B4, 0x0000865C}, {0x0002F9B5, 0x00008667},
+{0x0002F9B6, 0x00008669}, {0x0002F9B7, 0x000086A9}, {0x0002F9B8, 0x00008688}, {0x0002F9B9, 0x0000870E},
+{0x0002F9BA, 0x000086E2}, {0x0002F9BB, 0x00008779}, {0x0002F9BC, 0x00008728}, {0x0002F9BD, 0x0000876B},
+{0x0002F9BE, 0x00008786}, {0x0002F9BF, 0x000045D7}, {0x0002F9C0, 0x000087E1}, {0x0002F9C1, 0x00008801},
+{0x0002F9C2, 0x000045F9}, {0x0002F9C3, 0x00008860}, {0x0002F9C4, 0x00008863}, {0x0002F9C5, 0x00027667},
+{0x0002F9C6, 0x000088D7}, {0x0002F9C7, 0x000088DE}, {0x0002F9C8, 0x00004635}, {0x0002F9C9, 0x000088FA},
+{0x0002F9CA, 0x000034BB}, {0x0002F9CB, 0x000278AE}, {0x0002F9CC, 0x00027966}, {0x0002F9CD, 0x000046BE},
+{0x0002F9CE, 0x000046C7}, {0x0002F9CF, 0x00008AA0}, {0x0002F9D0, 0x00008AED}, {0x0002F9D1, 0x00008B8A},
+{0x0002F9D2, 0x00008C55}, {0x0002F9D3, 0x00027CA8}, {0x0002F9D4, 0x00008CAB}, {0x0002F9D5, 0x00008CC1},
+{0x0002F9D6, 0x00008D1B}, {0x0002F9D7, 0x00008D77}, {0x0002F9D8, 0x00027F2F}, {0x0002F9D9, 0x00020804},
+{0x0002F9DA, 0x00008DCB}, {0x0002F9DB, 0x00008DBC}, {0x0002F9DC, 0x00008DF0}, {0x0002F9DD, 0x000208DE},
+{0x0002F9DE, 0x00008ED4}, {0x0002F9DF, 0x00008F38}, {0x0002F9E0, 0x000285D2}, {0x0002F9E1, 0x000285ED},
+{0x0002F9E2, 0x00009094}, {0x0002F9E3, 0x000090F1}, {0x0002F9E4, 0x00009111}, {0x0002F9E5, 0x0002872E},
+{0x0002F9E6, 0x0000911B}, {0x0002F9E7, 0x00009238}, {0x0002F9E8, 0x000092D7}, {0x0002F9E9, 0x000092D8},
+{0x0002F9EA, 0x0000927C}, {0x0002F9EB, 0x000093F9}, {0x0002F9EC, 0x00009415}, {0x0002F9ED, 0x00028BFA},
+{0x0002F9EE, 0x0000958B}, {0x0002F9EF, 0x00004995}, {0x0002F9F0, 0x000095B7}, {0x0002F9F1, 0x00028D77},
+{0x0002F9F2, 0x000049E6}, {0x0002F9F3, 0x000096C3}, {0x0002F9F4, 0x00005DB2}, {0x0002F9F5, 0x00009723},
+{0x0002F9F6, 0x00029145}, {0x0002F9F7, 0x0002921A}, {0x0002F9F8, 0x00004A6E}, {0x0002F9F9, 0x00004A76},
+{0x0002F9FA, 0x000097E0}, {0x0002F9FB, 0x0002940A}, {0x0002F9FC, 0x00004AB2}, {0x0002F9FD, 0x00029496},
+{0x0002F9FE, 0x0000980B}, {0x0002F9FF, 0x0000980B}, {0x0002FA00, 0x00009829}, {0x0002FA01, 0x000295B6},
+{0x0002FA02, 0x000098E2}, {0x0002FA03, 0x00004B33}, {0x0002FA04, 0x00009929}, {0x0002FA05, 0x000099A7},
+{0x0002FA06, 0x000099C2}, {0x0002FA07, 0x000099FE}, {0x0002FA08, 0x00004BCE}, {0x0002FA09, 0x00029B30},
+{0x0002FA0A, 0x00009B12}, {0x0002FA0B, 0x00009C40}, {0x0002FA0C, 0x00009CFD}, {0x0002FA0D, 0x00004CCE},
+{0x0002FA0E, 0x00004CED}, {0x0002FA0F, 0x00009D67}, {0x0002FA10, 0x0002A0CE}, {0x0002FA11, 0x00004CF8},
+{0x0002FA12, 0x0002A105}, {0x0002FA13, 0x0002A20E}, {0x0002FA14, 0x0002A291}, {0x0002FA15, 0x00009EBB},
+{0x0002FA16, 0x00004D56}, {0x0002FA17, 0x00009EF9}, {0x0002FA18, 0x00009EFE}, {0x0002FA19, 0x00009F05},
+{0x0002FA1A, 0x00009F0F}, {0x0002FA1B, 0x00009F16}, {0x0002FA1D, 0x0002A600},
+};
+
+const std::map<char32_t, char32_t> unicode_map_lowercase = {
+{0x00041, 0x00061}, {0x00042, 0x00062}, {0x00043, 0x00063}, {0x00044, 0x00064}, {0x00045, 0x00065}, {0x00046, 0x00066},
+{0x00047, 0x00067}, {0x00048, 0x00068}, {0x00049, 0x00069}, {0x0004A, 0x0006A}, {0x0004B, 0x0006B}, {0x0004C, 0x0006C},
+{0x0004D, 0x0006D}, {0x0004E, 0x0006E}, {0x0004F, 0x0006F}, {0x00050, 0x00070}, {0x00051, 0x00071}, {0x00052, 0x00072},
+{0x00053, 0x00073}, {0x00054, 0x00074}, {0x00055, 0x00075}, {0x00056, 0x00076}, {0x00057, 0x00077}, {0x00058, 0x00078},
+{0x00059, 0x00079}, {0x0005A, 0x0007A}, {0x000C0, 0x000E0}, {0x000C1, 0x000E1}, {0x000C2, 0x000E2}, {0x000C3, 0x000E3},
+{0x000C4, 0x000E4}, {0x000C5, 0x000E5}, {0x000C6, 0x000E6}, {0x000C7, 0x000E7}, {0x000C8, 0x000E8}, {0x000C9, 0x000E9},
+{0x000CA, 0x000EA}, {0x000CB, 0x000EB}, {0x000CC, 0x000EC}, {0x000CD, 0x000ED}, {0x000CE, 0x000EE}, {0x000CF, 0x000EF},
+{0x000D0, 0x000F0}, {0x000D1, 0x000F1}, {0x000D2, 0x000F2}, {0x000D3, 0x000F3}, {0x000D4, 0x000F4}, {0x000D5, 0x000F5},
+{0x000D6, 0x000F6}, {0x000D8, 0x000F8}, {0x000D9, 0x000F9}, {0x000DA, 0x000FA}, {0x000DB, 0x000FB}, {0x000DC, 0x000FC},
+{0x000DD, 0x000FD}, {0x000DE, 0x000FE}, {0x00100, 0x00101}, {0x00102, 0x00103}, {0x00104, 0x00105}, {0x00106, 0x00107},
+{0x00108, 0x00109}, {0x0010A, 0x0010B}, {0x0010C, 0x0010D}, {0x0010E, 0x0010F}, {0x00110, 0x00111}, {0x00112, 0x00113},
+{0x00114, 0x00115}, {0x00116, 0x00117}, {0x00118, 0x00119}, {0x0011A, 0x0011B}, {0x0011C, 0x0011D}, {0x0011E, 0x0011F},
+{0x00120, 0x00121}, {0x00122, 0x00123}, {0x00124, 0x00125}, {0x00126, 0x00127}, {0x00128, 0x00129}, {0x0012A, 0x0012B},
+{0x0012C, 0x0012D}, {0x0012E, 0x0012F}, {0x00130, 0x00069}, {0x00132, 0x00133}, {0x00134, 0x00135}, {0x00136, 0x00137},
+{0x00139, 0x0013A}, {0x0013B, 0x0013C}, {0x0013D, 0x0013E}, {0x0013F, 0x00140}, {0x00141, 0x00142}, {0x00143, 0x00144},
+{0x00145, 0x00146}, {0x00147, 0x00148}, {0x0014A, 0x0014B}, {0x0014C, 0x0014D}, {0x0014E, 0x0014F}, {0x00150, 0x00151},
+{0x00152, 0x00153}, {0x00154, 0x00155}, {0x00156, 0x00157}, {0x00158, 0x00159}, {0x0015A, 0x0015B}, {0x0015C, 0x0015D},
+{0x0015E, 0x0015F}, {0x00160, 0x00161}, {0x00162, 0x00163}, {0x00164, 0x00165}, {0x00166, 0x00167}, {0x00168, 0x00169},
+{0x0016A, 0x0016B}, {0x0016C, 0x0016D}, {0x0016E, 0x0016F}, {0x00170, 0x00171}, {0x00172, 0x00173}, {0x00174, 0x00175},
+{0x00176, 0x00177}, {0x00178, 0x000FF}, {0x00179, 0x0017A}, {0x0017B, 0x0017C}, {0x0017D, 0x0017E}, {0x00181, 0x00253},
+{0x00182, 0x00183}, {0x00184, 0x00185}, {0x00186, 0x00254}, {0x00187, 0x00188}, {0x00189, 0x00256}, {0x0018A, 0x00257},
+{0x0018B, 0x0018C}, {0x0018E, 0x001DD}, {0x0018F, 0x00259}, {0x00190, 0x0025B}, {0x00191, 0x00192}, {0x00193, 0x00260},
+{0x00194, 0x00263}, {0x00196, 0x00269}, {0x00197, 0x00268}, {0x00198, 0x00199}, {0x0019C, 0x0026F}, {0x0019D, 0x00272},
+{0x0019F, 0x00275}, {0x001A0, 0x001A1}, {0x001A2, 0x001A3}, {0x001A4, 0x001A5}, {0x001A6, 0x00280}, {0x001A7, 0x001A8},
+{0x001A9, 0x00283}, {0x001AC, 0x001AD}, {0x001AE, 0x00288}, {0x001AF, 0x001B0}, {0x001B1, 0x0028A}, {0x001B2, 0x0028B},
+{0x001B3, 0x001B4}, {0x001B5, 0x001B6}, {0x001B7, 0x00292}, {0x001B8, 0x001B9}, {0x001BC, 0x001BD}, {0x001C4, 0x001C6},
+{0x001C5, 0x001C6}, {0x001C7, 0x001C9}, {0x001C8, 0x001C9}, {0x001CA, 0x001CC}, {0x001CB, 0x001CC}, {0x001CD, 0x001CE},
+{0x001CF, 0x001D0}, {0x001D1, 0x001D2}, {0x001D3, 0x001D4}, {0x001D5, 0x001D6}, {0x001D7, 0x001D8}, {0x001D9, 0x001DA},
+{0x001DB, 0x001DC}, {0x001DE, 0x001DF}, {0x001E0, 0x001E1}, {0x001E2, 0x001E3}, {0x001E4, 0x001E5}, {0x001E6, 0x001E7},
+{0x001E8, 0x001E9}, {0x001EA, 0x001EB}, {0x001EC, 0x001ED}, {0x001EE, 0x001EF}, {0x001F1, 0x001F3}, {0x001F2, 0x001F3},
+{0x001F4, 0x001F5}, {0x001F6, 0x00195}, {0x001F7, 0x001BF}, {0x001F8, 0x001F9}, {0x001FA, 0x001FB}, {0x001FC, 0x001FD},
+{0x001FE, 0x001FF}, {0x00200, 0x00201}, {0x00202, 0x00203}, {0x00204, 0x00205}, {0x00206, 0x00207}, {0x00208, 0x00209},
+{0x0020A, 0x0020B}, {0x0020C, 0x0020D}, {0x0020E, 0x0020F}, {0x00210, 0x00211}, {0x00212, 0x00213}, {0x00214, 0x00215},
+{0x00216, 0x00217}, {0x00218, 0x00219}, {0x0021A, 0x0021B}, {0x0021C, 0x0021D}, {0x0021E, 0x0021F}, {0x00220, 0x0019E},
+{0x00222, 0x00223}, {0x00224, 0x00225}, {0x00226, 0x00227}, {0x00228, 0x00229}, {0x0022A, 0x0022B}, {0x0022C, 0x0022D},
+{0x0022E, 0x0022F}, {0x00230, 0x00231}, {0x00232, 0x00233}, {0x0023A, 0x02C65}, {0x0023B, 0x0023C}, {0x0023D, 0x0019A},
+{0x0023E, 0x02C66}, {0x00241, 0x00242}, {0x00243, 0x00180}, {0x00244, 0x00289}, {0x00245, 0x0028C}, {0x00246, 0x00247},
+{0x00248, 0x00249}, {0x0024A, 0x0024B}, {0x0024C, 0x0024D}, {0x0024E, 0x0024F}, {0x00370, 0x00371}, {0x00372, 0x00373},
+{0x00376, 0x00377}, {0x0037F, 0x003F3}, {0x00386, 0x003AC}, {0x00388, 0x003AD}, {0x00389, 0x003AE}, {0x0038A, 0x003AF},
+{0x0038C, 0x003CC}, {0x0038E, 0x003CD}, {0x0038F, 0x003CE}, {0x00391, 0x003B1}, {0x00392, 0x003B2}, {0x00393, 0x003B3},
+{0x00394, 0x003B4}, {0x00395, 0x003B5}, {0x00396, 0x003B6}, {0x00397, 0x003B7}, {0x00398, 0x003B8}, {0x00399, 0x003B9},
+{0x0039A, 0x003BA}, {0x0039B, 0x003BB}, {0x0039C, 0x003BC}, {0x0039D, 0x003BD}, {0x0039E, 0x003BE}, {0x0039F, 0x003BF},
+{0x003A0, 0x003C0}, {0x003A1, 0x003C1}, {0x003A3, 0x003C3}, {0x003A4, 0x003C4}, {0x003A5, 0x003C5}, {0x003A6, 0x003C6},
+{0x003A7, 0x003C7}, {0x003A8, 0x003C8}, {0x003A9, 0x003C9}, {0x003AA, 0x003CA}, {0x003AB, 0x003CB}, {0x003CF, 0x003D7},
+{0x003D8, 0x003D9}, {0x003DA, 0x003DB}, {0x003DC, 0x003DD}, {0x003DE, 0x003DF}, {0x003E0, 0x003E1}, {0x003E2, 0x003E3},
+{0x003E4, 0x003E5}, {0x003E6, 0x003E7}, {0x003E8, 0x003E9}, {0x003EA, 0x003EB}, {0x003EC, 0x003ED}, {0x003EE, 0x003EF},
+{0x003F4, 0x003B8}, {0x003F7, 0x003F8}, {0x003F9, 0x003F2}, {0x003FA, 0x003FB}, {0x003FD, 0x0037B}, {0x003FE, 0x0037C},
+{0x003FF, 0x0037D}, {0x00400, 0x00450}, {0x00401, 0x00451}, {0x00402, 0x00452}, {0x00403, 0x00453}, {0x00404, 0x00454},
+{0x00405, 0x00455}, {0x00406, 0x00456}, {0x00407, 0x00457}, {0x00408, 0x00458}, {0x00409, 0x00459}, {0x0040A, 0x0045A},
+{0x0040B, 0x0045B}, {0x0040C, 0x0045C}, {0x0040D, 0x0045D}, {0x0040E, 0x0045E}, {0x0040F, 0x0045F}, {0x00410, 0x00430},
+{0x00411, 0x00431}, {0x00412, 0x00432}, {0x00413, 0x00433}, {0x00414, 0x00434}, {0x00415, 0x00435}, {0x00416, 0x00436},
+{0x00417, 0x00437}, {0x00418, 0x00438}, {0x00419, 0x00439}, {0x0041A, 0x0043A}, {0x0041B, 0x0043B}, {0x0041C, 0x0043C},
+{0x0041D, 0x0043D}, {0x0041E, 0x0043E}, {0x0041F, 0x0043F}, {0x00420, 0x00440}, {0x00421, 0x00441}, {0x00422, 0x00442},
+{0x00423, 0x00443}, {0x00424, 0x00444}, {0x00425, 0x00445}, {0x00426, 0x00446}, {0x00427, 0x00447}, {0x00428, 0x00448},
+{0x00429, 0x00449}, {0x0042A, 0x0044A}, {0x0042B, 0x0044B}, {0x0042C, 0x0044C}, {0x0042D, 0x0044D}, {0x0042E, 0x0044E},
+{0x0042F, 0x0044F}, {0x00460, 0x00461}, {0x00462, 0x00463}, {0x00464, 0x00465}, {0x00466, 0x00467}, {0x00468, 0x00469},
+{0x0046A, 0x0046B}, {0x0046C, 0x0046D}, {0x0046E, 0x0046F}, {0x00470, 0x00471}, {0x00472, 0x00473}, {0x00474, 0x00475},
+{0x00476, 0x00477}, {0x00478, 0x00479}, {0x0047A, 0x0047B}, {0x0047C, 0x0047D}, {0x0047E, 0x0047F}, {0x00480, 0x00481},
+{0x0048A, 0x0048B}, {0x0048C, 0x0048D}, {0x0048E, 0x0048F}, {0x00490, 0x00491}, {0x00492, 0x00493}, {0x00494, 0x00495},
+{0x00496, 0x00497}, {0x00498, 0x00499}, {0x0049A, 0x0049B}, {0x0049C, 0x0049D}, {0x0049E, 0x0049F}, {0x004A0, 0x004A1},
+{0x004A2, 0x004A3}, {0x004A4, 0x004A5}, {0x004A6, 0x004A7}, {0x004A8, 0x004A9}, {0x004AA, 0x004AB}, {0x004AC, 0x004AD},
+{0x004AE, 0x004AF}, {0x004B0, 0x004B1}, {0x004B2, 0x004B3}, {0x004B4, 0x004B5}, {0x004B6, 0x004B7}, {0x004B8, 0x004B9},
+{0x004BA, 0x004BB}, {0x004BC, 0x004BD}, {0x004BE, 0x004BF}, {0x004C0, 0x004CF}, {0x004C1, 0x004C2}, {0x004C3, 0x004C4},
+{0x004C5, 0x004C6}, {0x004C7, 0x004C8}, {0x004C9, 0x004CA}, {0x004CB, 0x004CC}, {0x004CD, 0x004CE}, {0x004D0, 0x004D1},
+{0x004D2, 0x004D3}, {0x004D4, 0x004D5}, {0x004D6, 0x004D7}, {0x004D8, 0x004D9}, {0x004DA, 0x004DB}, {0x004DC, 0x004DD},
+{0x004DE, 0x004DF}, {0x004E0, 0x004E1}, {0x004E2, 0x004E3}, {0x004E4, 0x004E5}, {0x004E6, 0x004E7}, {0x004E8, 0x004E9},
+{0x004EA, 0x004EB}, {0x004EC, 0x004ED}, {0x004EE, 0x004EF}, {0x004F0, 0x004F1}, {0x004F2, 0x004F3}, {0x004F4, 0x004F5},
+{0x004F6, 0x004F7}, {0x004F8, 0x004F9}, {0x004FA, 0x004FB}, {0x004FC, 0x004FD}, {0x004FE, 0x004FF}, {0x00500, 0x00501},
+{0x00502, 0x00503}, {0x00504, 0x00505}, {0x00506, 0x00507}, {0x00508, 0x00509}, {0x0050A, 0x0050B}, {0x0050C, 0x0050D},
+{0x0050E, 0x0050F}, {0x00510, 0x00511}, {0x00512, 0x00513}, {0x00514, 0x00515}, {0x00516, 0x00517}, {0x00518, 0x00519},
+{0x0051A, 0x0051B}, {0x0051C, 0x0051D}, {0x0051E, 0x0051F}, {0x00520, 0x00521}, {0x00522, 0x00523}, {0x00524, 0x00525},
+{0x00526, 0x00527}, {0x00528, 0x00529}, {0x0052A, 0x0052B}, {0x0052C, 0x0052D}, {0x0052E, 0x0052F}, {0x00531, 0x00561},
+{0x00532, 0x00562}, {0x00533, 0x00563}, {0x00534, 0x00564}, {0x00535, 0x00565}, {0x00536, 0x00566}, {0x00537, 0x00567},
+{0x00538, 0x00568}, {0x00539, 0x00569}, {0x0053A, 0x0056A}, {0x0053B, 0x0056B}, {0x0053C, 0x0056C}, {0x0053D, 0x0056D},
+{0x0053E, 0x0056E}, {0x0053F, 0x0056F}, {0x00540, 0x00570}, {0x00541, 0x00571}, {0x00542, 0x00572}, {0x00543, 0x00573},
+{0x00544, 0x00574}, {0x00545, 0x00575}, {0x00546, 0x00576}, {0x00547, 0x00577}, {0x00548, 0x00578}, {0x00549, 0x00579},
+{0x0054A, 0x0057A}, {0x0054B, 0x0057B}, {0x0054C, 0x0057C}, {0x0054D, 0x0057D}, {0x0054E, 0x0057E}, {0x0054F, 0x0057F},
+{0x00550, 0x00580}, {0x00551, 0x00581}, {0x00552, 0x00582}, {0x00553, 0x00583}, {0x00554, 0x00584}, {0x00555, 0x00585},
+{0x00556, 0x00586}, {0x010A0, 0x02D00}, {0x010A1, 0x02D01}, {0x010A2, 0x02D02}, {0x010A3, 0x02D03}, {0x010A4, 0x02D04},
+{0x010A5, 0x02D05}, {0x010A6, 0x02D06}, {0x010A7, 0x02D07}, {0x010A8, 0x02D08}, {0x010A9, 0x02D09}, {0x010AA, 0x02D0A},
+{0x010AB, 0x02D0B}, {0x010AC, 0x02D0C}, {0x010AD, 0x02D0D}, {0x010AE, 0x02D0E}, {0x010AF, 0x02D0F}, {0x010B0, 0x02D10},
+{0x010B1, 0x02D11}, {0x010B2, 0x02D12}, {0x010B3, 0x02D13}, {0x010B4, 0x02D14}, {0x010B5, 0x02D15}, {0x010B6, 0x02D16},
+{0x010B7, 0x02D17}, {0x010B8, 0x02D18}, {0x010B9, 0x02D19}, {0x010BA, 0x02D1A}, {0x010BB, 0x02D1B}, {0x010BC, 0x02D1C},
+{0x010BD, 0x02D1D}, {0x010BE, 0x02D1E}, {0x010BF, 0x02D1F}, {0x010C0, 0x02D20}, {0x010C1, 0x02D21}, {0x010C2, 0x02D22},
+{0x010C3, 0x02D23}, {0x010C4, 0x02D24}, {0x010C5, 0x02D25}, {0x010C7, 0x02D27}, {0x010CD, 0x02D2D}, {0x013A0, 0x0AB70},
+{0x013A1, 0x0AB71}, {0x013A2, 0x0AB72}, {0x013A3, 0x0AB73}, {0x013A4, 0x0AB74}, {0x013A5, 0x0AB75}, {0x013A6, 0x0AB76},
+{0x013A7, 0x0AB77}, {0x013A8, 0x0AB78}, {0x013A9, 0x0AB79}, {0x013AA, 0x0AB7A}, {0x013AB, 0x0AB7B}, {0x013AC, 0x0AB7C},
+{0x013AD, 0x0AB7D}, {0x013AE, 0x0AB7E}, {0x013AF, 0x0AB7F}, {0x013B0, 0x0AB80}, {0x013B1, 0x0AB81}, {0x013B2, 0x0AB82},
+{0x013B3, 0x0AB83}, {0x013B4, 0x0AB84}, {0x013B5, 0x0AB85}, {0x013B6, 0x0AB86}, {0x013B7, 0x0AB87}, {0x013B8, 0x0AB88},
+{0x013B9, 0x0AB89}, {0x013BA, 0x0AB8A}, {0x013BB, 0x0AB8B}, {0x013BC, 0x0AB8C}, {0x013BD, 0x0AB8D}, {0x013BE, 0x0AB8E},
+{0x013BF, 0x0AB8F}, {0x013C0, 0x0AB90}, {0x013C1, 0x0AB91}, {0x013C2, 0x0AB92}, {0x013C3, 0x0AB93}, {0x013C4, 0x0AB94},
+{0x013C5, 0x0AB95}, {0x013C6, 0x0AB96}, {0x013C7, 0x0AB97}, {0x013C8, 0x0AB98}, {0x013C9, 0x0AB99}, {0x013CA, 0x0AB9A},
+{0x013CB, 0x0AB9B}, {0x013CC, 0x0AB9C}, {0x013CD, 0x0AB9D}, {0x013CE, 0x0AB9E}, {0x013CF, 0x0AB9F}, {0x013D0, 0x0ABA0},
+{0x013D1, 0x0ABA1}, {0x013D2, 0x0ABA2}, {0x013D3, 0x0ABA3}, {0x013D4, 0x0ABA4}, {0x013D5, 0x0ABA5}, {0x013D6, 0x0ABA6},
+{0x013D7, 0x0ABA7}, {0x013D8, 0x0ABA8}, {0x013D9, 0x0ABA9}, {0x013DA, 0x0ABAA}, {0x013DB, 0x0ABAB}, {0x013DC, 0x0ABAC},
+{0x013DD, 0x0ABAD}, {0x013DE, 0x0ABAE}, {0x013DF, 0x0ABAF}, {0x013E0, 0x0ABB0}, {0x013E1, 0x0ABB1}, {0x013E2, 0x0ABB2},
+{0x013E3, 0x0ABB3}, {0x013E4, 0x0ABB4}, {0x013E5, 0x0ABB5}, {0x013E6, 0x0ABB6}, {0x013E7, 0x0ABB7}, {0x013E8, 0x0ABB8},
+{0x013E9, 0x0ABB9}, {0x013EA, 0x0ABBA}, {0x013EB, 0x0ABBB}, {0x013EC, 0x0ABBC}, {0x013ED, 0x0ABBD}, {0x013EE, 0x0ABBE},
+{0x013EF, 0x0ABBF}, {0x013F0, 0x013F8}, {0x013F1, 0x013F9}, {0x013F2, 0x013FA}, {0x013F3, 0x013FB}, {0x013F4, 0x013FC},
+{0x013F5, 0x013FD}, {0x01C90, 0x010D0}, {0x01C91, 0x010D1}, {0x01C92, 0x010D2}, {0x01C93, 0x010D3}, {0x01C94, 0x010D4},
+{0x01C95, 0x010D5}, {0x01C96, 0x010D6}, {0x01C97, 0x010D7}, {0x01C98, 0x010D8}, {0x01C99, 0x010D9}, {0x01C9A, 0x010DA},
+{0x01C9B, 0x010DB}, {0x01C9C, 0x010DC}, {0x01C9D, 0x010DD}, {0x01C9E, 0x010DE}, {0x01C9F, 0x010DF}, {0x01CA0, 0x010E0},
+{0x01CA1, 0x010E1}, {0x01CA2, 0x010E2}, {0x01CA3, 0x010E3}, {0x01CA4, 0x010E4}, {0x01CA5, 0x010E5}, {0x01CA6, 0x010E6},
+{0x01CA7, 0x010E7}, {0x01CA8, 0x010E8}, {0x01CA9, 0x010E9}, {0x01CAA, 0x010EA}, {0x01CAB, 0x010EB}, {0x01CAC, 0x010EC},
+{0x01CAD, 0x010ED}, {0x01CAE, 0x010EE}, {0x01CAF, 0x010EF}, {0x01CB0, 0x010F0}, {0x01CB1, 0x010F1}, {0x01CB2, 0x010F2},
+{0x01CB3, 0x010F3}, {0x01CB4, 0x010F4}, {0x01CB5, 0x010F5}, {0x01CB6, 0x010F6}, {0x01CB7, 0x010F7}, {0x01CB8, 0x010F8},
+{0x01CB9, 0x010F9}, {0x01CBA, 0x010FA}, {0x01CBD, 0x010FD}, {0x01CBE, 0x010FE}, {0x01CBF, 0x010FF}, {0x01E00, 0x01E01},
+{0x01E02, 0x01E03}, {0x01E04, 0x01E05}, {0x01E06, 0x01E07}, {0x01E08, 0x01E09}, {0x01E0A, 0x01E0B}, {0x01E0C, 0x01E0D},
+{0x01E0E, 0x01E0F}, {0x01E10, 0x01E11}, {0x01E12, 0x01E13}, {0x01E14, 0x01E15}, {0x01E16, 0x01E17}, {0x01E18, 0x01E19},
+{0x01E1A, 0x01E1B}, {0x01E1C, 0x01E1D}, {0x01E1E, 0x01E1F}, {0x01E20, 0x01E21}, {0x01E22, 0x01E23}, {0x01E24, 0x01E25},
+{0x01E26, 0x01E27}, {0x01E28, 0x01E29}, {0x01E2A, 0x01E2B}, {0x01E2C, 0x01E2D}, {0x01E2E, 0x01E2F}, {0x01E30, 0x01E31},
+{0x01E32, 0x01E33}, {0x01E34, 0x01E35}, {0x01E36, 0x01E37}, {0x01E38, 0x01E39}, {0x01E3A, 0x01E3B}, {0x01E3C, 0x01E3D},
+{0x01E3E, 0x01E3F}, {0x01E40, 0x01E41}, {0x01E42, 0x01E43}, {0x01E44, 0x01E45}, {0x01E46, 0x01E47}, {0x01E48, 0x01E49},
+{0x01E4A, 0x01E4B}, {0x01E4C, 0x01E4D}, {0x01E4E, 0x01E4F}, {0x01E50, 0x01E51}, {0x01E52, 0x01E53}, {0x01E54, 0x01E55},
+{0x01E56, 0x01E57}, {0x01E58, 0x01E59}, {0x01E5A, 0x01E5B}, {0x01E5C, 0x01E5D}, {0x01E5E, 0x01E5F}, {0x01E60, 0x01E61},
+{0x01E62, 0x01E63}, {0x01E64, 0x01E65}, {0x01E66, 0x01E67}, {0x01E68, 0x01E69}, {0x01E6A, 0x01E6B}, {0x01E6C, 0x01E6D},
+{0x01E6E, 0x01E6F}, {0x01E70, 0x01E71}, {0x01E72, 0x01E73}, {0x01E74, 0x01E75}, {0x01E76, 0x01E77}, {0x01E78, 0x01E79},
+{0x01E7A, 0x01E7B}, {0x01E7C, 0x01E7D}, {0x01E7E, 0x01E7F}, {0x01E80, 0x01E81}, {0x01E82, 0x01E83}, {0x01E84, 0x01E85},
+{0x01E86, 0x01E87}, {0x01E88, 0x01E89}, {0x01E8A, 0x01E8B}, {0x01E8C, 0x01E8D}, {0x01E8E, 0x01E8F}, {0x01E90, 0x01E91},
+{0x01E92, 0x01E93}, {0x01E94, 0x01E95}, {0x01E9E, 0x000DF}, {0x01EA0, 0x01EA1}, {0x01EA2, 0x01EA3}, {0x01EA4, 0x01EA5},
+{0x01EA6, 0x01EA7}, {0x01EA8, 0x01EA9}, {0x01EAA, 0x01EAB}, {0x01EAC, 0x01EAD}, {0x01EAE, 0x01EAF}, {0x01EB0, 0x01EB1},
+{0x01EB2, 0x01EB3}, {0x01EB4, 0x01EB5}, {0x01EB6, 0x01EB7}, {0x01EB8, 0x01EB9}, {0x01EBA, 0x01EBB}, {0x01EBC, 0x01EBD},
+{0x01EBE, 0x01EBF}, {0x01EC0, 0x01EC1}, {0x01EC2, 0x01EC3}, {0x01EC4, 0x01EC5}, {0x01EC6, 0x01EC7}, {0x01EC8, 0x01EC9},
+{0x01ECA, 0x01ECB}, {0x01ECC, 0x01ECD}, {0x01ECE, 0x01ECF}, {0x01ED0, 0x01ED1}, {0x01ED2, 0x01ED3}, {0x01ED4, 0x01ED5},
+{0x01ED6, 0x01ED7}, {0x01ED8, 0x01ED9}, {0x01EDA, 0x01EDB}, {0x01EDC, 0x01EDD}, {0x01EDE, 0x01EDF}, {0x01EE0, 0x01EE1},
+{0x01EE2, 0x01EE3}, {0x01EE4, 0x01EE5}, {0x01EE6, 0x01EE7}, {0x01EE8, 0x01EE9}, {0x01EEA, 0x01EEB}, {0x01EEC, 0x01EED},
+{0x01EEE, 0x01EEF}, {0x01EF0, 0x01EF1}, {0x01EF2, 0x01EF3}, {0x01EF4, 0x01EF5}, {0x01EF6, 0x01EF7}, {0x01EF8, 0x01EF9},
+{0x01EFA, 0x01EFB}, {0x01EFC, 0x01EFD}, {0x01EFE, 0x01EFF}, {0x01F08, 0x01F00}, {0x01F09, 0x01F01}, {0x01F0A, 0x01F02},
+{0x01F0B, 0x01F03}, {0x01F0C, 0x01F04}, {0x01F0D, 0x01F05}, {0x01F0E, 0x01F06}, {0x01F0F, 0x01F07}, {0x01F18, 0x01F10},
+{0x01F19, 0x01F11}, {0x01F1A, 0x01F12}, {0x01F1B, 0x01F13}, {0x01F1C, 0x01F14}, {0x01F1D, 0x01F15}, {0x01F28, 0x01F20},
+{0x01F29, 0x01F21}, {0x01F2A, 0x01F22}, {0x01F2B, 0x01F23}, {0x01F2C, 0x01F24}, {0x01F2D, 0x01F25}, {0x01F2E, 0x01F26},
+{0x01F2F, 0x01F27}, {0x01F38, 0x01F30}, {0x01F39, 0x01F31}, {0x01F3A, 0x01F32}, {0x01F3B, 0x01F33}, {0x01F3C, 0x01F34},
+{0x01F3D, 0x01F35}, {0x01F3E, 0x01F36}, {0x01F3F, 0x01F37}, {0x01F48, 0x01F40}, {0x01F49, 0x01F41}, {0x01F4A, 0x01F42},
+{0x01F4B, 0x01F43}, {0x01F4C, 0x01F44}, {0x01F4D, 0x01F45}, {0x01F59, 0x01F51}, {0x01F5B, 0x01F53}, {0x01F5D, 0x01F55},
+{0x01F5F, 0x01F57}, {0x01F68, 0x01F60}, {0x01F69, 0x01F61}, {0x01F6A, 0x01F62}, {0x01F6B, 0x01F63}, {0x01F6C, 0x01F64},
+{0x01F6D, 0x01F65}, {0x01F6E, 0x01F66}, {0x01F6F, 0x01F67}, {0x01F88, 0x01F80}, {0x01F89, 0x01F81}, {0x01F8A, 0x01F82},
+{0x01F8B, 0x01F83}, {0x01F8C, 0x01F84}, {0x01F8D, 0x01F85}, {0x01F8E, 0x01F86}, {0x01F8F, 0x01F87}, {0x01F98, 0x01F90},
+{0x01F99, 0x01F91}, {0x01F9A, 0x01F92}, {0x01F9B, 0x01F93}, {0x01F9C, 0x01F94}, {0x01F9D, 0x01F95}, {0x01F9E, 0x01F96},
+{0x01F9F, 0x01F97}, {0x01FA8, 0x01FA0}, {0x01FA9, 0x01FA1}, {0x01FAA, 0x01FA2}, {0x01FAB, 0x01FA3}, {0x01FAC, 0x01FA4},
+{0x01FAD, 0x01FA5}, {0x01FAE, 0x01FA6}, {0x01FAF, 0x01FA7}, {0x01FB8, 0x01FB0}, {0x01FB9, 0x01FB1}, {0x01FBA, 0x01F70},
+{0x01FBB, 0x01F71}, {0x01FBC, 0x01FB3}, {0x01FC8, 0x01F72}, {0x01FC9, 0x01F73}, {0x01FCA, 0x01F74}, {0x01FCB, 0x01F75},
+{0x01FCC, 0x01FC3}, {0x01FD8, 0x01FD0}, {0x01FD9, 0x01FD1}, {0x01FDA, 0x01F76}, {0x01FDB, 0x01F77}, {0x01FE8, 0x01FE0},
+{0x01FE9, 0x01FE1}, {0x01FEA, 0x01F7A}, {0x01FEB, 0x01F7B}, {0x01FEC, 0x01FE5}, {0x01FF8, 0x01F78}, {0x01FF9, 0x01F79},
+{0x01FFA, 0x01F7C}, {0x01FFB, 0x01F7D}, {0x01FFC, 0x01FF3}, {0x02126, 0x003C9}, {0x0212A, 0x0006B}, {0x0212B, 0x000E5},
+{0x02132, 0x0214E}, {0x02160, 0x02170}, {0x02161, 0x02171}, {0x02162, 0x02172}, {0x02163, 0x02173}, {0x02164, 0x02174},
+{0x02165, 0x02175}, {0x02166, 0x02176}, {0x02167, 0x02177}, {0x02168, 0x02178}, {0x02169, 0x02179}, {0x0216A, 0x0217A},
+{0x0216B, 0x0217B}, {0x0216C, 0x0217C}, {0x0216D, 0x0217D}, {0x0216E, 0x0217E}, {0x0216F, 0x0217F}, {0x02183, 0x02184},
+{0x024B6, 0x024D0}, {0x024B7, 0x024D1}, {0x024B8, 0x024D2}, {0x024B9, 0x024D3}, {0x024BA, 0x024D4}, {0x024BB, 0x024D5},
+{0x024BC, 0x024D6}, {0x024BD, 0x024D7}, {0x024BE, 0x024D8}, {0x024BF, 0x024D9}, {0x024C0, 0x024DA}, {0x024C1, 0x024DB},
+{0x024C2, 0x024DC}, {0x024C3, 0x024DD}, {0x024C4, 0x024DE}, {0x024C5, 0x024DF}, {0x024C6, 0x024E0}, {0x024C7, 0x024E1},
+{0x024C8, 0x024E2}, {0x024C9, 0x024E3}, {0x024CA, 0x024E4}, {0x024CB, 0x024E5}, {0x024CC, 0x024E6}, {0x024CD, 0x024E7},
+{0x024CE, 0x024E8}, {0x024CF, 0x024E9}, {0x02C00, 0x02C30}, {0x02C01, 0x02C31}, {0x02C02, 0x02C32}, {0x02C03, 0x02C33},
+{0x02C04, 0x02C34}, {0x02C05, 0x02C35}, {0x02C06, 0x02C36}, {0x02C07, 0x02C37}, {0x02C08, 0x02C38}, {0x02C09, 0x02C39},
+{0x02C0A, 0x02C3A}, {0x02C0B, 0x02C3B}, {0x02C0C, 0x02C3C}, {0x02C0D, 0x02C3D}, {0x02C0E, 0x02C3E}, {0x02C0F, 0x02C3F},
+{0x02C10, 0x02C40}, {0x02C11, 0x02C41}, {0x02C12, 0x02C42}, {0x02C13, 0x02C43}, {0x02C14, 0x02C44}, {0x02C15, 0x02C45},
+{0x02C16, 0x02C46}, {0x02C17, 0x02C47}, {0x02C18, 0x02C48}, {0x02C19, 0x02C49}, {0x02C1A, 0x02C4A}, {0x02C1B, 0x02C4B},
+{0x02C1C, 0x02C4C}, {0x02C1D, 0x02C4D}, {0x02C1E, 0x02C4E}, {0x02C1F, 0x02C4F}, {0x02C20, 0x02C50}, {0x02C21, 0x02C51},
+{0x02C22, 0x02C52}, {0x02C23, 0x02C53}, {0x02C24, 0x02C54}, {0x02C25, 0x02C55}, {0x02C26, 0x02C56}, {0x02C27, 0x02C57},
+{0x02C28, 0x02C58}, {0x02C29, 0x02C59}, {0x02C2A, 0x02C5A}, {0x02C2B, 0x02C5B}, {0x02C2C, 0x02C5C}, {0x02C2D, 0x02C5D},
+{0x02C2E, 0x02C5E}, {0x02C2F, 0x02C5F}, {0x02C60, 0x02C61}, {0x02C62, 0x0026B}, {0x02C63, 0x01D7D}, {0x02C64, 0x0027D},
+{0x02C67, 0x02C68}, {0x02C69, 0x02C6A}, {0x02C6B, 0x02C6C}, {0x02C6D, 0x00251}, {0x02C6E, 0x00271}, {0x02C6F, 0x00250},
+{0x02C70, 0x00252}, {0x02C72, 0x02C73}, {0x02C75, 0x02C76}, {0x02C7E, 0x0023F}, {0x02C7F, 0x00240}, {0x02C80, 0x02C81},
+{0x02C82, 0x02C83}, {0x02C84, 0x02C85}, {0x02C86, 0x02C87}, {0x02C88, 0x02C89}, {0x02C8A, 0x02C8B}, {0x02C8C, 0x02C8D},
+{0x02C8E, 0x02C8F}, {0x02C90, 0x02C91}, {0x02C92, 0x02C93}, {0x02C94, 0x02C95}, {0x02C96, 0x02C97}, {0x02C98, 0x02C99},
+{0x02C9A, 0x02C9B}, {0x02C9C, 0x02C9D}, {0x02C9E, 0x02C9F}, {0x02CA0, 0x02CA1}, {0x02CA2, 0x02CA3}, {0x02CA4, 0x02CA5},
+{0x02CA6, 0x02CA7}, {0x02CA8, 0x02CA9}, {0x02CAA, 0x02CAB}, {0x02CAC, 0x02CAD}, {0x02CAE, 0x02CAF}, {0x02CB0, 0x02CB1},
+{0x02CB2, 0x02CB3}, {0x02CB4, 0x02CB5}, {0x02CB6, 0x02CB7}, {0x02CB8, 0x02CB9}, {0x02CBA, 0x02CBB}, {0x02CBC, 0x02CBD},
+{0x02CBE, 0x02CBF}, {0x02CC0, 0x02CC1}, {0x02CC2, 0x02CC3}, {0x02CC4, 0x02CC5}, {0x02CC6, 0x02CC7}, {0x02CC8, 0x02CC9},
+{0x02CCA, 0x02CCB}, {0x02CCC, 0x02CCD}, {0x02CCE, 0x02CCF}, {0x02CD0, 0x02CD1}, {0x02CD2, 0x02CD3}, {0x02CD4, 0x02CD5},
+{0x02CD6, 0x02CD7}, {0x02CD8, 0x02CD9}, {0x02CDA, 0x02CDB}, {0x02CDC, 0x02CDD}, {0x02CDE, 0x02CDF}, {0x02CE0, 0x02CE1},
+{0x02CE2, 0x02CE3}, {0x02CEB, 0x02CEC}, {0x02CED, 0x02CEE}, {0x02CF2, 0x02CF3}, {0x0A640, 0x0A641}, {0x0A642, 0x0A643},
+{0x0A644, 0x0A645}, {0x0A646, 0x0A647}, {0x0A648, 0x0A649}, {0x0A64A, 0x0A64B}, {0x0A64C, 0x0A64D}, {0x0A64E, 0x0A64F},
+{0x0A650, 0x0A651}, {0x0A652, 0x0A653}, {0x0A654, 0x0A655}, {0x0A656, 0x0A657}, {0x0A658, 0x0A659}, {0x0A65A, 0x0A65B},
+{0x0A65C, 0x0A65D}, {0x0A65E, 0x0A65F}, {0x0A660, 0x0A661}, {0x0A662, 0x0A663}, {0x0A664, 0x0A665}, {0x0A666, 0x0A667},
+{0x0A668, 0x0A669}, {0x0A66A, 0x0A66B}, {0x0A66C, 0x0A66D}, {0x0A680, 0x0A681}, {0x0A682, 0x0A683}, {0x0A684, 0x0A685},
+{0x0A686, 0x0A687}, {0x0A688, 0x0A689}, {0x0A68A, 0x0A68B}, {0x0A68C, 0x0A68D}, {0x0A68E, 0x0A68F}, {0x0A690, 0x0A691},
+{0x0A692, 0x0A693}, {0x0A694, 0x0A695}, {0x0A696, 0x0A697}, {0x0A698, 0x0A699}, {0x0A69A, 0x0A69B}, {0x0A722, 0x0A723},
+{0x0A724, 0x0A725}, {0x0A726, 0x0A727}, {0x0A728, 0x0A729}, {0x0A72A, 0x0A72B}, {0x0A72C, 0x0A72D}, {0x0A72E, 0x0A72F},
+{0x0A732, 0x0A733}, {0x0A734, 0x0A735}, {0x0A736, 0x0A737}, {0x0A738, 0x0A739}, {0x0A73A, 0x0A73B}, {0x0A73C, 0x0A73D},
+{0x0A73E, 0x0A73F}, {0x0A740, 0x0A741}, {0x0A742, 0x0A743}, {0x0A744, 0x0A745}, {0x0A746, 0x0A747}, {0x0A748, 0x0A749},
+{0x0A74A, 0x0A74B}, {0x0A74C, 0x0A74D}, {0x0A74E, 0x0A74F}, {0x0A750, 0x0A751}, {0x0A752, 0x0A753}, {0x0A754, 0x0A755},
+{0x0A756, 0x0A757}, {0x0A758, 0x0A759}, {0x0A75A, 0x0A75B}, {0x0A75C, 0x0A75D}, {0x0A75E, 0x0A75F}, {0x0A760, 0x0A761},
+{0x0A762, 0x0A763}, {0x0A764, 0x0A765}, {0x0A766, 0x0A767}, {0x0A768, 0x0A769}, {0x0A76A, 0x0A76B}, {0x0A76C, 0x0A76D},
+{0x0A76E, 0x0A76F}, {0x0A779, 0x0A77A}, {0x0A77B, 0x0A77C}, {0x0A77D, 0x01D79}, {0x0A77E, 0x0A77F}, {0x0A780, 0x0A781},
+{0x0A782, 0x0A783}, {0x0A784, 0x0A785}, {0x0A786, 0x0A787}, {0x0A78B, 0x0A78C}, {0x0A78D, 0x00265}, {0x0A790, 0x0A791},
+{0x0A792, 0x0A793}, {0x0A796, 0x0A797}, {0x0A798, 0x0A799}, {0x0A79A, 0x0A79B}, {0x0A79C, 0x0A79D}, {0x0A79E, 0x0A79F},
+{0x0A7A0, 0x0A7A1}, {0x0A7A2, 0x0A7A3}, {0x0A7A4, 0x0A7A5}, {0x0A7A6, 0x0A7A7}, {0x0A7A8, 0x0A7A9}, {0x0A7AA, 0x00266},
+{0x0A7AB, 0x0025C}, {0x0A7AC, 0x00261}, {0x0A7AD, 0x0026C}, {0x0A7AE, 0x0026A}, {0x0A7B0, 0x0029E}, {0x0A7B1, 0x00287},
+{0x0A7B2, 0x0029D}, {0x0A7B3, 0x0AB53}, {0x0A7B4, 0x0A7B5}, {0x0A7B6, 0x0A7B7}, {0x0A7B8, 0x0A7B9}, {0x0A7BA, 0x0A7BB},
+{0x0A7BC, 0x0A7BD}, {0x0A7BE, 0x0A7BF}, {0x0A7C0, 0x0A7C1}, {0x0A7C2, 0x0A7C3}, {0x0A7C4, 0x0A794}, {0x0A7C5, 0x00282},
+{0x0A7C6, 0x01D8E}, {0x0A7C7, 0x0A7C8}, {0x0A7C9, 0x0A7CA}, {0x0A7D0, 0x0A7D1}, {0x0A7D6, 0x0A7D7}, {0x0A7D8, 0x0A7D9},
+{0x0A7F5, 0x0A7F6}, {0x0FF21, 0x0FF41}, {0x0FF22, 0x0FF42}, {0x0FF23, 0x0FF43}, {0x0FF24, 0x0FF44}, {0x0FF25, 0x0FF45},
+{0x0FF26, 0x0FF46}, {0x0FF27, 0x0FF47}, {0x0FF28, 0x0FF48}, {0x0FF29, 0x0FF49}, {0x0FF2A, 0x0FF4A}, {0x0FF2B, 0x0FF4B},
+{0x0FF2C, 0x0FF4C}, {0x0FF2D, 0x0FF4D}, {0x0FF2E, 0x0FF4E}, {0x0FF2F, 0x0FF4F}, {0x0FF30, 0x0FF50}, {0x0FF31, 0x0FF51},
+{0x0FF32, 0x0FF52}, {0x0FF33, 0x0FF53}, {0x0FF34, 0x0FF54}, {0x0FF35, 0x0FF55}, {0x0FF36, 0x0FF56}, {0x0FF37, 0x0FF57},
+{0x0FF38, 0x0FF58}, {0x0FF39, 0x0FF59}, {0x0FF3A, 0x0FF5A}, {0x10400, 0x10428}, {0x10401, 0x10429}, {0x10402, 0x1042A},
+{0x10403, 0x1042B}, {0x10404, 0x1042C}, {0x10405, 0x1042D}, {0x10406, 0x1042E}, {0x10407, 0x1042F}, {0x10408, 0x10430},
+{0x10409, 0x10431}, {0x1040A, 0x10432}, {0x1040B, 0x10433}, {0x1040C, 0x10434}, {0x1040D, 0x10435}, {0x1040E, 0x10436},
+{0x1040F, 0x10437}, {0x10410, 0x10438}, {0x10411, 0x10439}, {0x10412, 0x1043A}, {0x10413, 0x1043B}, {0x10414, 0x1043C},
+{0x10415, 0x1043D}, {0x10416, 0x1043E}, {0x10417, 0x1043F}, {0x10418, 0x10440}, {0x10419, 0x10441}, {0x1041A, 0x10442},
+{0x1041B, 0x10443}, {0x1041C, 0x10444}, {0x1041D, 0x10445}, {0x1041E, 0x10446}, {0x1041F, 0x10447}, {0x10420, 0x10448},
+{0x10421, 0x10449}, {0x10422, 0x1044A}, {0x10423, 0x1044B}, {0x10424, 0x1044C}, {0x10425, 0x1044D}, {0x10426, 0x1044E},
+{0x10427, 0x1044F}, {0x104B0, 0x104D8}, {0x104B1, 0x104D9}, {0x104B2, 0x104DA}, {0x104B3, 0x104DB}, {0x104B4, 0x104DC},
+{0x104B5, 0x104DD}, {0x104B6, 0x104DE}, {0x104B7, 0x104DF}, {0x104B8, 0x104E0}, {0x104B9, 0x104E1}, {0x104BA, 0x104E2},
+{0x104BB, 0x104E3}, {0x104BC, 0x104E4}, {0x104BD, 0x104E5}, {0x104BE, 0x104E6}, {0x104BF, 0x104E7}, {0x104C0, 0x104E8},
+{0x104C1, 0x104E9}, {0x104C2, 0x104EA}, {0x104C3, 0x104EB}, {0x104C4, 0x104EC}, {0x104C5, 0x104ED}, {0x104C6, 0x104EE},
+{0x104C7, 0x104EF}, {0x104C8, 0x104F0}, {0x104C9, 0x104F1}, {0x104CA, 0x104F2}, {0x104CB, 0x104F3}, {0x104CC, 0x104F4},
+{0x104CD, 0x104F5}, {0x104CE, 0x104F6}, {0x104CF, 0x104F7}, {0x104D0, 0x104F8}, {0x104D1, 0x104F9}, {0x104D2, 0x104FA},
+{0x104D3, 0x104FB}, {0x10570, 0x10597}, {0x10571, 0x10598}, {0x10572, 0x10599}, {0x10573, 0x1059A}, {0x10574, 0x1059B},
+{0x10575, 0x1059C}, {0x10576, 0x1059D}, {0x10577, 0x1059E}, {0x10578, 0x1059F}, {0x10579, 0x105A0}, {0x1057A, 0x105A1},
+{0x1057C, 0x105A3}, {0x1057D, 0x105A4}, {0x1057E, 0x105A5}, {0x1057F, 0x105A6}, {0x10580, 0x105A7}, {0x10581, 0x105A8},
+{0x10582, 0x105A9}, {0x10583, 0x105AA}, {0x10584, 0x105AB}, {0x10585, 0x105AC}, {0x10586, 0x105AD}, {0x10587, 0x105AE},
+{0x10588, 0x105AF}, {0x10589, 0x105B0}, {0x1058A, 0x105B1}, {0x1058C, 0x105B3}, {0x1058D, 0x105B4}, {0x1058E, 0x105B5},
+{0x1058F, 0x105B6}, {0x10590, 0x105B7}, {0x10591, 0x105B8}, {0x10592, 0x105B9}, {0x10594, 0x105BB}, {0x10595, 0x105BC},
+{0x10C80, 0x10CC0}, {0x10C81, 0x10CC1}, {0x10C82, 0x10CC2}, {0x10C83, 0x10CC3}, {0x10C84, 0x10CC4}, {0x10C85, 0x10CC5},
+{0x10C86, 0x10CC6}, {0x10C87, 0x10CC7}, {0x10C88, 0x10CC8}, {0x10C89, 0x10CC9}, {0x10C8A, 0x10CCA}, {0x10C8B, 0x10CCB},
+{0x10C8C, 0x10CCC}, {0x10C8D, 0x10CCD}, {0x10C8E, 0x10CCE}, {0x10C8F, 0x10CCF}, {0x10C90, 0x10CD0}, {0x10C91, 0x10CD1},
+{0x10C92, 0x10CD2}, {0x10C93, 0x10CD3}, {0x10C94, 0x10CD4}, {0x10C95, 0x10CD5}, {0x10C96, 0x10CD6}, {0x10C97, 0x10CD7},
+{0x10C98, 0x10CD8}, {0x10C99, 0x10CD9}, {0x10C9A, 0x10CDA}, {0x10C9B, 0x10CDB}, {0x10C9C, 0x10CDC}, {0x10C9D, 0x10CDD},
+{0x10C9E, 0x10CDE}, {0x10C9F, 0x10CDF}, {0x10CA0, 0x10CE0}, {0x10CA1, 0x10CE1}, {0x10CA2, 0x10CE2}, {0x10CA3, 0x10CE3},
+{0x10CA4, 0x10CE4}, {0x10CA5, 0x10CE5}, {0x10CA6, 0x10CE6}, {0x10CA7, 0x10CE7}, {0x10CA8, 0x10CE8}, {0x10CA9, 0x10CE9},
+{0x10CAA, 0x10CEA}, {0x10CAB, 0x10CEB}, {0x10CAC, 0x10CEC}, {0x10CAD, 0x10CED}, {0x10CAE, 0x10CEE}, {0x10CAF, 0x10CEF},
+{0x10CB0, 0x10CF0}, {0x10CB1, 0x10CF1}, {0x10CB2, 0x10CF2}, {0x118A0, 0x118C0}, {0x118A1, 0x118C1}, {0x118A2, 0x118C2},
+{0x118A3, 0x118C3}, {0x118A4, 0x118C4}, {0x118A5, 0x118C5}, {0x118A6, 0x118C6}, {0x118A7, 0x118C7}, {0x118A8, 0x118C8},
+{0x118A9, 0x118C9}, {0x118AA, 0x118CA}, {0x118AB, 0x118CB}, {0x118AC, 0x118CC}, {0x118AD, 0x118CD}, {0x118AE, 0x118CE},
+{0x118AF, 0x118CF}, {0x118B0, 0x118D0}, {0x118B1, 0x118D1}, {0x118B2, 0x118D2}, {0x118B3, 0x118D3}, {0x118B4, 0x118D4},
+{0x118B5, 0x118D5}, {0x118B6, 0x118D6}, {0x118B7, 0x118D7}, {0x118B8, 0x118D8}, {0x118B9, 0x118D9}, {0x118BA, 0x118DA},
+{0x118BB, 0x118DB}, {0x118BC, 0x118DC}, {0x118BD, 0x118DD}, {0x118BE, 0x118DE}, {0x118BF, 0x118DF}, {0x16E40, 0x16E60},
+{0x16E41, 0x16E61}, {0x16E42, 0x16E62}, {0x16E43, 0x16E63}, {0x16E44, 0x16E64}, {0x16E45, 0x16E65}, {0x16E46, 0x16E66},
+{0x16E47, 0x16E67}, {0x16E48, 0x16E68}, {0x16E49, 0x16E69}, {0x16E4A, 0x16E6A}, {0x16E4B, 0x16E6B}, {0x16E4C, 0x16E6C},
+{0x16E4D, 0x16E6D}, {0x16E4E, 0x16E6E}, {0x16E4F, 0x16E6F}, {0x16E50, 0x16E70}, {0x16E51, 0x16E71}, {0x16E52, 0x16E72},
+{0x16E53, 0x16E73}, {0x16E54, 0x16E74}, {0x16E55, 0x16E75}, {0x16E56, 0x16E76}, {0x16E57, 0x16E77}, {0x16E58, 0x16E78},
+{0x16E59, 0x16E79}, {0x16E5A, 0x16E7A}, {0x16E5B, 0x16E7B}, {0x16E5C, 0x16E7C}, {0x16E5D, 0x16E7D}, {0x16E5E, 0x16E7E},
+{0x16E5F, 0x16E7F}, {0x1E900, 0x1E922}, {0x1E901, 0x1E923}, {0x1E902, 0x1E924}, {0x1E903, 0x1E925}, {0x1E904, 0x1E926},
+{0x1E905, 0x1E927}, {0x1E906, 0x1E928}, {0x1E907, 0x1E929}, {0x1E908, 0x1E92A}, {0x1E909, 0x1E92B}, {0x1E90A, 0x1E92C},
+{0x1E90B, 0x1E92D}, {0x1E90C, 0x1E92E}, {0x1E90D, 0x1E92F}, {0x1E90E, 0x1E930}, {0x1E90F, 0x1E931}, {0x1E910, 0x1E932},
+{0x1E911, 0x1E933}, {0x1E912, 0x1E934}, {0x1E913, 0x1E935}, {0x1E914, 0x1E936}, {0x1E915, 0x1E937}, {0x1E916, 0x1E938},
+{0x1E917, 0x1E939}, {0x1E918, 0x1E93A}, {0x1E919, 0x1E93B}, {0x1E91A, 0x1E93C}, {0x1E91B, 0x1E93D}, {0x1E91C, 0x1E93E},
+{0x1E91D, 0x1E93F}, {0x1E91E, 0x1E940}, {0x1E91F, 0x1E941}, {0x1E920, 0x1E942}, {0x1E921, 0x1E943},
+};
diff --git a/examples/talk-llama/unicode-data.h b/examples/talk-llama/unicode-data.h
new file mode 100644 (file)
index 0000000..b99500b
--- /dev/null
@@ -0,0 +1,16 @@
+#pragma once
+
+#include <cstdint>
+#include <map>
+#include <utility>
+#include <vector>
+
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol;
+extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control;
+extern const std::multimap<uint32_t, uint32_t> unicode_map_nfd;
+extern const std::map<char32_t, char32_t> unicode_map_lowercase;
index 7fce6fb34aaf49c1db9c4c2ff17a9c49cd0ba6e6..df8c5f581347151c85630c77da611f49830d0a2b 100644 (file)
 ï»¿#include "unicode.h"
+#include "unicode-data.h"
 
 #include <cassert>
+#include <cstddef>
+#include <cstdint>
 #include <map>
 #include <stdexcept>
 #include <string>
 #include <unordered_map>
+#include <utility>
 #include <vector>
 
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_digit = {
-{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x00000660, 0x00000669},
-{0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, {0x000009E6, 0x000009EF},
-{0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, {0x00000B66, 0x00000B6F}, {0x00000BE6, 0x00000BEF},
-{0x00000C66, 0x00000C6F}, {0x00000CE6, 0x00000CEF}, {0x00000D66, 0x00000D6F}, {0x00000DE6, 0x00000DEF},
-{0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F29}, {0x00001040, 0x00001049},
-{0x00001090, 0x00001099}, {0x00001369, 0x00001371}, {0x000017E0, 0x000017E9}, {0x00001810, 0x00001819},
-{0x00001946, 0x0000194F}, {0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99},
-{0x00001B50, 0x00001B59}, {0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59},
-{0x00002070, 0x00002070}, {0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002460, 0x00002468},
-{0x00002474, 0x0000247C}, {0x00002488, 0x00002490}, {0x000024EA, 0x000024EA}, {0x000024F5, 0x000024FD},
-{0x000024FF, 0x000024FF}, {0x00002776, 0x0000277E}, {0x00002780, 0x00002788}, {0x0000278A, 0x00002792},
-{0x0000A620, 0x0000A629}, {0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9},
-{0x0000A9F0, 0x0000A9F9}, {0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19},
-{0x000104A0, 0x000104A9}, {0x00010A40, 0x00010A43}, {0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E68},
-{0x00011052, 0x0001105A}, {0x00011066, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F},
-{0x000111D0, 0x000111D9}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, {0x000114D0, 0x000114D9},
-{0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x00011739}, {0x000118E0, 0x000118E9},
-{0x00011950, 0x00011959}, {0x00011C50, 0x00011C59}, {0x00011D50, 0x00011D59}, {0x00011DA0, 0x00011DA9},
-{0x00016A60, 0x00016A69}, {0x00016B50, 0x00016B59}, {0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149},
-{0x0001E2F0, 0x0001E2F9}, {0x0001E950, 0x0001E959}, {0x0001F100, 0x0001F10A}, {0x0001FBF0, 0x0001FBF9},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter = {
-{0x00000041, 0x0000005A}, {0x00000061, 0x0000007A}, {0x000000AA, 0x000000AA}, {0x000000B5, 0x000000B5},
-{0x000000BA, 0x000000BA}, {0x000000C0, 0x000000D6}, {0x000000D8, 0x000000F6}, {0x000000F8, 0x000002C1},
-{0x000002C6, 0x000002D1}, {0x000002E0, 0x000002E4}, {0x000002EC, 0x000002EC}, {0x000002EE, 0x000002EE},
-{0x00000370, 0x00000374}, {0x00000376, 0x00000377}, {0x0000037A, 0x0000037D}, {0x0000037F, 0x0000037F},
-{0x00000386, 0x00000386}, {0x00000388, 0x0000038A}, {0x0000038C, 0x0000038C}, {0x0000038E, 0x000003A1},
-{0x000003A3, 0x000003F5}, {0x000003F7, 0x00000481}, {0x0000048A, 0x0000052F}, {0x00000531, 0x00000556},
-{0x00000559, 0x00000559}, {0x00000560, 0x00000588}, {0x000005D0, 0x000005EA}, {0x000005EF, 0x000005F2},
-{0x00000620, 0x0000064A}, {0x0000066E, 0x0000066F}, {0x00000671, 0x000006D3}, {0x000006D5, 0x000006D5},
-{0x000006E5, 0x000006E6}, {0x000006EE, 0x000006EF}, {0x000006FA, 0x000006FC}, {0x000006FF, 0x000006FF},
-{0x00000710, 0x00000710}, {0x00000712, 0x0000072F}, {0x0000074D, 0x000007A5}, {0x000007B1, 0x000007B1},
-{0x000007CA, 0x000007EA}, {0x000007F4, 0x000007F5}, {0x000007FA, 0x000007FA}, {0x00000800, 0x00000815},
-{0x0000081A, 0x0000081A}, {0x00000824, 0x00000824}, {0x00000828, 0x00000828}, {0x00000840, 0x00000858},
-{0x00000860, 0x0000086A}, {0x000008A0, 0x000008B4}, {0x000008B6, 0x000008C7}, {0x00000904, 0x00000939},
-{0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, {0x00000971, 0x00000980},
-{0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, {0x000009AA, 0x000009B0},
-{0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, {0x000009CE, 0x000009CE},
-{0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, {0x000009FC, 0x000009FC},
-{0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, {0x00000A2A, 0x00000A30},
-{0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, {0x00000A59, 0x00000A5C},
-{0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, {0x00000A8F, 0x00000A91},
-{0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, {0x00000AB5, 0x00000AB9},
-{0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, {0x00000AF9, 0x00000AF9},
-{0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, {0x00000B2A, 0x00000B30},
-{0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, {0x00000B5C, 0x00000B5D},
-{0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, {0x00000B85, 0x00000B8A},
-{0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, {0x00000B9C, 0x00000B9C},
-{0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, {0x00000BAE, 0x00000BB9},
-{0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, {0x00000C12, 0x00000C28},
-{0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, {0x00000C60, 0x00000C61},
-{0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, {0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8},
-{0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, {0x00000CBD, 0x00000CBD}, {0x00000CDE, 0x00000CDE},
-{0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, {0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10},
-{0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, {0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56},
-{0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, {0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1},
-{0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, {0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30},
-{0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, {0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84},
-{0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, {0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0},
-{0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, {0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6},
-{0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, {0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C},
-{0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, {0x0000103F, 0x0000103F}, {0x00001050, 0x00001055},
-{0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, {0x00001065, 0x00001066}, {0x0000106E, 0x00001070},
-{0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, {0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7},
-{0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, {0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D},
-{0x00001250, 0x00001256}, {0x00001258, 0x00001258}, {0x0000125A, 0x0000125D}, {0x00001260, 0x00001288},
-{0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, {0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE},
-{0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, {0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310},
-{0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, {0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5},
-{0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, {0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A},
-{0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, {0x00001700, 0x0000170C}, {0x0000170E, 0x00001711},
-{0x00001720, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, {0x0000176E, 0x00001770},
-{0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, {0x00001820, 0x00001878},
-{0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, {0x000018B0, 0x000018F5},
-{0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, {0x00001980, 0x000019AB},
-{0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, {0x00001AA7, 0x00001AA7},
-{0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4B}, {0x00001B83, 0x00001BA0}, {0x00001BAE, 0x00001BAF},
-{0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, {0x00001C5A, 0x00001C7D},
-{0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, {0x00001CE9, 0x00001CEC},
-{0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, {0x00001D00, 0x00001DBF},
-{0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, {0x00001F48, 0x00001F4D},
-{0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, {0x00001F5D, 0x00001F5D},
-{0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, {0x00001FBE, 0x00001FBE},
-{0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, {0x00001FD6, 0x00001FDB},
-{0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, {0x00002071, 0x00002071},
-{0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, {0x00002107, 0x00002107},
-{0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, {0x00002124, 0x00002124},
-{0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, {0x0000212F, 0x00002139},
-{0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, {0x00002183, 0x00002184},
-{0x00002C00, 0x00002C2E}, {0x00002C30, 0x00002C5E}, {0x00002C60, 0x00002CE4}, {0x00002CEB, 0x00002CEE},
-{0x00002CF2, 0x00002CF3}, {0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D},
-{0x00002D30, 0x00002D67}, {0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6},
-{0x00002DA8, 0x00002DAE}, {0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6},
-{0x00002DC8, 0x00002DCE}, {0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F},
-{0x00003005, 0x00003006}, {0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096},
-{0x0000309D, 0x0000309F}, {0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F},
-{0x00003131, 0x0000318E}, {0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF},
-{0x00004E00, 0x00009FFC}, {0x0000A000, 0x0000A48C}, {0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C},
-{0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, {0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D},
-{0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, {0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7BF},
-{0x0000A7C2, 0x0000A7CA}, {0x0000A7F5, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A},
-{0x0000A80C, 0x0000A822}, {0x0000A840, 0x0000A873}, {0x0000A882, 0x0000A8B3}, {0x0000A8F2, 0x0000A8F7},
-{0x0000A8FB, 0x0000A8FB}, {0x0000A8FD, 0x0000A8FE}, {0x0000A90A, 0x0000A925}, {0x0000A930, 0x0000A946},
-{0x0000A960, 0x0000A97C}, {0x0000A984, 0x0000A9B2}, {0x0000A9CF, 0x0000A9CF}, {0x0000A9E0, 0x0000A9E4},
-{0x0000A9E6, 0x0000A9EF}, {0x0000A9FA, 0x0000A9FE}, {0x0000AA00, 0x0000AA28}, {0x0000AA40, 0x0000AA42},
-{0x0000AA44, 0x0000AA4B}, {0x0000AA60, 0x0000AA76}, {0x0000AA7A, 0x0000AA7A}, {0x0000AA7E, 0x0000AAAF},
-{0x0000AAB1, 0x0000AAB1}, {0x0000AAB5, 0x0000AAB6}, {0x0000AAB9, 0x0000AABD}, {0x0000AAC0, 0x0000AAC0},
-{0x0000AAC2, 0x0000AAC2}, {0x0000AADB, 0x0000AADD}, {0x0000AAE0, 0x0000AAEA}, {0x0000AAF2, 0x0000AAF4},
-{0x0000AB01, 0x0000AB06}, {0x0000AB09, 0x0000AB0E}, {0x0000AB11, 0x0000AB16}, {0x0000AB20, 0x0000AB26},
-{0x0000AB28, 0x0000AB2E}, {0x0000AB30, 0x0000AB5A}, {0x0000AB5C, 0x0000AB69}, {0x0000AB70, 0x0000ABE2},
-{0x0000AC00, 0x0000D7A3}, {0x0000D7B0, 0x0000D7C6}, {0x0000D7CB, 0x0000D7FB}, {0x0000F900, 0x0000FA6D},
-{0x0000FA70, 0x0000FAD9}, {0x0000FB00, 0x0000FB06}, {0x0000FB13, 0x0000FB17}, {0x0000FB1D, 0x0000FB1D},
-{0x0000FB1F, 0x0000FB28}, {0x0000FB2A, 0x0000FB36}, {0x0000FB38, 0x0000FB3C}, {0x0000FB3E, 0x0000FB3E},
-{0x0000FB40, 0x0000FB41}, {0x0000FB43, 0x0000FB44}, {0x0000FB46, 0x0000FBB1}, {0x0000FBD3, 0x0000FD3D},
-{0x0000FD50, 0x0000FD8F}, {0x0000FD92, 0x0000FDC7}, {0x0000FDF0, 0x0000FDFB}, {0x0000FE70, 0x0000FE74},
-{0x0000FE76, 0x0000FEFC}, {0x0000FF21, 0x0000FF3A}, {0x0000FF41, 0x0000FF5A}, {0x0000FF66, 0x0000FFBE},
-{0x0000FFC2, 0x0000FFC7}, {0x0000FFCA, 0x0000FFCF}, {0x0000FFD2, 0x0000FFD7}, {0x0000FFDA, 0x0000FFDC},
-{0x00010000, 0x0001000B}, {0x0001000D, 0x00010026}, {0x00010028, 0x0001003A}, {0x0001003C, 0x0001003D},
-{0x0001003F, 0x0001004D}, {0x00010050, 0x0001005D}, {0x00010080, 0x000100FA}, {0x00010280, 0x0001029C},
-{0x000102A0, 0x000102D0}, {0x00010300, 0x0001031F}, {0x0001032D, 0x00010340}, {0x00010342, 0x00010349},
-{0x00010350, 0x00010375}, {0x00010380, 0x0001039D}, {0x000103A0, 0x000103C3}, {0x000103C8, 0x000103CF},
-{0x00010400, 0x0001049D}, {0x000104B0, 0x000104D3}, {0x000104D8, 0x000104FB}, {0x00010500, 0x00010527},
-{0x00010530, 0x00010563}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767},
-{0x00010800, 0x00010805}, {0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838},
-{0x0001083C, 0x0001083C}, {0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E},
-{0x000108E0, 0x000108F2}, {0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939},
-{0x00010980, 0x000109B7}, {0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13},
-{0x00010A15, 0x00010A17}, {0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C},
-{0x00010AC0, 0x00010AC7}, {0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55},
-{0x00010B60, 0x00010B72}, {0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2},
-{0x00010CC0, 0x00010CF2}, {0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1},
-{0x00010F00, 0x00010F1C}, {0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010FB0, 0x00010FC4},
-{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8},
-{0x00011103, 0x00011126}, {0x00011144, 0x00011144}, {0x00011147, 0x00011147}, {0x00011150, 0x00011172},
-{0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, {0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA},
-{0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, {0x00011213, 0x0001122B}, {0x00011280, 0x00011286},
-{0x00011288, 0x00011288}, {0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8},
-{0x000112B0, 0x000112DE}, {0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328},
-{0x0001132A, 0x00011330}, {0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D},
-{0x00011350, 0x00011350}, {0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A},
-{0x0001145F, 0x00011461}, {0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7},
-{0x00011580, 0x000115AE}, {0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644},
-{0x00011680, 0x000116AA}, {0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011800, 0x0001182B},
-{0x000118A0, 0x000118DF}, {0x000118FF, 0x00011906}, {0x00011909, 0x00011909}, {0x0001190C, 0x00011913},
-{0x00011915, 0x00011916}, {0x00011918, 0x0001192F}, {0x0001193F, 0x0001193F}, {0x00011941, 0x00011941},
-{0x000119A0, 0x000119A7}, {0x000119AA, 0x000119D0}, {0x000119E1, 0x000119E1}, {0x000119E3, 0x000119E3},
-{0x00011A00, 0x00011A00}, {0x00011A0B, 0x00011A32}, {0x00011A3A, 0x00011A3A}, {0x00011A50, 0x00011A50},
-{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AC0, 0x00011AF8}, {0x00011C00, 0x00011C08},
-{0x00011C0A, 0x00011C2E}, {0x00011C40, 0x00011C40}, {0x00011C72, 0x00011C8F}, {0x00011D00, 0x00011D06},
-{0x00011D08, 0x00011D09}, {0x00011D0B, 0x00011D30}, {0x00011D46, 0x00011D46}, {0x00011D60, 0x00011D65},
-{0x00011D67, 0x00011D68}, {0x00011D6A, 0x00011D89}, {0x00011D98, 0x00011D98}, {0x00011EE0, 0x00011EF2},
-{0x00011FB0, 0x00011FB0}, {0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00013000, 0x0001342E},
-{0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, {0x00016AD0, 0x00016AED},
-{0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, {0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F},
-{0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, {0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F},
-{0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, {0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5},
-{0x00018D00, 0x00018D08}, {0x0001B000, 0x0001B11E}, {0x0001B150, 0x0001B152}, {0x0001B164, 0x0001B167},
-{0x0001B170, 0x0001B2FB}, {0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88},
-{0x0001BC90, 0x0001BC99}, {0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F},
-{0x0001D4A2, 0x0001D4A2}, {0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9},
-{0x0001D4BB, 0x0001D4BB}, {0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A},
-{0x0001D50D, 0x0001D514}, {0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E},
-{0x0001D540, 0x0001D544}, {0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5},
-{0x0001D6A8, 0x0001D6C0}, {0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714},
-{0x0001D716, 0x0001D734}, {0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788},
-{0x0001D78A, 0x0001D7A8}, {0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001E100, 0x0001E12C},
-{0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, {0x0001E2C0, 0x0001E2EB}, {0x0001E800, 0x0001E8C4},
-{0x0001E900, 0x0001E943}, {0x0001E94B, 0x0001E94B}, {0x0001EE00, 0x0001EE03}, {0x0001EE05, 0x0001EE1F},
-{0x0001EE21, 0x0001EE22}, {0x0001EE24, 0x0001EE24}, {0x0001EE27, 0x0001EE27}, {0x0001EE29, 0x0001EE32},
-{0x0001EE34, 0x0001EE37}, {0x0001EE39, 0x0001EE39}, {0x0001EE3B, 0x0001EE3B}, {0x0001EE42, 0x0001EE42},
-{0x0001EE47, 0x0001EE47}, {0x0001EE49, 0x0001EE49}, {0x0001EE4B, 0x0001EE4B}, {0x0001EE4D, 0x0001EE4F},
-{0x0001EE51, 0x0001EE52}, {0x0001EE54, 0x0001EE54}, {0x0001EE57, 0x0001EE57}, {0x0001EE59, 0x0001EE59},
-{0x0001EE5B, 0x0001EE5B}, {0x0001EE5D, 0x0001EE5D}, {0x0001EE5F, 0x0001EE5F}, {0x0001EE61, 0x0001EE62},
-{0x0001EE64, 0x0001EE64}, {0x0001EE67, 0x0001EE6A}, {0x0001EE6C, 0x0001EE72}, {0x0001EE74, 0x0001EE77},
-{0x0001EE79, 0x0001EE7C}, {0x0001EE7E, 0x0001EE7E}, {0x0001EE80, 0x0001EE89}, {0x0001EE8B, 0x0001EE9B},
-{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DD},
-{0x0002A700, 0x0002B734}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0},
-{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace = {
-{0x00000009, 0x0000000D}, {0x0000001C, 0x00000020}, {0x00000085, 0x00000085}, {0x000000A0, 0x000000A0},
-{0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, {0x00002028, 0x00002029}, {0x0000202F, 0x0000202F},
-{0x0000205F, 0x0000205F}, {0x00003000, 0x00003000},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark = {
-{0x00000300, 0x0000036F}, {0x00000483, 0x00000489}, {0x00000591, 0x000005BD}, {0x000005BF, 0x000005BF},
-{0x000005C1, 0x000005C2}, {0x000005C4, 0x000005C5}, {0x000005C7, 0x000005C7}, {0x00000610, 0x0000061A},
-{0x0000064B, 0x0000065F}, {0x00000670, 0x00000670}, {0x000006D6, 0x000006DC}, {0x000006DF, 0x000006E4},
-{0x000006E7, 0x000006E8}, {0x000006EA, 0x000006ED}, {0x00000711, 0x00000711}, {0x00000730, 0x0000074A},
-{0x000007A6, 0x000007B0}, {0x000007EB, 0x000007F3}, {0x000007FD, 0x000007FD}, {0x00000816, 0x00000819},
-{0x0000081B, 0x00000823}, {0x00000825, 0x00000827}, {0x00000829, 0x0000082D}, {0x00000859, 0x0000085B},
-{0x000008D3, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, {0x0000093E, 0x0000094F},
-{0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, {0x000009BC, 0x000009BC},
-{0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, {0x000009D7, 0x000009D7},
-{0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, {0x00000A3C, 0x00000A3C},
-{0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, {0x00000A51, 0x00000A51},
-{0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, {0x00000ABC, 0x00000ABC},
-{0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, {0x00000AE2, 0x00000AE3},
-{0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, {0x00000B3E, 0x00000B44},
-{0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, {0x00000B62, 0x00000B63},
-{0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, {0x00000BCA, 0x00000BCD},
-{0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48},
-{0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, {0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83},
-{0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, {0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD},
-{0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C},
-{0x00000D3E, 0x00000D44}, {0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57},
-{0x00000D62, 0x00000D63}, {0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4},
-{0x00000DD6, 0x00000DD6}, {0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31},
-{0x00000E34, 0x00000E3A}, {0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC},
-{0x00000EC8, 0x00000ECD}, {0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37},
-{0x00000F39, 0x00000F39}, {0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87},
-{0x00000F8D, 0x00000F97}, {0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E},
-{0x00001056, 0x00001059}, {0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D},
-{0x00001071, 0x00001074}, {0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D},
-{0x0000135D, 0x0000135F}, {0x00001712, 0x00001714}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753},
-{0x00001772, 0x00001773}, {0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D},
-{0x00001885, 0x00001886}, {0x000018A9, 0x000018A9}, {0x00001920, 0x0000192B}, {0x00001930, 0x0000193B},
-{0x00001A17, 0x00001A1B}, {0x00001A55, 0x00001A5E}, {0x00001A60, 0x00001A7C}, {0x00001A7F, 0x00001A7F},
-{0x00001AB0, 0x00001AC0}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73},
-{0x00001B80, 0x00001B82}, {0x00001BA1, 0x00001BAD}, {0x00001BE6, 0x00001BF3}, {0x00001C24, 0x00001C37},
-{0x00001CD0, 0x00001CD2}, {0x00001CD4, 0x00001CE8}, {0x00001CED, 0x00001CED}, {0x00001CF4, 0x00001CF4},
-{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DF9}, {0x00001DFB, 0x00001DFF}, {0x000020D0, 0x000020F0},
-{0x00002CEF, 0x00002CF1}, {0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F},
-{0x00003099, 0x0000309A}, {0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F},
-{0x0000A6F0, 0x0000A6F1}, {0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B},
-{0x0000A823, 0x0000A827}, {0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5},
-{0x0000A8E0, 0x0000A8F1}, {0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953},
-{0x0000A980, 0x0000A983}, {0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36},
-{0x0000AA43, 0x0000AA43}, {0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0},
-{0x0000AAB2, 0x0000AAB4}, {0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1},
-{0x0000AAEB, 0x0000AAEF}, {0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED},
-{0x0000FB1E, 0x0000FB1E}, {0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD},
-{0x000102E0, 0x000102E0}, {0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06},
-{0x00010A0C, 0x00010A0F}, {0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6},
-{0x00010D24, 0x00010D27}, {0x00010EAB, 0x00010EAC}, {0x00010F46, 0x00010F50}, {0x00011000, 0x00011002},
-{0x00011038, 0x00011046}, {0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x00011100, 0x00011102},
-{0x00011127, 0x00011134}, {0x00011145, 0x00011146}, {0x00011173, 0x00011173}, {0x00011180, 0x00011182},
-{0x000111B3, 0x000111C0}, {0x000111C9, 0x000111CC}, {0x000111CE, 0x000111CF}, {0x0001122C, 0x00011237},
-{0x0001123E, 0x0001123E}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, {0x0001133B, 0x0001133C},
-{0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, {0x00011357, 0x00011357},
-{0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, {0x00011435, 0x00011446},
-{0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, {0x000115B8, 0x000115C0},
-{0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, {0x0001171D, 0x0001172B},
-{0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, {0x0001193B, 0x0001193E},
-{0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, {0x000119DA, 0x000119E0},
-{0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, {0x00011A3B, 0x00011A3E},
-{0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, {0x00011C2F, 0x00011C36},
-{0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, {0x00011D31, 0x00011D36},
-{0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, {0x00011D47, 0x00011D47},
-{0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, {0x00011EF3, 0x00011EF6},
-{0x00016AF0, 0x00016AF4}, {0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87},
-{0x00016F8F, 0x00016F92}, {0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E},
-{0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, {0x0001D185, 0x0001D18B},
-{0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, {0x0001DA3B, 0x0001DA6C},
-{0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, {0x0001DAA1, 0x0001DAAF},
-{0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, {0x0001E023, 0x0001E024},
-{0x0001E026, 0x0001E02A}, {0x0001E130, 0x0001E136}, {0x0001E2EC, 0x0001E2EF}, {0x0001E8D0, 0x0001E8D6},
-{0x0001E944, 0x0001E94A}, {0x000E0100, 0x000E01EF},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation = {
-{0x00000021, 0x00000023}, {0x00000025, 0x0000002A}, {0x0000002C, 0x0000002F}, {0x0000003A, 0x0000003B},
-{0x0000003F, 0x00000040}, {0x0000005B, 0x0000005D}, {0x0000005F, 0x0000005F}, {0x0000007B, 0x0000007B},
-{0x0000007D, 0x0000007D}, {0x000000A1, 0x000000A1}, {0x000000A7, 0x000000A7}, {0x000000AB, 0x000000AB},
-{0x000000B6, 0x000000B7}, {0x000000BB, 0x000000BB}, {0x000000BF, 0x000000BF}, {0x0000037E, 0x0000037E},
-{0x00000387, 0x00000387}, {0x0000055A, 0x0000055F}, {0x00000589, 0x0000058A}, {0x000005BE, 0x000005BE},
-{0x000005C0, 0x000005C0}, {0x000005C3, 0x000005C3}, {0x000005C6, 0x000005C6}, {0x000005F3, 0x000005F4},
-{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061E, 0x0000061F},
-{0x0000066A, 0x0000066D}, {0x000006D4, 0x000006D4}, {0x00000700, 0x0000070D}, {0x000007F7, 0x000007F9},
-{0x00000830, 0x0000083E}, {0x0000085E, 0x0000085E}, {0x00000964, 0x00000965}, {0x00000970, 0x00000970},
-{0x000009FD, 0x000009FD}, {0x00000A76, 0x00000A76}, {0x00000AF0, 0x00000AF0}, {0x00000C77, 0x00000C77},
-{0x00000C84, 0x00000C84}, {0x00000DF4, 0x00000DF4}, {0x00000E4F, 0x00000E4F}, {0x00000E5A, 0x00000E5B},
-{0x00000F04, 0x00000F12}, {0x00000F14, 0x00000F14}, {0x00000F3A, 0x00000F3D}, {0x00000F85, 0x00000F85},
-{0x00000FD0, 0x00000FD4}, {0x00000FD9, 0x00000FDA}, {0x0000104A, 0x0000104F}, {0x000010FB, 0x000010FB},
-{0x00001360, 0x00001368}, {0x00001400, 0x00001400}, {0x0000166E, 0x0000166E}, {0x0000169B, 0x0000169C},
-{0x000016EB, 0x000016ED}, {0x00001735, 0x00001736}, {0x000017D4, 0x000017D6}, {0x000017D8, 0x000017DA},
-{0x00001800, 0x0000180A}, {0x00001944, 0x00001945}, {0x00001A1E, 0x00001A1F}, {0x00001AA0, 0x00001AA6},
-{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001BFC, 0x00001BFF}, {0x00001C3B, 0x00001C3F},
-{0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, {0x00002010, 0x00002027},
-{0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, {0x0000207D, 0x0000207E},
-{0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, {0x00002768, 0x00002775},
-{0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, {0x000029D8, 0x000029DB},
-{0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, {0x00002D70, 0x00002D70},
-{0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E52}, {0x00003001, 0x00003003},
-{0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, {0x0000303D, 0x0000303D},
-{0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, {0x0000A60D, 0x0000A60F},
-{0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, {0x0000A874, 0x0000A877},
-{0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, {0x0000A92E, 0x0000A92F},
-{0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, {0x0000AA5C, 0x0000AA5F},
-{0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, {0x0000FD3E, 0x0000FD3F},
-{0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, {0x0000FE63, 0x0000FE63},
-{0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, {0x0000FF05, 0x0000FF0A},
-{0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, {0x0000FF3B, 0x0000FF3D},
-{0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, {0x0000FF5F, 0x0000FF65},
-{0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, {0x0001056F, 0x0001056F},
-{0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, {0x00010A50, 0x00010A58},
-{0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, {0x00010B99, 0x00010B9C},
-{0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC},
-{0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, {0x00011174, 0x00011175}, {0x000111C5, 0x000111C8},
-{0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, {0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D},
-{0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, {0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D},
-{0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, {0x00011641, 0x00011643}, {0x00011660, 0x0001166C},
-{0x0001173C, 0x0001173E}, {0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2},
-{0x00011A3F, 0x00011A46}, {0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011C41, 0x00011C45},
-{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011FFF, 0x00011FFF}, {0x00012470, 0x00012474},
-{0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, {0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44},
-{0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, {0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B},
-{0x0001E95E, 0x0001E95F},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol = {
-{0x00000024, 0x00000024}, {0x0000002B, 0x0000002B}, {0x0000003C, 0x0000003E}, {0x0000005E, 0x0000005E},
-{0x00000060, 0x00000060}, {0x0000007C, 0x0000007C}, {0x0000007E, 0x0000007E}, {0x000000A2, 0x000000A6},
-{0x000000A8, 0x000000A9}, {0x000000AC, 0x000000AC}, {0x000000AE, 0x000000B1}, {0x000000B4, 0x000000B4},
-{0x000000B8, 0x000000B8}, {0x000000D7, 0x000000D7}, {0x000000F7, 0x000000F7}, {0x000002C2, 0x000002C5},
-{0x000002D2, 0x000002DF}, {0x000002E5, 0x000002EB}, {0x000002ED, 0x000002ED}, {0x000002EF, 0x000002FF},
-{0x00000375, 0x00000375}, {0x00000384, 0x00000385}, {0x000003F6, 0x000003F6}, {0x00000482, 0x00000482},
-{0x0000058D, 0x0000058F}, {0x00000606, 0x00000608}, {0x0000060B, 0x0000060B}, {0x0000060E, 0x0000060F},
-{0x000006DE, 0x000006DE}, {0x000006E9, 0x000006E9}, {0x000006FD, 0x000006FE}, {0x000007F6, 0x000007F6},
-{0x000007FE, 0x000007FF}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, {0x00000AF1, 0x00000AF1},
-{0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, {0x00000D4F, 0x00000D4F},
-{0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, {0x00000F13, 0x00000F13},
-{0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, {0x00000F36, 0x00000F36},
-{0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, {0x00000FCE, 0x00000FCF},
-{0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, {0x0000166D, 0x0000166D},
-{0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, {0x00001B61, 0x00001B6A},
-{0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, {0x00001FCD, 0x00001FCF},
-{0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, {0x00002044, 0x00002044},
-{0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, {0x000020A0, 0x000020BF},
-{0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, {0x00002114, 0x00002114},
-{0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, {0x00002127, 0x00002127},
-{0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, {0x00002140, 0x00002144},
-{0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, {0x00002190, 0x00002307},
-{0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, {0x0000249C, 0x000024E9},
-{0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, {0x000027F0, 0x00002982},
-{0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, {0x00002B76, 0x00002B95},
-{0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, {0x00002E80, 0x00002E99},
-{0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, {0x00003004, 0x00003004},
-{0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, {0x0000303E, 0x0000303F},
-{0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, {0x000031C0, 0x000031E3},
-{0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, {0x00003260, 0x0000327F},
-{0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, {0x0000A490, 0x0000A4C6},
-{0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, {0x0000A828, 0x0000A82B},
-{0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, {0x0000AB6A, 0x0000AB6B},
-{0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC1}, {0x0000FDFC, 0x0000FDFD}, {0x0000FE62, 0x0000FE62},
-{0x0000FE64, 0x0000FE66}, {0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B},
-{0x0000FF1C, 0x0000FF1E}, {0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C},
-{0x0000FF5E, 0x0000FF5E}, {0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD},
-{0x00010137, 0x0001013F}, {0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C},
-{0x000101A0, 0x000101A0}, {0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8},
-{0x0001173F, 0x0001173F}, {0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45},
-{0x0001BC9C, 0x0001BC9C}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164},
-{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1E8},
-{0x0001D200, 0x0001D241}, {0x0001D245, 0x0001D245}, {0x0001D300, 0x0001D356}, {0x0001D6C1, 0x0001D6C1},
-{0x0001D6DB, 0x0001D6DB}, {0x0001D6FB, 0x0001D6FB}, {0x0001D715, 0x0001D715}, {0x0001D735, 0x0001D735},
-{0x0001D74F, 0x0001D74F}, {0x0001D76F, 0x0001D76F}, {0x0001D789, 0x0001D789}, {0x0001D7A9, 0x0001D7A9},
-{0x0001D7C3, 0x0001D7C3}, {0x0001D800, 0x0001D9FF}, {0x0001DA37, 0x0001DA3A}, {0x0001DA6D, 0x0001DA74},
-{0x0001DA76, 0x0001DA83}, {0x0001DA85, 0x0001DA86}, {0x0001E14F, 0x0001E14F}, {0x0001E2FF, 0x0001E2FF},
-{0x0001ECAC, 0x0001ECAC}, {0x0001ECB0, 0x0001ECB0}, {0x0001ED2E, 0x0001ED2E}, {0x0001EEF0, 0x0001EEF1},
-{0x0001F000, 0x0001F02B}, {0x0001F030, 0x0001F093}, {0x0001F0A0, 0x0001F0AE}, {0x0001F0B1, 0x0001F0BF},
-{0x0001F0C1, 0x0001F0CF}, {0x0001F0D1, 0x0001F0F5}, {0x0001F10D, 0x0001F1AD}, {0x0001F1E6, 0x0001F202},
-{0x0001F210, 0x0001F23B}, {0x0001F240, 0x0001F248}, {0x0001F250, 0x0001F251}, {0x0001F260, 0x0001F265},
-{0x0001F300, 0x0001F6D7}, {0x0001F6E0, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F773},
-{0x0001F780, 0x0001F7D8}, {0x0001F7E0, 0x0001F7EB}, {0x0001F800, 0x0001F80B}, {0x0001F810, 0x0001F847},
-{0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, {0x0001F8B0, 0x0001F8B1},
-{0x0001F900, 0x0001F978}, {0x0001F97A, 0x0001F9CB}, {0x0001F9CD, 0x0001FA53}, {0x0001FA60, 0x0001FA6D},
-{0x0001FA70, 0x0001FA74}, {0x0001FA78, 0x0001FA7A}, {0x0001FA80, 0x0001FA86}, {0x0001FA90, 0x0001FAA8},
-{0x0001FAB0, 0x0001FAB6}, {0x0001FAC0, 0x0001FAC2}, {0x0001FAD0, 0x0001FAD6}, {0x0001FB00, 0x0001FB92},
-{0x0001FB94, 0x0001FBCA},
-};
-
-static const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control = {
-{0x00000000, 0x00000008}, {0x0000000E, 0x0000001B}, {0x0000007F, 0x00000084}, {0x00000086, 0x0000009F},
-{0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, {0x00000380, 0x00000383}, {0x0000038B, 0x0000038B},
-{0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, {0x00000530, 0x00000530}, {0x00000557, 0x00000558},
-{0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, {0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE},
-{0x000005F5, 0x00000605}, {0x0000061C, 0x0000061D}, {0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F},
-{0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, {0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F},
-{0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, {0x0000085F, 0x0000085F}, {0x0000086B, 0x0000089F},
-{0x000008B5, 0x000008B5}, {0x000008C8, 0x000008D2}, {0x000008E2, 0x000008E2}, {0x00000984, 0x00000984},
-{0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, {0x000009B1, 0x000009B1},
-{0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, {0x000009C9, 0x000009CA},
-{0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, {0x000009E4, 0x000009E5},
-{0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, {0x00000A11, 0x00000A12},
-{0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, {0x00000A37, 0x00000A37},
-{0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, {0x00000A49, 0x00000A4A},
-{0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, {0x00000A5F, 0x00000A65},
-{0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, {0x00000A92, 0x00000A92},
-{0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, {0x00000ABA, 0x00000ABB},
-{0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, {0x00000AD1, 0x00000ADF},
-{0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, {0x00000B04, 0x00000B04},
-{0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, {0x00000B31, 0x00000B31},
-{0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, {0x00000B49, 0x00000B4A},
-{0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, {0x00000B64, 0x00000B65},
-{0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, {0x00000B91, 0x00000B91},
-{0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, {0x00000BA0, 0x00000BA2},
-{0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, {0x00000BC3, 0x00000BC5},
-{0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, {0x00000BD8, 0x00000BE5},
-{0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, {0x00000C29, 0x00000C29},
-{0x00000C3A, 0x00000C3C}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, {0x00000C4E, 0x00000C54},
-{0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5F}, {0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76},
-{0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, {0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4},
-{0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, {0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4},
-{0x00000CD7, 0x00000CDD}, {0x00000CDF, 0x00000CDF}, {0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0},
-{0x00000CF3, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, {0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45},
-{0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, {0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80},
-{0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, {0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC},
-{0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, {0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5},
-{0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, {0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00},
-{0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, {0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85},
-{0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, {0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF},
-{0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, {0x00000ECE, 0x00000ECF}, {0x00000EDA, 0x00000EDB},
-{0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, {0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98},
-{0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, {0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6},
-{0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, {0x00001249, 0x00001249}, {0x0000124E, 0x0000124F},
-{0x00001257, 0x00001257}, {0x00001259, 0x00001259}, {0x0000125E, 0x0000125F}, {0x00001289, 0x00001289},
-{0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, {0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF},
-{0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, {0x000012D7, 0x000012D7}, {0x00001311, 0x00001311},
-{0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, {0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F},
-{0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, {0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF},
-{0x0000170D, 0x0000170D}, {0x00001715, 0x0000171F}, {0x00001737, 0x0000173F}, {0x00001754, 0x0000175F},
-{0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, {0x000017DE, 0x000017DF},
-{0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180F}, {0x0000181A, 0x0000181F},
-{0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, {0x0000191F, 0x0000191F},
-{0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, {0x0000196E, 0x0000196F},
-{0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, {0x000019DB, 0x000019DD},
-{0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, {0x00001A8A, 0x00001A8F},
-{0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001AC1, 0x00001AFF}, {0x00001B4C, 0x00001B4F},
-{0x00001B7D, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, {0x00001C4A, 0x00001C4C},
-{0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, {0x00001CFB, 0x00001CFF},
-{0x00001DFA, 0x00001DFA}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47},
-{0x00001F4E, 0x00001F4F}, {0x00001F58, 0x00001F58}, {0x00001F5A, 0x00001F5A}, {0x00001F5C, 0x00001F5C},
-{0x00001F5E, 0x00001F5E}, {0x00001F7E, 0x00001F7F}, {0x00001FB5, 0x00001FB5}, {0x00001FC5, 0x00001FC5},
-{0x00001FD4, 0x00001FD5}, {0x00001FDC, 0x00001FDC}, {0x00001FF0, 0x00001FF1}, {0x00001FF5, 0x00001FF5},
-{0x00001FFF, 0x00001FFF}, {0x0000200B, 0x0000200F}, {0x0000202A, 0x0000202E}, {0x00002060, 0x0000206F},
-{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C0, 0x000020CF},
-{0x000020F1, 0x000020FF}, {0x0000218C, 0x0000218F}, {0x00002427, 0x0000243F}, {0x0000244B, 0x0000245F},
-{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002C2F, 0x00002C2F}, {0x00002C5F, 0x00002C5F},
-{0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, {0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F},
-{0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, {0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7},
-{0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, {0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7},
-{0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, {0x00002DDF, 0x00002DDF}, {0x00002E53, 0x00002E7F},
-{0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, {0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF},
-{0x00003040, 0x00003040}, {0x00003097, 0x00003098}, {0x00003100, 0x00003104}, {0x00003130, 0x00003130},
-{0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, {0x0000321F, 0x0000321F}, {0x00009FFD, 0x00009FFF},
-{0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, {0x0000A6F8, 0x0000A6FF},
-{0x0000A7C0, 0x0000A7C1}, {0x0000A7CB, 0x0000A7F4}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F},
-{0x0000A878, 0x0000A87F}, {0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E},
-{0x0000A97D, 0x0000A97F}, {0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF},
-{0x0000AA37, 0x0000AA3F}, {0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA},
-{0x0000AAF7, 0x0000AB00}, {0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F},
-{0x0000AB27, 0x0000AB27}, {0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF},
-{0x0000ABFA, 0x0000ABFF}, {0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000F8FF},
-{0x0000FA6E, 0x0000FA6F}, {0x0000FADA, 0x0000FAFF}, {0x0000FB07, 0x0000FB12}, {0x0000FB18, 0x0000FB1C},
-{0x0000FB37, 0x0000FB37}, {0x0000FB3D, 0x0000FB3D}, {0x0000FB3F, 0x0000FB3F}, {0x0000FB42, 0x0000FB42},
-{0x0000FB45, 0x0000FB45}, {0x0000FBC2, 0x0000FBD2}, {0x0000FD40, 0x0000FD4F}, {0x0000FD90, 0x0000FD91},
-{0x0000FDC8, 0x0000FDEF}, {0x0000FDFE, 0x0000FDFF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53},
-{0x0000FE67, 0x0000FE67}, {0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FF00},
-{0x0000FFBF, 0x0000FFC1}, {0x0000FFC8, 0x0000FFC9}, {0x0000FFD0, 0x0000FFD1}, {0x0000FFD8, 0x0000FFD9},
-{0x0000FFDD, 0x0000FFDF}, {0x0000FFE7, 0x0000FFE7}, {0x0000FFEF, 0x0000FFFB}, {0x0000FFFE, 0x0000FFFF},
-{0x0001000C, 0x0001000C}, {0x00010027, 0x00010027}, {0x0001003B, 0x0001003B}, {0x0001003E, 0x0001003E},
-{0x0001004E, 0x0001004F}, {0x0001005E, 0x0001007F}, {0x000100FB, 0x000100FF}, {0x00010103, 0x00010106},
-{0x00010134, 0x00010136}, {0x0001018F, 0x0001018F}, {0x0001019D, 0x0001019F}, {0x000101A1, 0x000101CF},
-{0x000101FE, 0x0001027F}, {0x0001029D, 0x0001029F}, {0x000102D1, 0x000102DF}, {0x000102FC, 0x000102FF},
-{0x00010324, 0x0001032C}, {0x0001034B, 0x0001034F}, {0x0001037B, 0x0001037F}, {0x0001039E, 0x0001039E},
-{0x000103C4, 0x000103C7}, {0x000103D6, 0x000103FF}, {0x0001049E, 0x0001049F}, {0x000104AA, 0x000104AF},
-{0x000104D4, 0x000104D7}, {0x000104FC, 0x000104FF}, {0x00010528, 0x0001052F}, {0x00010564, 0x0001056E},
-{0x00010570, 0x000105FF}, {0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x000107FF},
-{0x00010806, 0x00010807}, {0x00010809, 0x00010809}, {0x00010836, 0x00010836}, {0x00010839, 0x0001083B},
-{0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, {0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF},
-{0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, {0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E},
-{0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, {0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04},
-{0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, {0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37},
-{0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, {0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF},
-{0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, {0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57},
-{0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, {0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF},
-{0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, {0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F},
-{0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, {0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF},
-{0x00010EB2, 0x00010EFF}, {0x00010F28, 0x00010F2F}, {0x00010F5A, 0x00010FAF}, {0x00010FCC, 0x00010FDF},
-{0x00010FF7, 0x00010FFF}, {0x0001104E, 0x00011051}, {0x00011070, 0x0001107E}, {0x000110BD, 0x000110BD},
-{0x000110C2, 0x000110CF}, {0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135},
-{0x00011148, 0x0001114F}, {0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF},
-{0x00011212, 0x00011212}, {0x0001123F, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289},
-{0x0001128E, 0x0001128E}, {0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF},
-{0x000112FA, 0x000112FF}, {0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312},
-{0x00011329, 0x00011329}, {0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A},
-{0x00011345, 0x00011346}, {0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356},
-{0x00011358, 0x0001135C}, {0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF},
-{0x0001145C, 0x0001145C}, {0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F},
-{0x000115B6, 0x000115B7}, {0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F},
-{0x0001166D, 0x0001167F}, {0x000116B9, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C},
-{0x0001172C, 0x0001172F}, {0x00011740, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE},
-{0x00011907, 0x00011908}, {0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917},
-{0x00011936, 0x00011936}, {0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F},
-{0x000119A8, 0x000119A9}, {0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F},
-{0x00011AA3, 0x00011ABF}, {0x00011AF9, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37},
-{0x00011C46, 0x00011C4F}, {0x00011C6D, 0x00011C6F}, {0x00011C90, 0x00011C91}, {0x00011CA8, 0x00011CA8},
-{0x00011CB7, 0x00011CFF}, {0x00011D07, 0x00011D07}, {0x00011D0A, 0x00011D0A}, {0x00011D37, 0x00011D39},
-{0x00011D3B, 0x00011D3B}, {0x00011D3E, 0x00011D3E}, {0x00011D48, 0x00011D4F}, {0x00011D5A, 0x00011D5F},
-{0x00011D66, 0x00011D66}, {0x00011D69, 0x00011D69}, {0x00011D8F, 0x00011D8F}, {0x00011D92, 0x00011D92},
-{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011FAF}, {0x00011FB1, 0x00011FBF},
-{0x00011FF2, 0x00011FFE}, {0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F},
-{0x00012544, 0x00012FFF}, {0x0001342F, 0x000143FF}, {0x00014647, 0x000167FF}, {0x00016A39, 0x00016A3F},
-{0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016A70, 0x00016ACF}, {0x00016AEE, 0x00016AEF},
-{0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, {0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62},
-{0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, {0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E},
-{0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, {0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF},
-{0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, {0x00018D09, 0x0001AFFF}, {0x0001B11F, 0x0001B14F},
-{0x0001B153, 0x0001B163}, {0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F},
-{0x0001BC7D, 0x0001BC7F}, {0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CFFF},
-{0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, {0x0001D173, 0x0001D17A}, {0x0001D1E9, 0x0001D1FF},
-{0x0001D246, 0x0001D2DF}, {0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF},
-{0x0001D455, 0x0001D455}, {0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4},
-{0x0001D4A7, 0x0001D4A8}, {0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC},
-{0x0001D4C4, 0x0001D4C4}, {0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515},
-{0x0001D51D, 0x0001D51D}, {0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545},
-{0x0001D547, 0x0001D549}, {0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD},
-{0x0001DA8C, 0x0001DA9A}, {0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DFFF}, {0x0001E007, 0x0001E007},
-{0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, {0x0001E02B, 0x0001E0FF},
-{0x0001E12D, 0x0001E12F}, {0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E2BF},
-{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, {0x0001E8D7, 0x0001E8FF},
-{0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, {0x0001ECB5, 0x0001ED00},
-{0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, {0x0001EE23, 0x0001EE23},
-{0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, {0x0001EE38, 0x0001EE38},
-{0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, {0x0001EE48, 0x0001EE48},
-{0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, {0x0001EE53, 0x0001EE53},
-{0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, {0x0001EE5C, 0x0001EE5C},
-{0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, {0x0001EE65, 0x0001EE66},
-{0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, {0x0001EE7D, 0x0001EE7D},
-{0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, {0x0001EEA4, 0x0001EEA4},
-{0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, {0x0001F02C, 0x0001F02F},
-{0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, {0x0001F0D0, 0x0001F0D0},
-{0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, {0x0001F23C, 0x0001F23F},
-{0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, {0x0001F6D8, 0x0001F6DF},
-{0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F774, 0x0001F77F}, {0x0001F7D9, 0x0001F7DF},
-{0x0001F7EC, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, {0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F},
-{0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, {0x0001F8B2, 0x0001F8FF}, {0x0001F979, 0x0001F979},
-{0x0001F9CC, 0x0001F9CC}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA75, 0x0001FA77},
-{0x0001FA7B, 0x0001FA7F}, {0x0001FA87, 0x0001FA8F}, {0x0001FAA9, 0x0001FAAF}, {0x0001FAB7, 0x0001FABF},
-{0x0001FAC3, 0x0001FACF}, {0x0001FAD7, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF},
-{0x0001FBFA, 0x0001FFFF}, {0x0002A6DE, 0x0002A6FF}, {0x0002B735, 0x0002B73F}, {0x0002B81E, 0x0002B81F},
-{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x000E00FF},
-{0x000E01F0, 0x0010FFFF},
-};
-
-static const std::multimap<uint32_t, uint32_t> unicode_map_nfd = {
-{0x000000C0, 0x00000041}, {0x000000C0, 0x00000300}, {0x000000C1, 0x00000041}, {0x000000C1, 0x00000301},
-{0x000000C2, 0x00000041}, {0x000000C2, 0x00000302}, {0x000000C3, 0x00000041}, {0x000000C3, 0x00000303},
-{0x000000C4, 0x00000041}, {0x000000C4, 0x00000308}, {0x000000C5, 0x00000041}, {0x000000C5, 0x0000030A},
-{0x000000C7, 0x00000043}, {0x000000C7, 0x00000327}, {0x000000C8, 0x00000045}, {0x000000C8, 0x00000300},
-{0x000000C9, 0x00000045}, {0x000000C9, 0x00000301}, {0x000000CA, 0x00000045}, {0x000000CA, 0x00000302},
-{0x000000CB, 0x00000045}, {0x000000CB, 0x00000308}, {0x000000CC, 0x00000049}, {0x000000CC, 0x00000300},
-{0x000000CD, 0x00000049}, {0x000000CD, 0x00000301}, {0x000000CE, 0x00000049}, {0x000000CE, 0x00000302},
-{0x000000CF, 0x00000049}, {0x000000CF, 0x00000308}, {0x000000D1, 0x0000004E}, {0x000000D1, 0x00000303},
-{0x000000D2, 0x0000004F}, {0x000000D2, 0x00000300}, {0x000000D3, 0x0000004F}, {0x000000D3, 0x00000301},
-{0x000000D4, 0x0000004F}, {0x000000D4, 0x00000302}, {0x000000D5, 0x0000004F}, {0x000000D5, 0x00000303},
-{0x000000D6, 0x0000004F}, {0x000000D6, 0x00000308}, {0x000000D9, 0x00000055}, {0x000000D9, 0x00000300},
-{0x000000DA, 0x00000055}, {0x000000DA, 0x00000301}, {0x000000DB, 0x00000055}, {0x000000DB, 0x00000302},
-{0x000000DC, 0x00000055}, {0x000000DC, 0x00000308}, {0x000000DD, 0x00000059}, {0x000000DD, 0x00000301},
-{0x000000E0, 0x00000061}, {0x000000E0, 0x00000300}, {0x000000E1, 0x00000061}, {0x000000E1, 0x00000301},
-{0x000000E2, 0x00000061}, {0x000000E2, 0x00000302}, {0x000000E3, 0x00000061}, {0x000000E3, 0x00000303},
-{0x000000E4, 0x00000061}, {0x000000E4, 0x00000308}, {0x000000E5, 0x00000061}, {0x000000E5, 0x0000030A},
-{0x000000E7, 0x00000063}, {0x000000E7, 0x00000327}, {0x000000E8, 0x00000065}, {0x000000E8, 0x00000300},
-{0x000000E9, 0x00000065}, {0x000000E9, 0x00000301}, {0x000000EA, 0x00000065}, {0x000000EA, 0x00000302},
-{0x000000EB, 0x00000065}, {0x000000EB, 0x00000308}, {0x000000EC, 0x00000069}, {0x000000EC, 0x00000300},
-{0x000000ED, 0x00000069}, {0x000000ED, 0x00000301}, {0x000000EE, 0x00000069}, {0x000000EE, 0x00000302},
-{0x000000EF, 0x00000069}, {0x000000EF, 0x00000308}, {0x000000F1, 0x0000006E}, {0x000000F1, 0x00000303},
-{0x000000F2, 0x0000006F}, {0x000000F2, 0x00000300}, {0x000000F3, 0x0000006F}, {0x000000F3, 0x00000301},
-{0x000000F4, 0x0000006F}, {0x000000F4, 0x00000302}, {0x000000F5, 0x0000006F}, {0x000000F5, 0x00000303},
-{0x000000F6, 0x0000006F}, {0x000000F6, 0x00000308}, {0x000000F9, 0x00000075}, {0x000000F9, 0x00000300},
-{0x000000FA, 0x00000075}, {0x000000FA, 0x00000301}, {0x000000FB, 0x00000075}, {0x000000FB, 0x00000302},
-{0x000000FC, 0x00000075}, {0x000000FC, 0x00000308}, {0x000000FD, 0x00000079}, {0x000000FD, 0x00000301},
-{0x000000FF, 0x00000079}, {0x000000FF, 0x00000308}, {0x00000100, 0x00000041}, {0x00000100, 0x00000304},
-{0x00000101, 0x00000061}, {0x00000101, 0x00000304}, {0x00000102, 0x00000041}, {0x00000102, 0x00000306},
-{0x00000103, 0x00000061}, {0x00000103, 0x00000306}, {0x00000104, 0x00000041}, {0x00000104, 0x00000328},
-{0x00000105, 0x00000061}, {0x00000105, 0x00000328}, {0x00000106, 0x00000043}, {0x00000106, 0x00000301},
-{0x00000107, 0x00000063}, {0x00000107, 0x00000301}, {0x00000108, 0x00000043}, {0x00000108, 0x00000302},
-{0x00000109, 0x00000063}, {0x00000109, 0x00000302}, {0x0000010A, 0x00000043}, {0x0000010A, 0x00000307},
-{0x0000010B, 0x00000063}, {0x0000010B, 0x00000307}, {0x0000010C, 0x00000043}, {0x0000010C, 0x0000030C},
-{0x0000010D, 0x00000063}, {0x0000010D, 0x0000030C}, {0x0000010E, 0x00000044}, {0x0000010E, 0x0000030C},
-{0x0000010F, 0x00000064}, {0x0000010F, 0x0000030C}, {0x00000112, 0x00000045}, {0x00000112, 0x00000304},
-{0x00000113, 0x00000065}, {0x00000113, 0x00000304}, {0x00000114, 0x00000045}, {0x00000114, 0x00000306},
-{0x00000115, 0x00000065}, {0x00000115, 0x00000306}, {0x00000116, 0x00000045}, {0x00000116, 0x00000307},
-{0x00000117, 0x00000065}, {0x00000117, 0x00000307}, {0x00000118, 0x00000045}, {0x00000118, 0x00000328},
-{0x00000119, 0x00000065}, {0x00000119, 0x00000328}, {0x0000011A, 0x00000045}, {0x0000011A, 0x0000030C},
-{0x0000011B, 0x00000065}, {0x0000011B, 0x0000030C}, {0x0000011C, 0x00000047}, {0x0000011C, 0x00000302},
-{0x0000011D, 0x00000067}, {0x0000011D, 0x00000302}, {0x0000011E, 0x00000047}, {0x0000011E, 0x00000306},
-{0x0000011F, 0x00000067}, {0x0000011F, 0x00000306}, {0x00000120, 0x00000047}, {0x00000120, 0x00000307},
-{0x00000121, 0x00000067}, {0x00000121, 0x00000307}, {0x00000122, 0x00000047}, {0x00000122, 0x00000327},
-{0x00000123, 0x00000067}, {0x00000123, 0x00000327}, {0x00000124, 0x00000048}, {0x00000124, 0x00000302},
-{0x00000125, 0x00000068}, {0x00000125, 0x00000302}, {0x00000128, 0x00000049}, {0x00000128, 0x00000303},
-{0x00000129, 0x00000069}, {0x00000129, 0x00000303}, {0x0000012A, 0x00000049}, {0x0000012A, 0x00000304},
-{0x0000012B, 0x00000069}, {0x0000012B, 0x00000304}, {0x0000012C, 0x00000049}, {0x0000012C, 0x00000306},
-{0x0000012D, 0x00000069}, {0x0000012D, 0x00000306}, {0x0000012E, 0x00000049}, {0x0000012E, 0x00000328},
-{0x0000012F, 0x00000069}, {0x0000012F, 0x00000328}, {0x00000130, 0x00000049}, {0x00000130, 0x00000307},
-{0x00000134, 0x0000004A}, {0x00000134, 0x00000302}, {0x00000135, 0x0000006A}, {0x00000135, 0x00000302},
-{0x00000136, 0x0000004B}, {0x00000136, 0x00000327}, {0x00000137, 0x0000006B}, {0x00000137, 0x00000327},
-{0x00000139, 0x0000004C}, {0x00000139, 0x00000301}, {0x0000013A, 0x0000006C}, {0x0000013A, 0x00000301},
-{0x0000013B, 0x0000004C}, {0x0000013B, 0x00000327}, {0x0000013C, 0x0000006C}, {0x0000013C, 0x00000327},
-{0x0000013D, 0x0000004C}, {0x0000013D, 0x0000030C}, {0x0000013E, 0x0000006C}, {0x0000013E, 0x0000030C},
-{0x00000143, 0x0000004E}, {0x00000143, 0x00000301}, {0x00000144, 0x0000006E}, {0x00000144, 0x00000301},
-{0x00000145, 0x0000004E}, {0x00000145, 0x00000327}, {0x00000146, 0x0000006E}, {0x00000146, 0x00000327},
-{0x00000147, 0x0000004E}, {0x00000147, 0x0000030C}, {0x00000148, 0x0000006E}, {0x00000148, 0x0000030C},
-{0x0000014C, 0x0000004F}, {0x0000014C, 0x00000304}, {0x0000014D, 0x0000006F}, {0x0000014D, 0x00000304},
-{0x0000014E, 0x0000004F}, {0x0000014E, 0x00000306}, {0x0000014F, 0x0000006F}, {0x0000014F, 0x00000306},
-{0x00000150, 0x0000004F}, {0x00000150, 0x0000030B}, {0x00000151, 0x0000006F}, {0x00000151, 0x0000030B},
-{0x00000154, 0x00000052}, {0x00000154, 0x00000301}, {0x00000155, 0x00000072}, {0x00000155, 0x00000301},
-{0x00000156, 0x00000052}, {0x00000156, 0x00000327}, {0x00000157, 0x00000072}, {0x00000157, 0x00000327},
-{0x00000158, 0x00000052}, {0x00000158, 0x0000030C}, {0x00000159, 0x00000072}, {0x00000159, 0x0000030C},
-{0x0000015A, 0x00000053}, {0x0000015A, 0x00000301}, {0x0000015B, 0x00000073}, {0x0000015B, 0x00000301},
-{0x0000015C, 0x00000053}, {0x0000015C, 0x00000302}, {0x0000015D, 0x00000073}, {0x0000015D, 0x00000302},
-{0x0000015E, 0x00000053}, {0x0000015E, 0x00000327}, {0x0000015F, 0x00000073}, {0x0000015F, 0x00000327},
-{0x00000160, 0x00000053}, {0x00000160, 0x0000030C}, {0x00000161, 0x00000073}, {0x00000161, 0x0000030C},
-{0x00000162, 0x00000054}, {0x00000162, 0x00000327}, {0x00000163, 0x00000074}, {0x00000163, 0x00000327},
-{0x00000164, 0x00000054}, {0x00000164, 0x0000030C}, {0x00000165, 0x00000074}, {0x00000165, 0x0000030C},
-{0x00000168, 0x00000055}, {0x00000168, 0x00000303}, {0x00000169, 0x00000075}, {0x00000169, 0x00000303},
-{0x0000016A, 0x00000055}, {0x0000016A, 0x00000304}, {0x0000016B, 0x00000075}, {0x0000016B, 0x00000304},
-{0x0000016C, 0x00000055}, {0x0000016C, 0x00000306}, {0x0000016D, 0x00000075}, {0x0000016D, 0x00000306},
-{0x0000016E, 0x00000055}, {0x0000016E, 0x0000030A}, {0x0000016F, 0x00000075}, {0x0000016F, 0x0000030A},
-{0x00000170, 0x00000055}, {0x00000170, 0x0000030B}, {0x00000171, 0x00000075}, {0x00000171, 0x0000030B},
-{0x00000172, 0x00000055}, {0x00000172, 0x00000328}, {0x00000173, 0x00000075}, {0x00000173, 0x00000328},
-{0x00000174, 0x00000057}, {0x00000174, 0x00000302}, {0x00000175, 0x00000077}, {0x00000175, 0x00000302},
-{0x00000176, 0x00000059}, {0x00000176, 0x00000302}, {0x00000177, 0x00000079}, {0x00000177, 0x00000302},
-{0x00000178, 0x00000059}, {0x00000178, 0x00000308}, {0x00000179, 0x0000005A}, {0x00000179, 0x00000301},
-{0x0000017A, 0x0000007A}, {0x0000017A, 0x00000301}, {0x0000017B, 0x0000005A}, {0x0000017B, 0x00000307},
-{0x0000017C, 0x0000007A}, {0x0000017C, 0x00000307}, {0x0000017D, 0x0000005A}, {0x0000017D, 0x0000030C},
-{0x0000017E, 0x0000007A}, {0x0000017E, 0x0000030C}, {0x000001A0, 0x0000004F}, {0x000001A0, 0x0000031B},
-{0x000001A1, 0x0000006F}, {0x000001A1, 0x0000031B}, {0x000001AF, 0x00000055}, {0x000001AF, 0x0000031B},
-{0x000001B0, 0x00000075}, {0x000001B0, 0x0000031B}, {0x000001CD, 0x00000041}, {0x000001CD, 0x0000030C},
-{0x000001CE, 0x00000061}, {0x000001CE, 0x0000030C}, {0x000001CF, 0x00000049}, {0x000001CF, 0x0000030C},
-{0x000001D0, 0x00000069}, {0x000001D0, 0x0000030C}, {0x000001D1, 0x0000004F}, {0x000001D1, 0x0000030C},
-{0x000001D2, 0x0000006F}, {0x000001D2, 0x0000030C}, {0x000001D3, 0x00000055}, {0x000001D3, 0x0000030C},
-{0x000001D4, 0x00000075}, {0x000001D4, 0x0000030C}, {0x000001D5, 0x00000055}, {0x000001D5, 0x00000308},
-{0x000001D5, 0x00000304}, {0x000001D6, 0x00000075}, {0x000001D6, 0x00000308}, {0x000001D6, 0x00000304},
-{0x000001D7, 0x00000055}, {0x000001D7, 0x00000308}, {0x000001D7, 0x00000301}, {0x000001D8, 0x00000075},
-{0x000001D8, 0x00000308}, {0x000001D8, 0x00000301}, {0x000001D9, 0x00000055}, {0x000001D9, 0x00000308},
-{0x000001D9, 0x0000030C}, {0x000001DA, 0x00000075}, {0x000001DA, 0x00000308}, {0x000001DA, 0x0000030C},
-{0x000001DB, 0x00000055}, {0x000001DB, 0x00000308}, {0x000001DB, 0x00000300}, {0x000001DC, 0x00000075},
-{0x000001DC, 0x00000308}, {0x000001DC, 0x00000300}, {0x000001DE, 0x00000041}, {0x000001DE, 0x00000308},
-{0x000001DE, 0x00000304}, {0x000001DF, 0x00000061}, {0x000001DF, 0x00000308}, {0x000001DF, 0x00000304},
-{0x000001E0, 0x00000041}, {0x000001E0, 0x00000307}, {0x000001E0, 0x00000304}, {0x000001E1, 0x00000061},
-{0x000001E1, 0x00000307}, {0x000001E1, 0x00000304}, {0x000001E2, 0x000000C6}, {0x000001E2, 0x00000304},
-{0x000001E3, 0x000000E6}, {0x000001E3, 0x00000304}, {0x000001E6, 0x00000047}, {0x000001E6, 0x0000030C},
-{0x000001E7, 0x00000067}, {0x000001E7, 0x0000030C}, {0x000001E8, 0x0000004B}, {0x000001E8, 0x0000030C},
-{0x000001E9, 0x0000006B}, {0x000001E9, 0x0000030C}, {0x000001EA, 0x0000004F}, {0x000001EA, 0x00000328},
-{0x000001EB, 0x0000006F}, {0x000001EB, 0x00000328}, {0x000001EC, 0x0000004F}, {0x000001EC, 0x00000328},
-{0x000001EC, 0x00000304}, {0x000001ED, 0x0000006F}, {0x000001ED, 0x00000328}, {0x000001ED, 0x00000304},
-{0x000001EE, 0x000001B7}, {0x000001EE, 0x0000030C}, {0x000001EF, 0x00000292}, {0x000001EF, 0x0000030C},
-{0x000001F0, 0x0000006A}, {0x000001F0, 0x0000030C}, {0x000001F4, 0x00000047}, {0x000001F4, 0x00000301},
-{0x000001F5, 0x00000067}, {0x000001F5, 0x00000301}, {0x000001F8, 0x0000004E}, {0x000001F8, 0x00000300},
-{0x000001F9, 0x0000006E}, {0x000001F9, 0x00000300}, {0x000001FA, 0x00000041}, {0x000001FA, 0x0000030A},
-{0x000001FA, 0x00000301}, {0x000001FB, 0x00000061}, {0x000001FB, 0x0000030A}, {0x000001FB, 0x00000301},
-{0x000001FC, 0x000000C6}, {0x000001FC, 0x00000301}, {0x000001FD, 0x000000E6}, {0x000001FD, 0x00000301},
-{0x000001FE, 0x000000D8}, {0x000001FE, 0x00000301}, {0x000001FF, 0x000000F8}, {0x000001FF, 0x00000301},
-{0x00000200, 0x00000041}, {0x00000200, 0x0000030F}, {0x00000201, 0x00000061}, {0x00000201, 0x0000030F},
-{0x00000202, 0x00000041}, {0x00000202, 0x00000311}, {0x00000203, 0x00000061}, {0x00000203, 0x00000311},
-{0x00000204, 0x00000045}, {0x00000204, 0x0000030F}, {0x00000205, 0x00000065}, {0x00000205, 0x0000030F},
-{0x00000206, 0x00000045}, {0x00000206, 0x00000311}, {0x00000207, 0x00000065}, {0x00000207, 0x00000311},
-{0x00000208, 0x00000049}, {0x00000208, 0x0000030F}, {0x00000209, 0x00000069}, {0x00000209, 0x0000030F},
-{0x0000020A, 0x00000049}, {0x0000020A, 0x00000311}, {0x0000020B, 0x00000069}, {0x0000020B, 0x00000311},
-{0x0000020C, 0x0000004F}, {0x0000020C, 0x0000030F}, {0x0000020D, 0x0000006F}, {0x0000020D, 0x0000030F},
-{0x0000020E, 0x0000004F}, {0x0000020E, 0x00000311}, {0x0000020F, 0x0000006F}, {0x0000020F, 0x00000311},
-{0x00000210, 0x00000052}, {0x00000210, 0x0000030F}, {0x00000211, 0x00000072}, {0x00000211, 0x0000030F},
-{0x00000212, 0x00000052}, {0x00000212, 0x00000311}, {0x00000213, 0x00000072}, {0x00000213, 0x00000311},
-{0x00000214, 0x00000055}, {0x00000214, 0x0000030F}, {0x00000215, 0x00000075}, {0x00000215, 0x0000030F},
-{0x00000216, 0x00000055}, {0x00000216, 0x00000311}, {0x00000217, 0x00000075}, {0x00000217, 0x00000311},
-{0x00000218, 0x00000053}, {0x00000218, 0x00000326}, {0x00000219, 0x00000073}, {0x00000219, 0x00000326},
-{0x0000021A, 0x00000054}, {0x0000021A, 0x00000326}, {0x0000021B, 0x00000074}, {0x0000021B, 0x00000326},
-{0x0000021E, 0x00000048}, {0x0000021E, 0x0000030C}, {0x0000021F, 0x00000068}, {0x0000021F, 0x0000030C},
-{0x00000226, 0x00000041}, {0x00000226, 0x00000307}, {0x00000227, 0x00000061}, {0x00000227, 0x00000307},
-{0x00000228, 0x00000045}, {0x00000228, 0x00000327}, {0x00000229, 0x00000065}, {0x00000229, 0x00000327},
-{0x0000022A, 0x0000004F}, {0x0000022A, 0x00000308}, {0x0000022A, 0x00000304}, {0x0000022B, 0x0000006F},
-{0x0000022B, 0x00000308}, {0x0000022B, 0x00000304}, {0x0000022C, 0x0000004F}, {0x0000022C, 0x00000303},
-{0x0000022C, 0x00000304}, {0x0000022D, 0x0000006F}, {0x0000022D, 0x00000303}, {0x0000022D, 0x00000304},
-{0x0000022E, 0x0000004F}, {0x0000022E, 0x00000307}, {0x0000022F, 0x0000006F}, {0x0000022F, 0x00000307},
-{0x00000230, 0x0000004F}, {0x00000230, 0x00000307}, {0x00000230, 0x00000304}, {0x00000231, 0x0000006F},
-{0x00000231, 0x00000307}, {0x00000231, 0x00000304}, {0x00000232, 0x00000059}, {0x00000232, 0x00000304},
-{0x00000233, 0x00000079}, {0x00000233, 0x00000304}, {0x00000340, 0x00000300}, {0x00000341, 0x00000301},
-{0x00000343, 0x00000313}, {0x00000344, 0x00000308}, {0x00000344, 0x00000301}, {0x00000374, 0x000002B9},
-{0x0000037E, 0x0000003B}, {0x00000385, 0x000000A8}, {0x00000385, 0x00000301}, {0x00000386, 0x00000391},
-{0x00000386, 0x00000301}, {0x00000387, 0x000000B7}, {0x00000388, 0x00000395}, {0x00000388, 0x00000301},
-{0x00000389, 0x00000397}, {0x00000389, 0x00000301}, {0x0000038A, 0x00000399}, {0x0000038A, 0x00000301},
-{0x0000038C, 0x0000039F}, {0x0000038C, 0x00000301}, {0x0000038E, 0x000003A5}, {0x0000038E, 0x00000301},
-{0x0000038F, 0x000003A9}, {0x0000038F, 0x00000301}, {0x00000390, 0x000003B9}, {0x00000390, 0x00000308},
-{0x00000390, 0x00000301}, {0x000003AA, 0x00000399}, {0x000003AA, 0x00000308}, {0x000003AB, 0x000003A5},
-{0x000003AB, 0x00000308}, {0x000003AC, 0x000003B1}, {0x000003AC, 0x00000301}, {0x000003AD, 0x000003B5},
-{0x000003AD, 0x00000301}, {0x000003AE, 0x000003B7}, {0x000003AE, 0x00000301}, {0x000003AF, 0x000003B9},
-{0x000003AF, 0x00000301}, {0x000003B0, 0x000003C5}, {0x000003B0, 0x00000308}, {0x000003B0, 0x00000301},
-{0x000003CA, 0x000003B9}, {0x000003CA, 0x00000308}, {0x000003CB, 0x000003C5}, {0x000003CB, 0x00000308},
-{0x000003CC, 0x000003BF}, {0x000003CC, 0x00000301}, {0x000003CD, 0x000003C5}, {0x000003CD, 0x00000301},
-{0x000003CE, 0x000003C9}, {0x000003CE, 0x00000301}, {0x000003D3, 0x000003D2}, {0x000003D3, 0x00000301},
-{0x000003D4, 0x000003D2}, {0x000003D4, 0x00000308}, {0x00000400, 0x00000415}, {0x00000400, 0x00000300},
-{0x00000401, 0x00000415}, {0x00000401, 0x00000308}, {0x00000403, 0x00000413}, {0x00000403, 0x00000301},
-{0x00000407, 0x00000406}, {0x00000407, 0x00000308}, {0x0000040C, 0x0000041A}, {0x0000040C, 0x00000301},
-{0x0000040D, 0x00000418}, {0x0000040D, 0x00000300}, {0x0000040E, 0x00000423}, {0x0000040E, 0x00000306},
-{0x00000419, 0x00000418}, {0x00000419, 0x00000306}, {0x00000439, 0x00000438}, {0x00000439, 0x00000306},
-{0x00000450, 0x00000435}, {0x00000450, 0x00000300}, {0x00000451, 0x00000435}, {0x00000451, 0x00000308},
-{0x00000453, 0x00000433}, {0x00000453, 0x00000301}, {0x00000457, 0x00000456}, {0x00000457, 0x00000308},
-{0x0000045C, 0x0000043A}, {0x0000045C, 0x00000301}, {0x0000045D, 0x00000438}, {0x0000045D, 0x00000300},
-{0x0000045E, 0x00000443}, {0x0000045E, 0x00000306}, {0x00000476, 0x00000474}, {0x00000476, 0x0000030F},
-{0x00000477, 0x00000475}, {0x00000477, 0x0000030F}, {0x000004C1, 0x00000416}, {0x000004C1, 0x00000306},
-{0x000004C2, 0x00000436}, {0x000004C2, 0x00000306}, {0x000004D0, 0x00000410}, {0x000004D0, 0x00000306},
-{0x000004D1, 0x00000430}, {0x000004D1, 0x00000306}, {0x000004D2, 0x00000410}, {0x000004D2, 0x00000308},
-{0x000004D3, 0x00000430}, {0x000004D3, 0x00000308}, {0x000004D6, 0x00000415}, {0x000004D6, 0x00000306},
-{0x000004D7, 0x00000435}, {0x000004D7, 0x00000306}, {0x000004DA, 0x000004D8}, {0x000004DA, 0x00000308},
-{0x000004DB, 0x000004D9}, {0x000004DB, 0x00000308}, {0x000004DC, 0x00000416}, {0x000004DC, 0x00000308},
-{0x000004DD, 0x00000436}, {0x000004DD, 0x00000308}, {0x000004DE, 0x00000417}, {0x000004DE, 0x00000308},
-{0x000004DF, 0x00000437}, {0x000004DF, 0x00000308}, {0x000004E2, 0x00000418}, {0x000004E2, 0x00000304},
-{0x000004E3, 0x00000438}, {0x000004E3, 0x00000304}, {0x000004E4, 0x00000418}, {0x000004E4, 0x00000308},
-{0x000004E5, 0x00000438}, {0x000004E5, 0x00000308}, {0x000004E6, 0x0000041E}, {0x000004E6, 0x00000308},
-{0x000004E7, 0x0000043E}, {0x000004E7, 0x00000308}, {0x000004EA, 0x000004E8}, {0x000004EA, 0x00000308},
-{0x000004EB, 0x000004E9}, {0x000004EB, 0x00000308}, {0x000004EC, 0x0000042D}, {0x000004EC, 0x00000308},
-{0x000004ED, 0x0000044D}, {0x000004ED, 0x00000308}, {0x000004EE, 0x00000423}, {0x000004EE, 0x00000304},
-{0x000004EF, 0x00000443}, {0x000004EF, 0x00000304}, {0x000004F0, 0x00000423}, {0x000004F0, 0x00000308},
-{0x000004F1, 0x00000443}, {0x000004F1, 0x00000308}, {0x000004F2, 0x00000423}, {0x000004F2, 0x0000030B},
-{0x000004F3, 0x00000443}, {0x000004F3, 0x0000030B}, {0x000004F4, 0x00000427}, {0x000004F4, 0x00000308},
-{0x000004F5, 0x00000447}, {0x000004F5, 0x00000308}, {0x000004F8, 0x0000042B}, {0x000004F8, 0x00000308},
-{0x000004F9, 0x0000044B}, {0x000004F9, 0x00000308}, {0x00000622, 0x00000627}, {0x00000622, 0x00000653},
-{0x00000623, 0x00000627}, {0x00000623, 0x00000654}, {0x00000624, 0x00000648}, {0x00000624, 0x00000654},
-{0x00000625, 0x00000627}, {0x00000625, 0x00000655}, {0x00000626, 0x0000064A}, {0x00000626, 0x00000654},
-{0x000006C0, 0x000006D5}, {0x000006C0, 0x00000654}, {0x000006C2, 0x000006C1}, {0x000006C2, 0x00000654},
-{0x000006D3, 0x000006D2}, {0x000006D3, 0x00000654}, {0x00000929, 0x00000928}, {0x00000929, 0x0000093C},
-{0x00000931, 0x00000930}, {0x00000931, 0x0000093C}, {0x00000934, 0x00000933}, {0x00000934, 0x0000093C},
-{0x00000958, 0x00000915}, {0x00000958, 0x0000093C}, {0x00000959, 0x00000916}, {0x00000959, 0x0000093C},
-{0x0000095A, 0x00000917}, {0x0000095A, 0x0000093C}, {0x0000095B, 0x0000091C}, {0x0000095B, 0x0000093C},
-{0x0000095C, 0x00000921}, {0x0000095C, 0x0000093C}, {0x0000095D, 0x00000922}, {0x0000095D, 0x0000093C},
-{0x0000095E, 0x0000092B}, {0x0000095E, 0x0000093C}, {0x0000095F, 0x0000092F}, {0x0000095F, 0x0000093C},
-{0x000009CB, 0x000009C7}, {0x000009CB, 0x000009BE}, {0x000009CC, 0x000009C7}, {0x000009CC, 0x000009D7},
-{0x000009DC, 0x000009A1}, {0x000009DC, 0x000009BC}, {0x000009DD, 0x000009A2}, {0x000009DD, 0x000009BC},
-{0x000009DF, 0x000009AF}, {0x000009DF, 0x000009BC}, {0x00000A33, 0x00000A32}, {0x00000A33, 0x00000A3C},
-{0x00000A36, 0x00000A38}, {0x00000A36, 0x00000A3C}, {0x00000A59, 0x00000A16}, {0x00000A59, 0x00000A3C},
-{0x00000A5A, 0x00000A17}, {0x00000A5A, 0x00000A3C}, {0x00000A5B, 0x00000A1C}, {0x00000A5B, 0x00000A3C},
-{0x00000A5E, 0x00000A2B}, {0x00000A5E, 0x00000A3C}, {0x00000B48, 0x00000B47}, {0x00000B48, 0x00000B56},
-{0x00000B4B, 0x00000B47}, {0x00000B4B, 0x00000B3E}, {0x00000B4C, 0x00000B47}, {0x00000B4C, 0x00000B57},
-{0x00000B5C, 0x00000B21}, {0x00000B5C, 0x00000B3C}, {0x00000B5D, 0x00000B22}, {0x00000B5D, 0x00000B3C},
-{0x00000B94, 0x00000B92}, {0x00000B94, 0x00000BD7}, {0x00000BCA, 0x00000BC6}, {0x00000BCA, 0x00000BBE},
-{0x00000BCB, 0x00000BC7}, {0x00000BCB, 0x00000BBE}, {0x00000BCC, 0x00000BC6}, {0x00000BCC, 0x00000BD7},
-{0x00000C48, 0x00000C46}, {0x00000C48, 0x00000C56}, {0x00000CC0, 0x00000CBF}, {0x00000CC0, 0x00000CD5},
-{0x00000CC7, 0x00000CC6}, {0x00000CC7, 0x00000CD5}, {0x00000CC8, 0x00000CC6}, {0x00000CC8, 0x00000CD6},
-{0x00000CCA, 0x00000CC6}, {0x00000CCA, 0x00000CC2}, {0x00000CCB, 0x00000CC6}, {0x00000CCB, 0x00000CC2},
-{0x00000CCB, 0x00000CD5}, {0x00000D4A, 0x00000D46}, {0x00000D4A, 0x00000D3E}, {0x00000D4B, 0x00000D47},
-{0x00000D4B, 0x00000D3E}, {0x00000D4C, 0x00000D46}, {0x00000D4C, 0x00000D57}, {0x00000DDA, 0x00000DD9},
-{0x00000DDA, 0x00000DCA}, {0x00000DDC, 0x00000DD9}, {0x00000DDC, 0x00000DCF}, {0x00000DDD, 0x00000DD9},
-{0x00000DDD, 0x00000DCF}, {0x00000DDD, 0x00000DCA}, {0x00000DDE, 0x00000DD9}, {0x00000DDE, 0x00000DDF},
-{0x00000F43, 0x00000F42}, {0x00000F43, 0x00000FB7}, {0x00000F4D, 0x00000F4C}, {0x00000F4D, 0x00000FB7},
-{0x00000F52, 0x00000F51}, {0x00000F52, 0x00000FB7}, {0x00000F57, 0x00000F56}, {0x00000F57, 0x00000FB7},
-{0x00000F5C, 0x00000F5B}, {0x00000F5C, 0x00000FB7}, {0x00000F69, 0x00000F40}, {0x00000F69, 0x00000FB5},
-{0x00000F73, 0x00000F71}, {0x00000F73, 0x00000F72}, {0x00000F75, 0x00000F71}, {0x00000F75, 0x00000F74},
-{0x00000F76, 0x00000FB2}, {0x00000F76, 0x00000F80}, {0x00000F78, 0x00000FB3}, {0x00000F78, 0x00000F80},
-{0x00000F81, 0x00000F71}, {0x00000F81, 0x00000F80}, {0x00000F93, 0x00000F92}, {0x00000F93, 0x00000FB7},
-{0x00000F9D, 0x00000F9C}, {0x00000F9D, 0x00000FB7}, {0x00000FA2, 0x00000FA1}, {0x00000FA2, 0x00000FB7},
-{0x00000FA7, 0x00000FA6}, {0x00000FA7, 0x00000FB7}, {0x00000FAC, 0x00000FAB}, {0x00000FAC, 0x00000FB7},
-{0x00000FB9, 0x00000F90}, {0x00000FB9, 0x00000FB5}, {0x00001026, 0x00001025}, {0x00001026, 0x0000102E},
-{0x00001B06, 0x00001B05}, {0x00001B06, 0x00001B35}, {0x00001B08, 0x00001B07}, {0x00001B08, 0x00001B35},
-{0x00001B0A, 0x00001B09}, {0x00001B0A, 0x00001B35}, {0x00001B0C, 0x00001B0B}, {0x00001B0C, 0x00001B35},
-{0x00001B0E, 0x00001B0D}, {0x00001B0E, 0x00001B35}, {0x00001B12, 0x00001B11}, {0x00001B12, 0x00001B35},
-{0x00001B3B, 0x00001B3A}, {0x00001B3B, 0x00001B35}, {0x00001B3D, 0x00001B3C}, {0x00001B3D, 0x00001B35},
-{0x00001B40, 0x00001B3E}, {0x00001B40, 0x00001B35}, {0x00001B41, 0x00001B3F}, {0x00001B41, 0x00001B35},
-{0x00001B43, 0x00001B42}, {0x00001B43, 0x00001B35}, {0x00001E00, 0x00000041}, {0x00001E00, 0x00000325},
-{0x00001E01, 0x00000061}, {0x00001E01, 0x00000325}, {0x00001E02, 0x00000042}, {0x00001E02, 0x00000307},
-{0x00001E03, 0x00000062}, {0x00001E03, 0x00000307}, {0x00001E04, 0x00000042}, {0x00001E04, 0x00000323},
-{0x00001E05, 0x00000062}, {0x00001E05, 0x00000323}, {0x00001E06, 0x00000042}, {0x00001E06, 0x00000331},
-{0x00001E07, 0x00000062}, {0x00001E07, 0x00000331}, {0x00001E08, 0x00000043}, {0x00001E08, 0x00000327},
-{0x00001E08, 0x00000301}, {0x00001E09, 0x00000063}, {0x00001E09, 0x00000327}, {0x00001E09, 0x00000301},
-{0x00001E0A, 0x00000044}, {0x00001E0A, 0x00000307}, {0x00001E0B, 0x00000064}, {0x00001E0B, 0x00000307},
-{0x00001E0C, 0x00000044}, {0x00001E0C, 0x00000323}, {0x00001E0D, 0x00000064}, {0x00001E0D, 0x00000323},
-{0x00001E0E, 0x00000044}, {0x00001E0E, 0x00000331}, {0x00001E0F, 0x00000064}, {0x00001E0F, 0x00000331},
-{0x00001E10, 0x00000044}, {0x00001E10, 0x00000327}, {0x00001E11, 0x00000064}, {0x00001E11, 0x00000327},
-{0x00001E12, 0x00000044}, {0x00001E12, 0x0000032D}, {0x00001E13, 0x00000064}, {0x00001E13, 0x0000032D},
-{0x00001E14, 0x00000045}, {0x00001E14, 0x00000304}, {0x00001E14, 0x00000300}, {0x00001E15, 0x00000065},
-{0x00001E15, 0x00000304}, {0x00001E15, 0x00000300}, {0x00001E16, 0x00000045}, {0x00001E16, 0x00000304},
-{0x00001E16, 0x00000301}, {0x00001E17, 0x00000065}, {0x00001E17, 0x00000304}, {0x00001E17, 0x00000301},
-{0x00001E18, 0x00000045}, {0x00001E18, 0x0000032D}, {0x00001E19, 0x00000065}, {0x00001E19, 0x0000032D},
-{0x00001E1A, 0x00000045}, {0x00001E1A, 0x00000330}, {0x00001E1B, 0x00000065}, {0x00001E1B, 0x00000330},
-{0x00001E1C, 0x00000045}, {0x00001E1C, 0x00000327}, {0x00001E1C, 0x00000306}, {0x00001E1D, 0x00000065},
-{0x00001E1D, 0x00000327}, {0x00001E1D, 0x00000306}, {0x00001E1E, 0x00000046}, {0x00001E1E, 0x00000307},
-{0x00001E1F, 0x00000066}, {0x00001E1F, 0x00000307}, {0x00001E20, 0x00000047}, {0x00001E20, 0x00000304},
-{0x00001E21, 0x00000067}, {0x00001E21, 0x00000304}, {0x00001E22, 0x00000048}, {0x00001E22, 0x00000307},
-{0x00001E23, 0x00000068}, {0x00001E23, 0x00000307}, {0x00001E24, 0x00000048}, {0x00001E24, 0x00000323},
-{0x00001E25, 0x00000068}, {0x00001E25, 0x00000323}, {0x00001E26, 0x00000048}, {0x00001E26, 0x00000308},
-{0x00001E27, 0x00000068}, {0x00001E27, 0x00000308}, {0x00001E28, 0x00000048}, {0x00001E28, 0x00000327},
-{0x00001E29, 0x00000068}, {0x00001E29, 0x00000327}, {0x00001E2A, 0x00000048}, {0x00001E2A, 0x0000032E},
-{0x00001E2B, 0x00000068}, {0x00001E2B, 0x0000032E}, {0x00001E2C, 0x00000049}, {0x00001E2C, 0x00000330},
-{0x00001E2D, 0x00000069}, {0x00001E2D, 0x00000330}, {0x00001E2E, 0x00000049}, {0x00001E2E, 0x00000308},
-{0x00001E2E, 0x00000301}, {0x00001E2F, 0x00000069}, {0x00001E2F, 0x00000308}, {0x00001E2F, 0x00000301},
-{0x00001E30, 0x0000004B}, {0x00001E30, 0x00000301}, {0x00001E31, 0x0000006B}, {0x00001E31, 0x00000301},
-{0x00001E32, 0x0000004B}, {0x00001E32, 0x00000323}, {0x00001E33, 0x0000006B}, {0x00001E33, 0x00000323},
-{0x00001E34, 0x0000004B}, {0x00001E34, 0x00000331}, {0x00001E35, 0x0000006B}, {0x00001E35, 0x00000331},
-{0x00001E36, 0x0000004C}, {0x00001E36, 0x00000323}, {0x00001E37, 0x0000006C}, {0x00001E37, 0x00000323},
-{0x00001E38, 0x0000004C}, {0x00001E38, 0x00000323}, {0x00001E38, 0x00000304}, {0x00001E39, 0x0000006C},
-{0x00001E39, 0x00000323}, {0x00001E39, 0x00000304}, {0x00001E3A, 0x0000004C}, {0x00001E3A, 0x00000331},
-{0x00001E3B, 0x0000006C}, {0x00001E3B, 0x00000331}, {0x00001E3C, 0x0000004C}, {0x00001E3C, 0x0000032D},
-{0x00001E3D, 0x0000006C}, {0x00001E3D, 0x0000032D}, {0x00001E3E, 0x0000004D}, {0x00001E3E, 0x00000301},
-{0x00001E3F, 0x0000006D}, {0x00001E3F, 0x00000301}, {0x00001E40, 0x0000004D}, {0x00001E40, 0x00000307},
-{0x00001E41, 0x0000006D}, {0x00001E41, 0x00000307}, {0x00001E42, 0x0000004D}, {0x00001E42, 0x00000323},
-{0x00001E43, 0x0000006D}, {0x00001E43, 0x00000323}, {0x00001E44, 0x0000004E}, {0x00001E44, 0x00000307},
-{0x00001E45, 0x0000006E}, {0x00001E45, 0x00000307}, {0x00001E46, 0x0000004E}, {0x00001E46, 0x00000323},
-{0x00001E47, 0x0000006E}, {0x00001E47, 0x00000323}, {0x00001E48, 0x0000004E}, {0x00001E48, 0x00000331},
-{0x00001E49, 0x0000006E}, {0x00001E49, 0x00000331}, {0x00001E4A, 0x0000004E}, {0x00001E4A, 0x0000032D},
-{0x00001E4B, 0x0000006E}, {0x00001E4B, 0x0000032D}, {0x00001E4C, 0x0000004F}, {0x00001E4C, 0x00000303},
-{0x00001E4C, 0x00000301}, {0x00001E4D, 0x0000006F}, {0x00001E4D, 0x00000303}, {0x00001E4D, 0x00000301},
-{0x00001E4E, 0x0000004F}, {0x00001E4E, 0x00000303}, {0x00001E4E, 0x00000308}, {0x00001E4F, 0x0000006F},
-{0x00001E4F, 0x00000303}, {0x00001E4F, 0x00000308}, {0x00001E50, 0x0000004F}, {0x00001E50, 0x00000304},
-{0x00001E50, 0x00000300}, {0x00001E51, 0x0000006F}, {0x00001E51, 0x00000304}, {0x00001E51, 0x00000300},
-{0x00001E52, 0x0000004F}, {0x00001E52, 0x00000304}, {0x00001E52, 0x00000301}, {0x00001E53, 0x0000006F},
-{0x00001E53, 0x00000304}, {0x00001E53, 0x00000301}, {0x00001E54, 0x00000050}, {0x00001E54, 0x00000301},
-{0x00001E55, 0x00000070}, {0x00001E55, 0x00000301}, {0x00001E56, 0x00000050}, {0x00001E56, 0x00000307},
-{0x00001E57, 0x00000070}, {0x00001E57, 0x00000307}, {0x00001E58, 0x00000052}, {0x00001E58, 0x00000307},
-{0x00001E59, 0x00000072}, {0x00001E59, 0x00000307}, {0x00001E5A, 0x00000052}, {0x00001E5A, 0x00000323},
-{0x00001E5B, 0x00000072}, {0x00001E5B, 0x00000323}, {0x00001E5C, 0x00000052}, {0x00001E5C, 0x00000323},
-{0x00001E5C, 0x00000304}, {0x00001E5D, 0x00000072}, {0x00001E5D, 0x00000323}, {0x00001E5D, 0x00000304},
-{0x00001E5E, 0x00000052}, {0x00001E5E, 0x00000331}, {0x00001E5F, 0x00000072}, {0x00001E5F, 0x00000331},
-{0x00001E60, 0x00000053}, {0x00001E60, 0x00000307}, {0x00001E61, 0x00000073}, {0x00001E61, 0x00000307},
-{0x00001E62, 0x00000053}, {0x00001E62, 0x00000323}, {0x00001E63, 0x00000073}, {0x00001E63, 0x00000323},
-{0x00001E64, 0x00000053}, {0x00001E64, 0x00000301}, {0x00001E64, 0x00000307}, {0x00001E65, 0x00000073},
-{0x00001E65, 0x00000301}, {0x00001E65, 0x00000307}, {0x00001E66, 0x00000053}, {0x00001E66, 0x0000030C},
-{0x00001E66, 0x00000307}, {0x00001E67, 0x00000073}, {0x00001E67, 0x0000030C}, {0x00001E67, 0x00000307},
-{0x00001E68, 0x00000053}, {0x00001E68, 0x00000323}, {0x00001E68, 0x00000307}, {0x00001E69, 0x00000073},
-{0x00001E69, 0x00000323}, {0x00001E69, 0x00000307}, {0x00001E6A, 0x00000054}, {0x00001E6A, 0x00000307},
-{0x00001E6B, 0x00000074}, {0x00001E6B, 0x00000307}, {0x00001E6C, 0x00000054}, {0x00001E6C, 0x00000323},
-{0x00001E6D, 0x00000074}, {0x00001E6D, 0x00000323}, {0x00001E6E, 0x00000054}, {0x00001E6E, 0x00000331},
-{0x00001E6F, 0x00000074}, {0x00001E6F, 0x00000331}, {0x00001E70, 0x00000054}, {0x00001E70, 0x0000032D},
-{0x00001E71, 0x00000074}, {0x00001E71, 0x0000032D}, {0x00001E72, 0x00000055}, {0x00001E72, 0x00000324},
-{0x00001E73, 0x00000075}, {0x00001E73, 0x00000324}, {0x00001E74, 0x00000055}, {0x00001E74, 0x00000330},
-{0x00001E75, 0x00000075}, {0x00001E75, 0x00000330}, {0x00001E76, 0x00000055}, {0x00001E76, 0x0000032D},
-{0x00001E77, 0x00000075}, {0x00001E77, 0x0000032D}, {0x00001E78, 0x00000055}, {0x00001E78, 0x00000303},
-{0x00001E78, 0x00000301}, {0x00001E79, 0x00000075}, {0x00001E79, 0x00000303}, {0x00001E79, 0x00000301},
-{0x00001E7A, 0x00000055}, {0x00001E7A, 0x00000304}, {0x00001E7A, 0x00000308}, {0x00001E7B, 0x00000075},
-{0x00001E7B, 0x00000304}, {0x00001E7B, 0x00000308}, {0x00001E7C, 0x00000056}, {0x00001E7C, 0x00000303},
-{0x00001E7D, 0x00000076}, {0x00001E7D, 0x00000303}, {0x00001E7E, 0x00000056}, {0x00001E7E, 0x00000323},
-{0x00001E7F, 0x00000076}, {0x00001E7F, 0x00000323}, {0x00001E80, 0x00000057}, {0x00001E80, 0x00000300},
-{0x00001E81, 0x00000077}, {0x00001E81, 0x00000300}, {0x00001E82, 0x00000057}, {0x00001E82, 0x00000301},
-{0x00001E83, 0x00000077}, {0x00001E83, 0x00000301}, {0x00001E84, 0x00000057}, {0x00001E84, 0x00000308},
-{0x00001E85, 0x00000077}, {0x00001E85, 0x00000308}, {0x00001E86, 0x00000057}, {0x00001E86, 0x00000307},
-{0x00001E87, 0x00000077}, {0x00001E87, 0x00000307}, {0x00001E88, 0x00000057}, {0x00001E88, 0x00000323},
-{0x00001E89, 0x00000077}, {0x00001E89, 0x00000323}, {0x00001E8A, 0x00000058}, {0x00001E8A, 0x00000307},
-{0x00001E8B, 0x00000078}, {0x00001E8B, 0x00000307}, {0x00001E8C, 0x00000058}, {0x00001E8C, 0x00000308},
-{0x00001E8D, 0x00000078}, {0x00001E8D, 0x00000308}, {0x00001E8E, 0x00000059}, {0x00001E8E, 0x00000307},
-{0x00001E8F, 0x00000079}, {0x00001E8F, 0x00000307}, {0x00001E90, 0x0000005A}, {0x00001E90, 0x00000302},
-{0x00001E91, 0x0000007A}, {0x00001E91, 0x00000302}, {0x00001E92, 0x0000005A}, {0x00001E92, 0x00000323},
-{0x00001E93, 0x0000007A}, {0x00001E93, 0x00000323}, {0x00001E94, 0x0000005A}, {0x00001E94, 0x00000331},
-{0x00001E95, 0x0000007A}, {0x00001E95, 0x00000331}, {0x00001E96, 0x00000068}, {0x00001E96, 0x00000331},
-{0x00001E97, 0x00000074}, {0x00001E97, 0x00000308}, {0x00001E98, 0x00000077}, {0x00001E98, 0x0000030A},
-{0x00001E99, 0x00000079}, {0x00001E99, 0x0000030A}, {0x00001E9B, 0x0000017F}, {0x00001E9B, 0x00000307},
-{0x00001EA0, 0x00000041}, {0x00001EA0, 0x00000323}, {0x00001EA1, 0x00000061}, {0x00001EA1, 0x00000323},
-{0x00001EA2, 0x00000041}, {0x00001EA2, 0x00000309}, {0x00001EA3, 0x00000061}, {0x00001EA3, 0x00000309},
-{0x00001EA4, 0x00000041}, {0x00001EA4, 0x00000302}, {0x00001EA4, 0x00000301}, {0x00001EA5, 0x00000061},
-{0x00001EA5, 0x00000302}, {0x00001EA5, 0x00000301}, {0x00001EA6, 0x00000041}, {0x00001EA6, 0x00000302},
-{0x00001EA6, 0x00000300}, {0x00001EA7, 0x00000061}, {0x00001EA7, 0x00000302}, {0x00001EA7, 0x00000300},
-{0x00001EA8, 0x00000041}, {0x00001EA8, 0x00000302}, {0x00001EA8, 0x00000309}, {0x00001EA9, 0x00000061},
-{0x00001EA9, 0x00000302}, {0x00001EA9, 0x00000309}, {0x00001EAA, 0x00000041}, {0x00001EAA, 0x00000302},
-{0x00001EAA, 0x00000303}, {0x00001EAB, 0x00000061}, {0x00001EAB, 0x00000302}, {0x00001EAB, 0x00000303},
-{0x00001EAC, 0x00000041}, {0x00001EAC, 0x00000323}, {0x00001EAC, 0x00000302}, {0x00001EAD, 0x00000061},
-{0x00001EAD, 0x00000323}, {0x00001EAD, 0x00000302}, {0x00001EAE, 0x00000041}, {0x00001EAE, 0x00000306},
-{0x00001EAE, 0x00000301}, {0x00001EAF, 0x00000061}, {0x00001EAF, 0x00000306}, {0x00001EAF, 0x00000301},
-{0x00001EB0, 0x00000041}, {0x00001EB0, 0x00000306}, {0x00001EB0, 0x00000300}, {0x00001EB1, 0x00000061},
-{0x00001EB1, 0x00000306}, {0x00001EB1, 0x00000300}, {0x00001EB2, 0x00000041}, {0x00001EB2, 0x00000306},
-{0x00001EB2, 0x00000309}, {0x00001EB3, 0x00000061}, {0x00001EB3, 0x00000306}, {0x00001EB3, 0x00000309},
-{0x00001EB4, 0x00000041}, {0x00001EB4, 0x00000306}, {0x00001EB4, 0x00000303}, {0x00001EB5, 0x00000061},
-{0x00001EB5, 0x00000306}, {0x00001EB5, 0x00000303}, {0x00001EB6, 0x00000041}, {0x00001EB6, 0x00000323},
-{0x00001EB6, 0x00000306}, {0x00001EB7, 0x00000061}, {0x00001EB7, 0x00000323}, {0x00001EB7, 0x00000306},
-{0x00001EB8, 0x00000045}, {0x00001EB8, 0x00000323}, {0x00001EB9, 0x00000065}, {0x00001EB9, 0x00000323},
-{0x00001EBA, 0x00000045}, {0x00001EBA, 0x00000309}, {0x00001EBB, 0x00000065}, {0x00001EBB, 0x00000309},
-{0x00001EBC, 0x00000045}, {0x00001EBC, 0x00000303}, {0x00001EBD, 0x00000065}, {0x00001EBD, 0x00000303},
-{0x00001EBE, 0x00000045}, {0x00001EBE, 0x00000302}, {0x00001EBE, 0x00000301}, {0x00001EBF, 0x00000065},
-{0x00001EBF, 0x00000302}, {0x00001EBF, 0x00000301}, {0x00001EC0, 0x00000045}, {0x00001EC0, 0x00000302},
-{0x00001EC0, 0x00000300}, {0x00001EC1, 0x00000065}, {0x00001EC1, 0x00000302}, {0x00001EC1, 0x00000300},
-{0x00001EC2, 0x00000045}, {0x00001EC2, 0x00000302}, {0x00001EC2, 0x00000309}, {0x00001EC3, 0x00000065},
-{0x00001EC3, 0x00000302}, {0x00001EC3, 0x00000309}, {0x00001EC4, 0x00000045}, {0x00001EC4, 0x00000302},
-{0x00001EC4, 0x00000303}, {0x00001EC5, 0x00000065}, {0x00001EC5, 0x00000302}, {0x00001EC5, 0x00000303},
-{0x00001EC6, 0x00000045}, {0x00001EC6, 0x00000323}, {0x00001EC6, 0x00000302}, {0x00001EC7, 0x00000065},
-{0x00001EC7, 0x00000323}, {0x00001EC7, 0x00000302}, {0x00001EC8, 0x00000049}, {0x00001EC8, 0x00000309},
-{0x00001EC9, 0x00000069}, {0x00001EC9, 0x00000309}, {0x00001ECA, 0x00000049}, {0x00001ECA, 0x00000323},
-{0x00001ECB, 0x00000069}, {0x00001ECB, 0x00000323}, {0x00001ECC, 0x0000004F}, {0x00001ECC, 0x00000323},
-{0x00001ECD, 0x0000006F}, {0x00001ECD, 0x00000323}, {0x00001ECE, 0x0000004F}, {0x00001ECE, 0x00000309},
-{0x00001ECF, 0x0000006F}, {0x00001ECF, 0x00000309}, {0x00001ED0, 0x0000004F}, {0x00001ED0, 0x00000302},
-{0x00001ED0, 0x00000301}, {0x00001ED1, 0x0000006F}, {0x00001ED1, 0x00000302}, {0x00001ED1, 0x00000301},
-{0x00001ED2, 0x0000004F}, {0x00001ED2, 0x00000302}, {0x00001ED2, 0x00000300}, {0x00001ED3, 0x0000006F},
-{0x00001ED3, 0x00000302}, {0x00001ED3, 0x00000300}, {0x00001ED4, 0x0000004F}, {0x00001ED4, 0x00000302},
-{0x00001ED4, 0x00000309}, {0x00001ED5, 0x0000006F}, {0x00001ED5, 0x00000302}, {0x00001ED5, 0x00000309},
-{0x00001ED6, 0x0000004F}, {0x00001ED6, 0x00000302}, {0x00001ED6, 0x00000303}, {0x00001ED7, 0x0000006F},
-{0x00001ED7, 0x00000302}, {0x00001ED7, 0x00000303}, {0x00001ED8, 0x0000004F}, {0x00001ED8, 0x00000323},
-{0x00001ED8, 0x00000302}, {0x00001ED9, 0x0000006F}, {0x00001ED9, 0x00000323}, {0x00001ED9, 0x00000302},
-{0x00001EDA, 0x0000004F}, {0x00001EDA, 0x0000031B}, {0x00001EDA, 0x00000301}, {0x00001EDB, 0x0000006F},
-{0x00001EDB, 0x0000031B}, {0x00001EDB, 0x00000301}, {0x00001EDC, 0x0000004F}, {0x00001EDC, 0x0000031B},
-{0x00001EDC, 0x00000300}, {0x00001EDD, 0x0000006F}, {0x00001EDD, 0x0000031B}, {0x00001EDD, 0x00000300},
-{0x00001EDE, 0x0000004F}, {0x00001EDE, 0x0000031B}, {0x00001EDE, 0x00000309}, {0x00001EDF, 0x0000006F},
-{0x00001EDF, 0x0000031B}, {0x00001EDF, 0x00000309}, {0x00001EE0, 0x0000004F}, {0x00001EE0, 0x0000031B},
-{0x00001EE0, 0x00000303}, {0x00001EE1, 0x0000006F}, {0x00001EE1, 0x0000031B}, {0x00001EE1, 0x00000303},
-{0x00001EE2, 0x0000004F}, {0x00001EE2, 0x0000031B}, {0x00001EE2, 0x00000323}, {0x00001EE3, 0x0000006F},
-{0x00001EE3, 0x0000031B}, {0x00001EE3, 0x00000323}, {0x00001EE4, 0x00000055}, {0x00001EE4, 0x00000323},
-{0x00001EE5, 0x00000075}, {0x00001EE5, 0x00000323}, {0x00001EE6, 0x00000055}, {0x00001EE6, 0x00000309},
-{0x00001EE7, 0x00000075}, {0x00001EE7, 0x00000309}, {0x00001EE8, 0x00000055}, {0x00001EE8, 0x0000031B},
-{0x00001EE8, 0x00000301}, {0x00001EE9, 0x00000075}, {0x00001EE9, 0x0000031B}, {0x00001EE9, 0x00000301},
-{0x00001EEA, 0x00000055}, {0x00001EEA, 0x0000031B}, {0x00001EEA, 0x00000300}, {0x00001EEB, 0x00000075},
-{0x00001EEB, 0x0000031B}, {0x00001EEB, 0x00000300}, {0x00001EEC, 0x00000055}, {0x00001EEC, 0x0000031B},
-{0x00001EEC, 0x00000309}, {0x00001EED, 0x00000075}, {0x00001EED, 0x0000031B}, {0x00001EED, 0x00000309},
-{0x00001EEE, 0x00000055}, {0x00001EEE, 0x0000031B}, {0x00001EEE, 0x00000303}, {0x00001EEF, 0x00000075},
-{0x00001EEF, 0x0000031B}, {0x00001EEF, 0x00000303}, {0x00001EF0, 0x00000055}, {0x00001EF0, 0x0000031B},
-{0x00001EF0, 0x00000323}, {0x00001EF1, 0x00000075}, {0x00001EF1, 0x0000031B}, {0x00001EF1, 0x00000323},
-{0x00001EF2, 0x00000059}, {0x00001EF2, 0x00000300}, {0x00001EF3, 0x00000079}, {0x00001EF3, 0x00000300},
-{0x00001EF4, 0x00000059}, {0x00001EF4, 0x00000323}, {0x00001EF5, 0x00000079}, {0x00001EF5, 0x00000323},
-{0x00001EF6, 0x00000059}, {0x00001EF6, 0x00000309}, {0x00001EF7, 0x00000079}, {0x00001EF7, 0x00000309},
-{0x00001EF8, 0x00000059}, {0x00001EF8, 0x00000303}, {0x00001EF9, 0x00000079}, {0x00001EF9, 0x00000303},
-{0x00001F00, 0x000003B1}, {0x00001F00, 0x00000313}, {0x00001F01, 0x000003B1}, {0x00001F01, 0x00000314},
-{0x00001F02, 0x000003B1}, {0x00001F02, 0x00000313}, {0x00001F02, 0x00000300}, {0x00001F03, 0x000003B1},
-{0x00001F03, 0x00000314}, {0x00001F03, 0x00000300}, {0x00001F04, 0x000003B1}, {0x00001F04, 0x00000313},
-{0x00001F04, 0x00000301}, {0x00001F05, 0x000003B1}, {0x00001F05, 0x00000314}, {0x00001F05, 0x00000301},
-{0x00001F06, 0x000003B1}, {0x00001F06, 0x00000313}, {0x00001F06, 0x00000342}, {0x00001F07, 0x000003B1},
-{0x00001F07, 0x00000314}, {0x00001F07, 0x00000342}, {0x00001F08, 0x00000391}, {0x00001F08, 0x00000313},
-{0x00001F09, 0x00000391}, {0x00001F09, 0x00000314}, {0x00001F0A, 0x00000391}, {0x00001F0A, 0x00000313},
-{0x00001F0A, 0x00000300}, {0x00001F0B, 0x00000391}, {0x00001F0B, 0x00000314}, {0x00001F0B, 0x00000300},
-{0x00001F0C, 0x00000391}, {0x00001F0C, 0x00000313}, {0x00001F0C, 0x00000301}, {0x00001F0D, 0x00000391},
-{0x00001F0D, 0x00000314}, {0x00001F0D, 0x00000301}, {0x00001F0E, 0x00000391}, {0x00001F0E, 0x00000313},
-{0x00001F0E, 0x00000342}, {0x00001F0F, 0x00000391}, {0x00001F0F, 0x00000314}, {0x00001F0F, 0x00000342},
-{0x00001F10, 0x000003B5}, {0x00001F10, 0x00000313}, {0x00001F11, 0x000003B5}, {0x00001F11, 0x00000314},
-{0x00001F12, 0x000003B5}, {0x00001F12, 0x00000313}, {0x00001F12, 0x00000300}, {0x00001F13, 0x000003B5},
-{0x00001F13, 0x00000314}, {0x00001F13, 0x00000300}, {0x00001F14, 0x000003B5}, {0x00001F14, 0x00000313},
-{0x00001F14, 0x00000301}, {0x00001F15, 0x000003B5}, {0x00001F15, 0x00000314}, {0x00001F15, 0x00000301},
-{0x00001F18, 0x00000395}, {0x00001F18, 0x00000313}, {0x00001F19, 0x00000395}, {0x00001F19, 0x00000314},
-{0x00001F1A, 0x00000395}, {0x00001F1A, 0x00000313}, {0x00001F1A, 0x00000300}, {0x00001F1B, 0x00000395},
-{0x00001F1B, 0x00000314}, {0x00001F1B, 0x00000300}, {0x00001F1C, 0x00000395}, {0x00001F1C, 0x00000313},
-{0x00001F1C, 0x00000301}, {0x00001F1D, 0x00000395}, {0x00001F1D, 0x00000314}, {0x00001F1D, 0x00000301},
-{0x00001F20, 0x000003B7}, {0x00001F20, 0x00000313}, {0x00001F21, 0x000003B7}, {0x00001F21, 0x00000314},
-{0x00001F22, 0x000003B7}, {0x00001F22, 0x00000313}, {0x00001F22, 0x00000300}, {0x00001F23, 0x000003B7},
-{0x00001F23, 0x00000314}, {0x00001F23, 0x00000300}, {0x00001F24, 0x000003B7}, {0x00001F24, 0x00000313},
-{0x00001F24, 0x00000301}, {0x00001F25, 0x000003B7}, {0x00001F25, 0x00000314}, {0x00001F25, 0x00000301},
-{0x00001F26, 0x000003B7}, {0x00001F26, 0x00000313}, {0x00001F26, 0x00000342}, {0x00001F27, 0x000003B7},
-{0x00001F27, 0x00000314}, {0x00001F27, 0x00000342}, {0x00001F28, 0x00000397}, {0x00001F28, 0x00000313},
-{0x00001F29, 0x00000397}, {0x00001F29, 0x00000314}, {0x00001F2A, 0x00000397}, {0x00001F2A, 0x00000313},
-{0x00001F2A, 0x00000300}, {0x00001F2B, 0x00000397}, {0x00001F2B, 0x00000314}, {0x00001F2B, 0x00000300},
-{0x00001F2C, 0x00000397}, {0x00001F2C, 0x00000313}, {0x00001F2C, 0x00000301}, {0x00001F2D, 0x00000397},
-{0x00001F2D, 0x00000314}, {0x00001F2D, 0x00000301}, {0x00001F2E, 0x00000397}, {0x00001F2E, 0x00000313},
-{0x00001F2E, 0x00000342}, {0x00001F2F, 0x00000397}, {0x00001F2F, 0x00000314}, {0x00001F2F, 0x00000342},
-{0x00001F30, 0x000003B9}, {0x00001F30, 0x00000313}, {0x00001F31, 0x000003B9}, {0x00001F31, 0x00000314},
-{0x00001F32, 0x000003B9}, {0x00001F32, 0x00000313}, {0x00001F32, 0x00000300}, {0x00001F33, 0x000003B9},
-{0x00001F33, 0x00000314}, {0x00001F33, 0x00000300}, {0x00001F34, 0x000003B9}, {0x00001F34, 0x00000313},
-{0x00001F34, 0x00000301}, {0x00001F35, 0x000003B9}, {0x00001F35, 0x00000314}, {0x00001F35, 0x00000301},
-{0x00001F36, 0x000003B9}, {0x00001F36, 0x00000313}, {0x00001F36, 0x00000342}, {0x00001F37, 0x000003B9},
-{0x00001F37, 0x00000314}, {0x00001F37, 0x00000342}, {0x00001F38, 0x00000399}, {0x00001F38, 0x00000313},
-{0x00001F39, 0x00000399}, {0x00001F39, 0x00000314}, {0x00001F3A, 0x00000399}, {0x00001F3A, 0x00000313},
-{0x00001F3A, 0x00000300}, {0x00001F3B, 0x00000399}, {0x00001F3B, 0x00000314}, {0x00001F3B, 0x00000300},
-{0x00001F3C, 0x00000399}, {0x00001F3C, 0x00000313}, {0x00001F3C, 0x00000301}, {0x00001F3D, 0x00000399},
-{0x00001F3D, 0x00000314}, {0x00001F3D, 0x00000301}, {0x00001F3E, 0x00000399}, {0x00001F3E, 0x00000313},
-{0x00001F3E, 0x00000342}, {0x00001F3F, 0x00000399}, {0x00001F3F, 0x00000314}, {0x00001F3F, 0x00000342},
-{0x00001F40, 0x000003BF}, {0x00001F40, 0x00000313}, {0x00001F41, 0x000003BF}, {0x00001F41, 0x00000314},
-{0x00001F42, 0x000003BF}, {0x00001F42, 0x00000313}, {0x00001F42, 0x00000300}, {0x00001F43, 0x000003BF},
-{0x00001F43, 0x00000314}, {0x00001F43, 0x00000300}, {0x00001F44, 0x000003BF}, {0x00001F44, 0x00000313},
-{0x00001F44, 0x00000301}, {0x00001F45, 0x000003BF}, {0x00001F45, 0x00000314}, {0x00001F45, 0x00000301},
-{0x00001F48, 0x0000039F}, {0x00001F48, 0x00000313}, {0x00001F49, 0x0000039F}, {0x00001F49, 0x00000314},
-{0x00001F4A, 0x0000039F}, {0x00001F4A, 0x00000313}, {0x00001F4A, 0x00000300}, {0x00001F4B, 0x0000039F},
-{0x00001F4B, 0x00000314}, {0x00001F4B, 0x00000300}, {0x00001F4C, 0x0000039F}, {0x00001F4C, 0x00000313},
-{0x00001F4C, 0x00000301}, {0x00001F4D, 0x0000039F}, {0x00001F4D, 0x00000314}, {0x00001F4D, 0x00000301},
-{0x00001F50, 0x000003C5}, {0x00001F50, 0x00000313}, {0x00001F51, 0x000003C5}, {0x00001F51, 0x00000314},
-{0x00001F52, 0x000003C5}, {0x00001F52, 0x00000313}, {0x00001F52, 0x00000300}, {0x00001F53, 0x000003C5},
-{0x00001F53, 0x00000314}, {0x00001F53, 0x00000300}, {0x00001F54, 0x000003C5}, {0x00001F54, 0x00000313},
-{0x00001F54, 0x00000301}, {0x00001F55, 0x000003C5}, {0x00001F55, 0x00000314}, {0x00001F55, 0x00000301},
-{0x00001F56, 0x000003C5}, {0x00001F56, 0x00000313}, {0x00001F56, 0x00000342}, {0x00001F57, 0x000003C5},
-{0x00001F57, 0x00000314}, {0x00001F57, 0x00000342}, {0x00001F59, 0x000003A5}, {0x00001F59, 0x00000314},
-{0x00001F5B, 0x000003A5}, {0x00001F5B, 0x00000314}, {0x00001F5B, 0x00000300}, {0x00001F5D, 0x000003A5},
-{0x00001F5D, 0x00000314}, {0x00001F5D, 0x00000301}, {0x00001F5F, 0x000003A5}, {0x00001F5F, 0x00000314},
-{0x00001F5F, 0x00000342}, {0x00001F60, 0x000003C9}, {0x00001F60, 0x00000313}, {0x00001F61, 0x000003C9},
-{0x00001F61, 0x00000314}, {0x00001F62, 0x000003C9}, {0x00001F62, 0x00000313}, {0x00001F62, 0x00000300},
-{0x00001F63, 0x000003C9}, {0x00001F63, 0x00000314}, {0x00001F63, 0x00000300}, {0x00001F64, 0x000003C9},
-{0x00001F64, 0x00000313}, {0x00001F64, 0x00000301}, {0x00001F65, 0x000003C9}, {0x00001F65, 0x00000314},
-{0x00001F65, 0x00000301}, {0x00001F66, 0x000003C9}, {0x00001F66, 0x00000313}, {0x00001F66, 0x00000342},
-{0x00001F67, 0x000003C9}, {0x00001F67, 0x00000314}, {0x00001F67, 0x00000342}, {0x00001F68, 0x000003A9},
-{0x00001F68, 0x00000313}, {0x00001F69, 0x000003A9}, {0x00001F69, 0x00000314}, {0x00001F6A, 0x000003A9},
-{0x00001F6A, 0x00000313}, {0x00001F6A, 0x00000300}, {0x00001F6B, 0x000003A9}, {0x00001F6B, 0x00000314},
-{0x00001F6B, 0x00000300}, {0x00001F6C, 0x000003A9}, {0x00001F6C, 0x00000313}, {0x00001F6C, 0x00000301},
-{0x00001F6D, 0x000003A9}, {0x00001F6D, 0x00000314}, {0x00001F6D, 0x00000301}, {0x00001F6E, 0x000003A9},
-{0x00001F6E, 0x00000313}, {0x00001F6E, 0x00000342}, {0x00001F6F, 0x000003A9}, {0x00001F6F, 0x00000314},
-{0x00001F6F, 0x00000342}, {0x00001F70, 0x000003B1}, {0x00001F70, 0x00000300}, {0x00001F71, 0x000003B1},
-{0x00001F71, 0x00000301}, {0x00001F72, 0x000003B5}, {0x00001F72, 0x00000300}, {0x00001F73, 0x000003B5},
-{0x00001F73, 0x00000301}, {0x00001F74, 0x000003B7}, {0x00001F74, 0x00000300}, {0x00001F75, 0x000003B7},
-{0x00001F75, 0x00000301}, {0x00001F76, 0x000003B9}, {0x00001F76, 0x00000300}, {0x00001F77, 0x000003B9},
-{0x00001F77, 0x00000301}, {0x00001F78, 0x000003BF}, {0x00001F78, 0x00000300}, {0x00001F79, 0x000003BF},
-{0x00001F79, 0x00000301}, {0x00001F7A, 0x000003C5}, {0x00001F7A, 0x00000300}, {0x00001F7B, 0x000003C5},
-{0x00001F7B, 0x00000301}, {0x00001F7C, 0x000003C9}, {0x00001F7C, 0x00000300}, {0x00001F7D, 0x000003C9},
-{0x00001F7D, 0x00000301}, {0x00001F80, 0x000003B1}, {0x00001F80, 0x00000313}, {0x00001F80, 0x00000345},
-{0x00001F81, 0x000003B1}, {0x00001F81, 0x00000314}, {0x00001F81, 0x00000345}, {0x00001F82, 0x000003B1},
-{0x00001F82, 0x00000313}, {0x00001F82, 0x00000300}, {0x00001F82, 0x00000345}, {0x00001F83, 0x000003B1},
-{0x00001F83, 0x00000314}, {0x00001F83, 0x00000300}, {0x00001F83, 0x00000345}, {0x00001F84, 0x000003B1},
-{0x00001F84, 0x00000313}, {0x00001F84, 0x00000301}, {0x00001F84, 0x00000345}, {0x00001F85, 0x000003B1},
-{0x00001F85, 0x00000314}, {0x00001F85, 0x00000301}, {0x00001F85, 0x00000345}, {0x00001F86, 0x000003B1},
-{0x00001F86, 0x00000313}, {0x00001F86, 0x00000342}, {0x00001F86, 0x00000345}, {0x00001F87, 0x000003B1},
-{0x00001F87, 0x00000314}, {0x00001F87, 0x00000342}, {0x00001F87, 0x00000345}, {0x00001F88, 0x00000391},
-{0x00001F88, 0x00000313}, {0x00001F88, 0x00000345}, {0x00001F89, 0x00000391}, {0x00001F89, 0x00000314},
-{0x00001F89, 0x00000345}, {0x00001F8A, 0x00000391}, {0x00001F8A, 0x00000313}, {0x00001F8A, 0x00000300},
-{0x00001F8A, 0x00000345}, {0x00001F8B, 0x00000391}, {0x00001F8B, 0x00000314}, {0x00001F8B, 0x00000300},
-{0x00001F8B, 0x00000345}, {0x00001F8C, 0x00000391}, {0x00001F8C, 0x00000313}, {0x00001F8C, 0x00000301},
-{0x00001F8C, 0x00000345}, {0x00001F8D, 0x00000391}, {0x00001F8D, 0x00000314}, {0x00001F8D, 0x00000301},
-{0x00001F8D, 0x00000345}, {0x00001F8E, 0x00000391}, {0x00001F8E, 0x00000313}, {0x00001F8E, 0x00000342},
-{0x00001F8E, 0x00000345}, {0x00001F8F, 0x00000391}, {0x00001F8F, 0x00000314}, {0x00001F8F, 0x00000342},
-{0x00001F8F, 0x00000345}, {0x00001F90, 0x000003B7}, {0x00001F90, 0x00000313}, {0x00001F90, 0x00000345},
-{0x00001F91, 0x000003B7}, {0x00001F91, 0x00000314}, {0x00001F91, 0x00000345}, {0x00001F92, 0x000003B7},
-{0x00001F92, 0x00000313}, {0x00001F92, 0x00000300}, {0x00001F92, 0x00000345}, {0x00001F93, 0x000003B7},
-{0x00001F93, 0x00000314}, {0x00001F93, 0x00000300}, {0x00001F93, 0x00000345}, {0x00001F94, 0x000003B7},
-{0x00001F94, 0x00000313}, {0x00001F94, 0x00000301}, {0x00001F94, 0x00000345}, {0x00001F95, 0x000003B7},
-{0x00001F95, 0x00000314}, {0x00001F95, 0x00000301}, {0x00001F95, 0x00000345}, {0x00001F96, 0x000003B7},
-{0x00001F96, 0x00000313}, {0x00001F96, 0x00000342}, {0x00001F96, 0x00000345}, {0x00001F97, 0x000003B7},
-{0x00001F97, 0x00000314}, {0x00001F97, 0x00000342}, {0x00001F97, 0x00000345}, {0x00001F98, 0x00000397},
-{0x00001F98, 0x00000313}, {0x00001F98, 0x00000345}, {0x00001F99, 0x00000397}, {0x00001F99, 0x00000314},
-{0x00001F99, 0x00000345}, {0x00001F9A, 0x00000397}, {0x00001F9A, 0x00000313}, {0x00001F9A, 0x00000300},
-{0x00001F9A, 0x00000345}, {0x00001F9B, 0x00000397}, {0x00001F9B, 0x00000314}, {0x00001F9B, 0x00000300},
-{0x00001F9B, 0x00000345}, {0x00001F9C, 0x00000397}, {0x00001F9C, 0x00000313}, {0x00001F9C, 0x00000301},
-{0x00001F9C, 0x00000345}, {0x00001F9D, 0x00000397}, {0x00001F9D, 0x00000314}, {0x00001F9D, 0x00000301},
-{0x00001F9D, 0x00000345}, {0x00001F9E, 0x00000397}, {0x00001F9E, 0x00000313}, {0x00001F9E, 0x00000342},
-{0x00001F9E, 0x00000345}, {0x00001F9F, 0x00000397}, {0x00001F9F, 0x00000314}, {0x00001F9F, 0x00000342},
-{0x00001F9F, 0x00000345}, {0x00001FA0, 0x000003C9}, {0x00001FA0, 0x00000313}, {0x00001FA0, 0x00000345},
-{0x00001FA1, 0x000003C9}, {0x00001FA1, 0x00000314}, {0x00001FA1, 0x00000345}, {0x00001FA2, 0x000003C9},
-{0x00001FA2, 0x00000313}, {0x00001FA2, 0x00000300}, {0x00001FA2, 0x00000345}, {0x00001FA3, 0x000003C9},
-{0x00001FA3, 0x00000314}, {0x00001FA3, 0x00000300}, {0x00001FA3, 0x00000345}, {0x00001FA4, 0x000003C9},
-{0x00001FA4, 0x00000313}, {0x00001FA4, 0x00000301}, {0x00001FA4, 0x00000345}, {0x00001FA5, 0x000003C9},
-{0x00001FA5, 0x00000314}, {0x00001FA5, 0x00000301}, {0x00001FA5, 0x00000345}, {0x00001FA6, 0x000003C9},
-{0x00001FA6, 0x00000313}, {0x00001FA6, 0x00000342}, {0x00001FA6, 0x00000345}, {0x00001FA7, 0x000003C9},
-{0x00001FA7, 0x00000314}, {0x00001FA7, 0x00000342}, {0x00001FA7, 0x00000345}, {0x00001FA8, 0x000003A9},
-{0x00001FA8, 0x00000313}, {0x00001FA8, 0x00000345}, {0x00001FA9, 0x000003A9}, {0x00001FA9, 0x00000314},
-{0x00001FA9, 0x00000345}, {0x00001FAA, 0x000003A9}, {0x00001FAA, 0x00000313}, {0x00001FAA, 0x00000300},
-{0x00001FAA, 0x00000345}, {0x00001FAB, 0x000003A9}, {0x00001FAB, 0x00000314}, {0x00001FAB, 0x00000300},
-{0x00001FAB, 0x00000345}, {0x00001FAC, 0x000003A9}, {0x00001FAC, 0x00000313}, {0x00001FAC, 0x00000301},
-{0x00001FAC, 0x00000345}, {0x00001FAD, 0x000003A9}, {0x00001FAD, 0x00000314}, {0x00001FAD, 0x00000301},
-{0x00001FAD, 0x00000345}, {0x00001FAE, 0x000003A9}, {0x00001FAE, 0x00000313}, {0x00001FAE, 0x00000342},
-{0x00001FAE, 0x00000345}, {0x00001FAF, 0x000003A9}, {0x00001FAF, 0x00000314}, {0x00001FAF, 0x00000342},
-{0x00001FAF, 0x00000345}, {0x00001FB0, 0x000003B1}, {0x00001FB0, 0x00000306}, {0x00001FB1, 0x000003B1},
-{0x00001FB1, 0x00000304}, {0x00001FB2, 0x000003B1}, {0x00001FB2, 0x00000300}, {0x00001FB2, 0x00000345},
-{0x00001FB3, 0x000003B1}, {0x00001FB3, 0x00000345}, {0x00001FB4, 0x000003B1}, {0x00001FB4, 0x00000301},
-{0x00001FB4, 0x00000345}, {0x00001FB6, 0x000003B1}, {0x00001FB6, 0x00000342}, {0x00001FB7, 0x000003B1},
-{0x00001FB7, 0x00000342}, {0x00001FB7, 0x00000345}, {0x00001FB8, 0x00000391}, {0x00001FB8, 0x00000306},
-{0x00001FB9, 0x00000391}, {0x00001FB9, 0x00000304}, {0x00001FBA, 0x00000391}, {0x00001FBA, 0x00000300},
-{0x00001FBB, 0x00000391}, {0x00001FBB, 0x00000301}, {0x00001FBC, 0x00000391}, {0x00001FBC, 0x00000345},
-{0x00001FBE, 0x000003B9}, {0x00001FC1, 0x000000A8}, {0x00001FC1, 0x00000342}, {0x00001FC2, 0x000003B7},
-{0x00001FC2, 0x00000300}, {0x00001FC2, 0x00000345}, {0x00001FC3, 0x000003B7}, {0x00001FC3, 0x00000345},
-{0x00001FC4, 0x000003B7}, {0x00001FC4, 0x00000301}, {0x00001FC4, 0x00000345}, {0x00001FC6, 0x000003B7},
-{0x00001FC6, 0x00000342}, {0x00001FC7, 0x000003B7}, {0x00001FC7, 0x00000342}, {0x00001FC7, 0x00000345},
-{0x00001FC8, 0x00000395}, {0x00001FC8, 0x00000300}, {0x00001FC9, 0x00000395}, {0x00001FC9, 0x00000301},
-{0x00001FCA, 0x00000397}, {0x00001FCA, 0x00000300}, {0x00001FCB, 0x00000397}, {0x00001FCB, 0x00000301},
-{0x00001FCC, 0x00000397}, {0x00001FCC, 0x00000345}, {0x00001FCD, 0x00001FBF}, {0x00001FCD, 0x00000300},
-{0x00001FCE, 0x00001FBF}, {0x00001FCE, 0x00000301}, {0x00001FCF, 0x00001FBF}, {0x00001FCF, 0x00000342},
-{0x00001FD0, 0x000003B9}, {0x00001FD0, 0x00000306}, {0x00001FD1, 0x000003B9}, {0x00001FD1, 0x00000304},
-{0x00001FD2, 0x000003B9}, {0x00001FD2, 0x00000308}, {0x00001FD2, 0x00000300}, {0x00001FD3, 0x000003B9},
-{0x00001FD3, 0x00000308}, {0x00001FD3, 0x00000301}, {0x00001FD6, 0x000003B9}, {0x00001FD6, 0x00000342},
-{0x00001FD7, 0x000003B9}, {0x00001FD7, 0x00000308}, {0x00001FD7, 0x00000342}, {0x00001FD8, 0x00000399},
-{0x00001FD8, 0x00000306}, {0x00001FD9, 0x00000399}, {0x00001FD9, 0x00000304}, {0x00001FDA, 0x00000399},
-{0x00001FDA, 0x00000300}, {0x00001FDB, 0x00000399}, {0x00001FDB, 0x00000301}, {0x00001FDD, 0x00001FFE},
-{0x00001FDD, 0x00000300}, {0x00001FDE, 0x00001FFE}, {0x00001FDE, 0x00000301}, {0x00001FDF, 0x00001FFE},
-{0x00001FDF, 0x00000342}, {0x00001FE0, 0x000003C5}, {0x00001FE0, 0x00000306}, {0x00001FE1, 0x000003C5},
-{0x00001FE1, 0x00000304}, {0x00001FE2, 0x000003C5}, {0x00001FE2, 0x00000308}, {0x00001FE2, 0x00000300},
-{0x00001FE3, 0x000003C5}, {0x00001FE3, 0x00000308}, {0x00001FE3, 0x00000301}, {0x00001FE4, 0x000003C1},
-{0x00001FE4, 0x00000313}, {0x00001FE5, 0x000003C1}, {0x00001FE5, 0x00000314}, {0x00001FE6, 0x000003C5},
-{0x00001FE6, 0x00000342}, {0x00001FE7, 0x000003C5}, {0x00001FE7, 0x00000308}, {0x00001FE7, 0x00000342},
-{0x00001FE8, 0x000003A5}, {0x00001FE8, 0x00000306}, {0x00001FE9, 0x000003A5}, {0x00001FE9, 0x00000304},
-{0x00001FEA, 0x000003A5}, {0x00001FEA, 0x00000300}, {0x00001FEB, 0x000003A5}, {0x00001FEB, 0x00000301},
-{0x00001FEC, 0x000003A1}, {0x00001FEC, 0x00000314}, {0x00001FED, 0x000000A8}, {0x00001FED, 0x00000300},
-{0x00001FEE, 0x000000A8}, {0x00001FEE, 0x00000301}, {0x00001FEF, 0x00000060}, {0x00001FF2, 0x000003C9},
-{0x00001FF2, 0x00000300}, {0x00001FF2, 0x00000345}, {0x00001FF3, 0x000003C9}, {0x00001FF3, 0x00000345},
-{0x00001FF4, 0x000003C9}, {0x00001FF4, 0x00000301}, {0x00001FF4, 0x00000345}, {0x00001FF6, 0x000003C9},
-{0x00001FF6, 0x00000342}, {0x00001FF7, 0x000003C9}, {0x00001FF7, 0x00000342}, {0x00001FF7, 0x00000345},
-{0x00001FF8, 0x0000039F}, {0x00001FF8, 0x00000300}, {0x00001FF9, 0x0000039F}, {0x00001FF9, 0x00000301},
-{0x00001FFA, 0x000003A9}, {0x00001FFA, 0x00000300}, {0x00001FFB, 0x000003A9}, {0x00001FFB, 0x00000301},
-{0x00001FFC, 0x000003A9}, {0x00001FFC, 0x00000345}, {0x00001FFD, 0x000000B4}, {0x00002000, 0x00002002},
-{0x00002001, 0x00002003}, {0x00002126, 0x000003A9}, {0x0000212A, 0x0000004B}, {0x0000212B, 0x00000041},
-{0x0000212B, 0x0000030A}, {0x0000219A, 0x00002190}, {0x0000219A, 0x00000338}, {0x0000219B, 0x00002192},
-{0x0000219B, 0x00000338}, {0x000021AE, 0x00002194}, {0x000021AE, 0x00000338}, {0x000021CD, 0x000021D0},
-{0x000021CD, 0x00000338}, {0x000021CE, 0x000021D4}, {0x000021CE, 0x00000338}, {0x000021CF, 0x000021D2},
-{0x000021CF, 0x00000338}, {0x00002204, 0x00002203}, {0x00002204, 0x00000338}, {0x00002209, 0x00002208},
-{0x00002209, 0x00000338}, {0x0000220C, 0x0000220B}, {0x0000220C, 0x00000338}, {0x00002224, 0x00002223},
-{0x00002224, 0x00000338}, {0x00002226, 0x00002225}, {0x00002226, 0x00000338}, {0x00002241, 0x0000223C},
-{0x00002241, 0x00000338}, {0x00002244, 0x00002243}, {0x00002244, 0x00000338}, {0x00002247, 0x00002245},
-{0x00002247, 0x00000338}, {0x00002249, 0x00002248}, {0x00002249, 0x00000338}, {0x00002260, 0x0000003D},
-{0x00002260, 0x00000338}, {0x00002262, 0x00002261}, {0x00002262, 0x00000338}, {0x0000226D, 0x0000224D},
-{0x0000226D, 0x00000338}, {0x0000226E, 0x0000003C}, {0x0000226E, 0x00000338}, {0x0000226F, 0x0000003E},
-{0x0000226F, 0x00000338}, {0x00002270, 0x00002264}, {0x00002270, 0x00000338}, {0x00002271, 0x00002265},
-{0x00002271, 0x00000338}, {0x00002274, 0x00002272}, {0x00002274, 0x00000338}, {0x00002275, 0x00002273},
-{0x00002275, 0x00000338}, {0x00002278, 0x00002276}, {0x00002278, 0x00000338}, {0x00002279, 0x00002277},
-{0x00002279, 0x00000338}, {0x00002280, 0x0000227A}, {0x00002280, 0x00000338}, {0x00002281, 0x0000227B},
-{0x00002281, 0x00000338}, {0x00002284, 0x00002282}, {0x00002284, 0x00000338}, {0x00002285, 0x00002283},
-{0x00002285, 0x00000338}, {0x00002288, 0x00002286}, {0x00002288, 0x00000338}, {0x00002289, 0x00002287},
-{0x00002289, 0x00000338}, {0x000022AC, 0x000022A2}, {0x000022AC, 0x00000338}, {0x000022AD, 0x000022A8},
-{0x000022AD, 0x00000338}, {0x000022AE, 0x000022A9}, {0x000022AE, 0x00000338}, {0x000022AF, 0x000022AB},
-{0x000022AF, 0x00000338}, {0x000022E0, 0x0000227C}, {0x000022E0, 0x00000338}, {0x000022E1, 0x0000227D},
-{0x000022E1, 0x00000338}, {0x000022E2, 0x00002291}, {0x000022E2, 0x00000338}, {0x000022E3, 0x00002292},
-{0x000022E3, 0x00000338}, {0x000022EA, 0x000022B2}, {0x000022EA, 0x00000338}, {0x000022EB, 0x000022B3},
-{0x000022EB, 0x00000338}, {0x000022EC, 0x000022B4}, {0x000022EC, 0x00000338}, {0x000022ED, 0x000022B5},
-{0x000022ED, 0x00000338}, {0x00002329, 0x00003008}, {0x0000232A, 0x00003009}, {0x00002ADC, 0x00002ADD},
-{0x00002ADC, 0x00000338}, {0x0000304C, 0x0000304B}, {0x0000304C, 0x00003099}, {0x0000304E, 0x0000304D},
-{0x0000304E, 0x00003099}, {0x00003050, 0x0000304F}, {0x00003050, 0x00003099}, {0x00003052, 0x00003051},
-{0x00003052, 0x00003099}, {0x00003054, 0x00003053}, {0x00003054, 0x00003099}, {0x00003056, 0x00003055},
-{0x00003056, 0x00003099}, {0x00003058, 0x00003057}, {0x00003058, 0x00003099}, {0x0000305A, 0x00003059},
-{0x0000305A, 0x00003099}, {0x0000305C, 0x0000305B}, {0x0000305C, 0x00003099}, {0x0000305E, 0x0000305D},
-{0x0000305E, 0x00003099}, {0x00003060, 0x0000305F}, {0x00003060, 0x00003099}, {0x00003062, 0x00003061},
-{0x00003062, 0x00003099}, {0x00003065, 0x00003064}, {0x00003065, 0x00003099}, {0x00003067, 0x00003066},
-{0x00003067, 0x00003099}, {0x00003069, 0x00003068}, {0x00003069, 0x00003099}, {0x00003070, 0x0000306F},
-{0x00003070, 0x00003099}, {0x00003071, 0x0000306F}, {0x00003071, 0x0000309A}, {0x00003073, 0x00003072},
-{0x00003073, 0x00003099}, {0x00003074, 0x00003072}, {0x00003074, 0x0000309A}, {0x00003076, 0x00003075},
-{0x00003076, 0x00003099}, {0x00003077, 0x00003075}, {0x00003077, 0x0000309A}, {0x00003079, 0x00003078},
-{0x00003079, 0x00003099}, {0x0000307A, 0x00003078}, {0x0000307A, 0x0000309A}, {0x0000307C, 0x0000307B},
-{0x0000307C, 0x00003099}, {0x0000307D, 0x0000307B}, {0x0000307D, 0x0000309A}, {0x00003094, 0x00003046},
-{0x00003094, 0x00003099}, {0x0000309E, 0x0000309D}, {0x0000309E, 0x00003099}, {0x000030AC, 0x000030AB},
-{0x000030AC, 0x00003099}, {0x000030AE, 0x000030AD}, {0x000030AE, 0x00003099}, {0x000030B0, 0x000030AF},
-{0x000030B0, 0x00003099}, {0x000030B2, 0x000030B1}, {0x000030B2, 0x00003099}, {0x000030B4, 0x000030B3},
-{0x000030B4, 0x00003099}, {0x000030B6, 0x000030B5}, {0x000030B6, 0x00003099}, {0x000030B8, 0x000030B7},
-{0x000030B8, 0x00003099}, {0x000030BA, 0x000030B9}, {0x000030BA, 0x00003099}, {0x000030BC, 0x000030BB},
-{0x000030BC, 0x00003099}, {0x000030BE, 0x000030BD}, {0x000030BE, 0x00003099}, {0x000030C0, 0x000030BF},
-{0x000030C0, 0x00003099}, {0x000030C2, 0x000030C1}, {0x000030C2, 0x00003099}, {0x000030C5, 0x000030C4},
-{0x000030C5, 0x00003099}, {0x000030C7, 0x000030C6}, {0x000030C7, 0x00003099}, {0x000030C9, 0x000030C8},
-{0x000030C9, 0x00003099}, {0x000030D0, 0x000030CF}, {0x000030D0, 0x00003099}, {0x000030D1, 0x000030CF},
-{0x000030D1, 0x0000309A}, {0x000030D3, 0x000030D2}, {0x000030D3, 0x00003099}, {0x000030D4, 0x000030D2},
-{0x000030D4, 0x0000309A}, {0x000030D6, 0x000030D5}, {0x000030D6, 0x00003099}, {0x000030D7, 0x000030D5},
-{0x000030D7, 0x0000309A}, {0x000030D9, 0x000030D8}, {0x000030D9, 0x00003099}, {0x000030DA, 0x000030D8},
-{0x000030DA, 0x0000309A}, {0x000030DC, 0x000030DB}, {0x000030DC, 0x00003099}, {0x000030DD, 0x000030DB},
-{0x000030DD, 0x0000309A}, {0x000030F4, 0x000030A6}, {0x000030F4, 0x00003099}, {0x000030F7, 0x000030EF},
-{0x000030F7, 0x00003099}, {0x000030F8, 0x000030F0}, {0x000030F8, 0x00003099}, {0x000030F9, 0x000030F1},
-{0x000030F9, 0x00003099}, {0x000030FA, 0x000030F2}, {0x000030FA, 0x00003099}, {0x000030FE, 0x000030FD},
-{0x000030FE, 0x00003099}, {0x0000F900, 0x00008C48}, {0x0000F901, 0x000066F4}, {0x0000F902, 0x00008ECA},
-{0x0000F903, 0x00008CC8}, {0x0000F904, 0x00006ED1}, {0x0000F905, 0x00004E32}, {0x0000F906, 0x000053E5},
-{0x0000F907, 0x00009F9C}, {0x0000F908, 0x00009F9C}, {0x0000F909, 0x00005951}, {0x0000F90A, 0x000091D1},
-{0x0000F90B, 0x00005587}, {0x0000F90C, 0x00005948}, {0x0000F90D, 0x000061F6}, {0x0000F90E, 0x00007669},
-{0x0000F90F, 0x00007F85}, {0x0000F910, 0x0000863F}, {0x0000F911, 0x000087BA}, {0x0000F912, 0x000088F8},
-{0x0000F913, 0x0000908F}, {0x0000F914, 0x00006A02}, {0x0000F915, 0x00006D1B}, {0x0000F916, 0x000070D9},
-{0x0000F917, 0x000073DE}, {0x0000F918, 0x0000843D}, {0x0000F919, 0x0000916A}, {0x0000F91A, 0x000099F1},
-{0x0000F91B, 0x00004E82}, {0x0000F91C, 0x00005375}, {0x0000F91D, 0x00006B04}, {0x0000F91E, 0x0000721B},
-{0x0000F91F, 0x0000862D}, {0x0000F920, 0x00009E1E}, {0x0000F921, 0x00005D50}, {0x0000F922, 0x00006FEB},
-{0x0000F923, 0x000085CD}, {0x0000F924, 0x00008964}, {0x0000F925, 0x000062C9}, {0x0000F926, 0x000081D8},
-{0x0000F927, 0x0000881F}, {0x0000F928, 0x00005ECA}, {0x0000F929, 0x00006717}, {0x0000F92A, 0x00006D6A},
-{0x0000F92B, 0x000072FC}, {0x0000F92C, 0x000090CE}, {0x0000F92D, 0x00004F86}, {0x0000F92E, 0x000051B7},
-{0x0000F92F, 0x000052DE}, {0x0000F930, 0x000064C4}, {0x0000F931, 0x00006AD3}, {0x0000F932, 0x00007210},
-{0x0000F933, 0x000076E7}, {0x0000F934, 0x00008001}, {0x0000F935, 0x00008606}, {0x0000F936, 0x0000865C},
-{0x0000F937, 0x00008DEF}, {0x0000F938, 0x00009732}, {0x0000F939, 0x00009B6F}, {0x0000F93A, 0x00009DFA},
-{0x0000F93B, 0x0000788C}, {0x0000F93C, 0x0000797F}, {0x0000F93D, 0x00007DA0}, {0x0000F93E, 0x000083C9},
-{0x0000F93F, 0x00009304}, {0x0000F940, 0x00009E7F}, {0x0000F941, 0x00008AD6}, {0x0000F942, 0x000058DF},
-{0x0000F943, 0x00005F04}, {0x0000F944, 0x00007C60}, {0x0000F945, 0x0000807E}, {0x0000F946, 0x00007262},
-{0x0000F947, 0x000078CA}, {0x0000F948, 0x00008CC2}, {0x0000F949, 0x000096F7}, {0x0000F94A, 0x000058D8},
-{0x0000F94B, 0x00005C62}, {0x0000F94C, 0x00006A13}, {0x0000F94D, 0x00006DDA}, {0x0000F94E, 0x00006F0F},
-{0x0000F94F, 0x00007D2F}, {0x0000F950, 0x00007E37}, {0x0000F951, 0x0000964B}, {0x0000F952, 0x000052D2},
-{0x0000F953, 0x0000808B}, {0x0000F954, 0x000051DC}, {0x0000F955, 0x000051CC}, {0x0000F956, 0x00007A1C},
-{0x0000F957, 0x00007DBE}, {0x0000F958, 0x000083F1}, {0x0000F959, 0x00009675}, {0x0000F95A, 0x00008B80},
-{0x0000F95B, 0x000062CF}, {0x0000F95C, 0x00006A02}, {0x0000F95D, 0x00008AFE}, {0x0000F95E, 0x00004E39},
-{0x0000F95F, 0x00005BE7}, {0x0000F960, 0x00006012}, {0x0000F961, 0x00007387}, {0x0000F962, 0x00007570},
-{0x0000F963, 0x00005317}, {0x0000F964, 0x000078FB}, {0x0000F965, 0x00004FBF}, {0x0000F966, 0x00005FA9},
-{0x0000F967, 0x00004E0D}, {0x0000F968, 0x00006CCC}, {0x0000F969, 0x00006578}, {0x0000F96A, 0x00007D22},
-{0x0000F96B, 0x000053C3}, {0x0000F96C, 0x0000585E}, {0x0000F96D, 0x00007701}, {0x0000F96E, 0x00008449},
-{0x0000F96F, 0x00008AAA}, {0x0000F970, 0x00006BBA}, {0x0000F971, 0x00008FB0}, {0x0000F972, 0x00006C88},
-{0x0000F973, 0x000062FE}, {0x0000F974, 0x000082E5}, {0x0000F975, 0x000063A0}, {0x0000F976, 0x00007565},
-{0x0000F977, 0x00004EAE}, {0x0000F978, 0x00005169}, {0x0000F979, 0x000051C9}, {0x0000F97A, 0x00006881},
-{0x0000F97B, 0x00007CE7}, {0x0000F97C, 0x0000826F}, {0x0000F97D, 0x00008AD2}, {0x0000F97E, 0x000091CF},
-{0x0000F97F, 0x000052F5}, {0x0000F980, 0x00005442}, {0x0000F981, 0x00005973}, {0x0000F982, 0x00005EEC},
-{0x0000F983, 0x000065C5}, {0x0000F984, 0x00006FFE}, {0x0000F985, 0x0000792A}, {0x0000F986, 0x000095AD},
-{0x0000F987, 0x00009A6A}, {0x0000F988, 0x00009E97}, {0x0000F989, 0x00009ECE}, {0x0000F98A, 0x0000529B},
-{0x0000F98B, 0x000066C6}, {0x0000F98C, 0x00006B77}, {0x0000F98D, 0x00008F62}, {0x0000F98E, 0x00005E74},
-{0x0000F98F, 0x00006190}, {0x0000F990, 0x00006200}, {0x0000F991, 0x0000649A}, {0x0000F992, 0x00006F23},
-{0x0000F993, 0x00007149}, {0x0000F994, 0x00007489}, {0x0000F995, 0x000079CA}, {0x0000F996, 0x00007DF4},
-{0x0000F997, 0x0000806F}, {0x0000F998, 0x00008F26}, {0x0000F999, 0x000084EE}, {0x0000F99A, 0x00009023},
-{0x0000F99B, 0x0000934A}, {0x0000F99C, 0x00005217}, {0x0000F99D, 0x000052A3}, {0x0000F99E, 0x000054BD},
-{0x0000F99F, 0x000070C8}, {0x0000F9A0, 0x000088C2}, {0x0000F9A1, 0x00008AAA}, {0x0000F9A2, 0x00005EC9},
-{0x0000F9A3, 0x00005FF5}, {0x0000F9A4, 0x0000637B}, {0x0000F9A5, 0x00006BAE}, {0x0000F9A6, 0x00007C3E},
-{0x0000F9A7, 0x00007375}, {0x0000F9A8, 0x00004EE4}, {0x0000F9A9, 0x000056F9}, {0x0000F9AA, 0x00005BE7},
-{0x0000F9AB, 0x00005DBA}, {0x0000F9AC, 0x0000601C}, {0x0000F9AD, 0x000073B2}, {0x0000F9AE, 0x00007469},
-{0x0000F9AF, 0x00007F9A}, {0x0000F9B0, 0x00008046}, {0x0000F9B1, 0x00009234}, {0x0000F9B2, 0x000096F6},
-{0x0000F9B3, 0x00009748}, {0x0000F9B4, 0x00009818}, {0x0000F9B5, 0x00004F8B}, {0x0000F9B6, 0x000079AE},
-{0x0000F9B7, 0x000091B4}, {0x0000F9B8, 0x000096B8}, {0x0000F9B9, 0x000060E1}, {0x0000F9BA, 0x00004E86},
-{0x0000F9BB, 0x000050DA}, {0x0000F9BC, 0x00005BEE}, {0x0000F9BD, 0x00005C3F}, {0x0000F9BE, 0x00006599},
-{0x0000F9BF, 0x00006A02}, {0x0000F9C0, 0x000071CE}, {0x0000F9C1, 0x00007642}, {0x0000F9C2, 0x000084FC},
-{0x0000F9C3, 0x0000907C}, {0x0000F9C4, 0x00009F8D}, {0x0000F9C5, 0x00006688}, {0x0000F9C6, 0x0000962E},
-{0x0000F9C7, 0x00005289}, {0x0000F9C8, 0x0000677B}, {0x0000F9C9, 0x000067F3}, {0x0000F9CA, 0x00006D41},
-{0x0000F9CB, 0x00006E9C}, {0x0000F9CC, 0x00007409}, {0x0000F9CD, 0x00007559}, {0x0000F9CE, 0x0000786B},
-{0x0000F9CF, 0x00007D10}, {0x0000F9D0, 0x0000985E}, {0x0000F9D1, 0x0000516D}, {0x0000F9D2, 0x0000622E},
-{0x0000F9D3, 0x00009678}, {0x0000F9D4, 0x0000502B}, {0x0000F9D5, 0x00005D19}, {0x0000F9D6, 0x00006DEA},
-{0x0000F9D7, 0x00008F2A}, {0x0000F9D8, 0x00005F8B}, {0x0000F9D9, 0x00006144}, {0x0000F9DA, 0x00006817},
-{0x0000F9DB, 0x00007387}, {0x0000F9DC, 0x00009686}, {0x0000F9DD, 0x00005229}, {0x0000F9DE, 0x0000540F},
-{0x0000F9DF, 0x00005C65}, {0x0000F9E0, 0x00006613}, {0x0000F9E1, 0x0000674E}, {0x0000F9E2, 0x000068A8},
-{0x0000F9E3, 0x00006CE5}, {0x0000F9E4, 0x00007406}, {0x0000F9E5, 0x000075E2}, {0x0000F9E6, 0x00007F79},
-{0x0000F9E7, 0x000088CF}, {0x0000F9E8, 0x000088E1}, {0x0000F9E9, 0x000091CC}, {0x0000F9EA, 0x000096E2},
-{0x0000F9EB, 0x0000533F}, {0x0000F9EC, 0x00006EBA}, {0x0000F9ED, 0x0000541D}, {0x0000F9EE, 0x000071D0},
-{0x0000F9EF, 0x00007498}, {0x0000F9F0, 0x000085FA}, {0x0000F9F1, 0x000096A3}, {0x0000F9F2, 0x00009C57},
-{0x0000F9F3, 0x00009E9F}, {0x0000F9F4, 0x00006797}, {0x0000F9F5, 0x00006DCB}, {0x0000F9F6, 0x000081E8},
-{0x0000F9F7, 0x00007ACB}, {0x0000F9F8, 0x00007B20}, {0x0000F9F9, 0x00007C92}, {0x0000F9FA, 0x000072C0},
-{0x0000F9FB, 0x00007099}, {0x0000F9FC, 0x00008B58}, {0x0000F9FD, 0x00004EC0}, {0x0000F9FE, 0x00008336},
-{0x0000F9FF, 0x0000523A}, {0x0000FA00, 0x00005207}, {0x0000FA01, 0x00005EA6}, {0x0000FA02, 0x000062D3},
-{0x0000FA03, 0x00007CD6}, {0x0000FA04, 0x00005B85}, {0x0000FA05, 0x00006D1E}, {0x0000FA06, 0x000066B4},
-{0x0000FA07, 0x00008F3B}, {0x0000FA08, 0x0000884C}, {0x0000FA09, 0x0000964D}, {0x0000FA0A, 0x0000898B},
-{0x0000FA0B, 0x00005ED3}, {0x0000FA0C, 0x00005140}, {0x0000FA0D, 0x000055C0}, {0x0000FA10, 0x0000585A},
-{0x0000FA12, 0x00006674}, {0x0000FA15, 0x000051DE}, {0x0000FA16, 0x0000732A}, {0x0000FA17, 0x000076CA},
-{0x0000FA18, 0x0000793C}, {0x0000FA19, 0x0000795E}, {0x0000FA1A, 0x00007965}, {0x0000FA1B, 0x0000798F},
-{0x0000FA1C, 0x00009756}, {0x0000FA1D, 0x00007CBE}, {0x0000FA1E, 0x00007FBD}, {0x0000FA20, 0x00008612},
-{0x0000FA22, 0x00008AF8}, {0x0000FA25, 0x00009038}, {0x0000FA26, 0x000090FD}, {0x0000FA2A, 0x000098EF},
-{0x0000FA2B, 0x000098FC}, {0x0000FA2C, 0x00009928}, {0x0000FA2D, 0x00009DB4}, {0x0000FA2E, 0x000090DE},
-{0x0000FA2F, 0x000096B7}, {0x0000FA30, 0x00004FAE}, {0x0000FA31, 0x000050E7}, {0x0000FA32, 0x0000514D},
-{0x0000FA33, 0x000052C9}, {0x0000FA34, 0x000052E4}, {0x0000FA35, 0x00005351}, {0x0000FA36, 0x0000559D},
-{0x0000FA37, 0x00005606}, {0x0000FA38, 0x00005668}, {0x0000FA39, 0x00005840}, {0x0000FA3A, 0x000058A8},
-{0x0000FA3B, 0x00005C64}, {0x0000FA3C, 0x00005C6E}, {0x0000FA3D, 0x00006094}, {0x0000FA3E, 0x00006168},
-{0x0000FA3F, 0x0000618E}, {0x0000FA40, 0x000061F2}, {0x0000FA41, 0x0000654F}, {0x0000FA42, 0x000065E2},
-{0x0000FA43, 0x00006691}, {0x0000FA44, 0x00006885}, {0x0000FA45, 0x00006D77}, {0x0000FA46, 0x00006E1A},
-{0x0000FA47, 0x00006F22}, {0x0000FA48, 0x0000716E}, {0x0000FA49, 0x0000722B}, {0x0000FA4A, 0x00007422},
-{0x0000FA4B, 0x00007891}, {0x0000FA4C, 0x0000793E}, {0x0000FA4D, 0x00007949}, {0x0000FA4E, 0x00007948},
-{0x0000FA4F, 0x00007950}, {0x0000FA50, 0x00007956}, {0x0000FA51, 0x0000795D}, {0x0000FA52, 0x0000798D},
-{0x0000FA53, 0x0000798E}, {0x0000FA54, 0x00007A40}, {0x0000FA55, 0x00007A81}, {0x0000FA56, 0x00007BC0},
-{0x0000FA57, 0x00007DF4}, {0x0000FA58, 0x00007E09}, {0x0000FA59, 0x00007E41}, {0x0000FA5A, 0x00007F72},
-{0x0000FA5B, 0x00008005}, {0x0000FA5C, 0x000081ED}, {0x0000FA5D, 0x00008279}, {0x0000FA5E, 0x00008279},
-{0x0000FA5F, 0x00008457}, {0x0000FA60, 0x00008910}, {0x0000FA61, 0x00008996}, {0x0000FA62, 0x00008B01},
-{0x0000FA63, 0x00008B39}, {0x0000FA64, 0x00008CD3}, {0x0000FA65, 0x00008D08}, {0x0000FA66, 0x00008FB6},
-{0x0000FA67, 0x00009038}, {0x0000FA68, 0x000096E3}, {0x0000FA69, 0x000097FF}, {0x0000FA6A, 0x0000983B},
-{0x0000FA6B, 0x00006075}, {0x0000FA6C, 0x000242EE}, {0x0000FA6D, 0x00008218}, {0x0000FA70, 0x00004E26},
-{0x0000FA71, 0x000051B5}, {0x0000FA72, 0x00005168}, {0x0000FA73, 0x00004F80}, {0x0000FA74, 0x00005145},
-{0x0000FA75, 0x00005180}, {0x0000FA76, 0x000052C7}, {0x0000FA77, 0x000052FA}, {0x0000FA78, 0x0000559D},
-{0x0000FA79, 0x00005555}, {0x0000FA7A, 0x00005599}, {0x0000FA7B, 0x000055E2}, {0x0000FA7C, 0x0000585A},
-{0x0000FA7D, 0x000058B3}, {0x0000FA7E, 0x00005944}, {0x0000FA7F, 0x00005954}, {0x0000FA80, 0x00005A62},
-{0x0000FA81, 0x00005B28}, {0x0000FA82, 0x00005ED2}, {0x0000FA83, 0x00005ED9}, {0x0000FA84, 0x00005F69},
-{0x0000FA85, 0x00005FAD}, {0x0000FA86, 0x000060D8}, {0x0000FA87, 0x0000614E}, {0x0000FA88, 0x00006108},
-{0x0000FA89, 0x0000618E}, {0x0000FA8A, 0x00006160}, {0x0000FA8B, 0x000061F2}, {0x0000FA8C, 0x00006234},
-{0x0000FA8D, 0x000063C4}, {0x0000FA8E, 0x0000641C}, {0x0000FA8F, 0x00006452}, {0x0000FA90, 0x00006556},
-{0x0000FA91, 0x00006674}, {0x0000FA92, 0x00006717}, {0x0000FA93, 0x0000671B}, {0x0000FA94, 0x00006756},
-{0x0000FA95, 0x00006B79}, {0x0000FA96, 0x00006BBA}, {0x0000FA97, 0x00006D41}, {0x0000FA98, 0x00006EDB},
-{0x0000FA99, 0x00006ECB}, {0x0000FA9A, 0x00006F22}, {0x0000FA9B, 0x0000701E}, {0x0000FA9C, 0x0000716E},
-{0x0000FA9D, 0x000077A7}, {0x0000FA9E, 0x00007235}, {0x0000FA9F, 0x000072AF}, {0x0000FAA0, 0x0000732A},
-{0x0000FAA1, 0x00007471}, {0x0000FAA2, 0x00007506}, {0x0000FAA3, 0x0000753B}, {0x0000FAA4, 0x0000761D},
-{0x0000FAA5, 0x0000761F}, {0x0000FAA6, 0x000076CA}, {0x0000FAA7, 0x000076DB}, {0x0000FAA8, 0x000076F4},
-{0x0000FAA9, 0x0000774A}, {0x0000FAAA, 0x00007740}, {0x0000FAAB, 0x000078CC}, {0x0000FAAC, 0x00007AB1},
-{0x0000FAAD, 0x00007BC0}, {0x0000FAAE, 0x00007C7B}, {0x0000FAAF, 0x00007D5B}, {0x0000FAB0, 0x00007DF4},
-{0x0000FAB1, 0x00007F3E}, {0x0000FAB2, 0x00008005}, {0x0000FAB3, 0x00008352}, {0x0000FAB4, 0x000083EF},
-{0x0000FAB5, 0x00008779}, {0x0000FAB6, 0x00008941}, {0x0000FAB7, 0x00008986}, {0x0000FAB8, 0x00008996},
-{0x0000FAB9, 0x00008ABF}, {0x0000FABA, 0x00008AF8}, {0x0000FABB, 0x00008ACB}, {0x0000FABC, 0x00008B01},
-{0x0000FABD, 0x00008AFE}, {0x0000FABE, 0x00008AED}, {0x0000FABF, 0x00008B39}, {0x0000FAC0, 0x00008B8A},
-{0x0000FAC1, 0x00008D08}, {0x0000FAC2, 0x00008F38}, {0x0000FAC3, 0x00009072}, {0x0000FAC4, 0x00009199},
-{0x0000FAC5, 0x00009276}, {0x0000FAC6, 0x0000967C}, {0x0000FAC7, 0x000096E3}, {0x0000FAC8, 0x00009756},
-{0x0000FAC9, 0x000097DB}, {0x0000FACA, 0x000097FF}, {0x0000FACB, 0x0000980B}, {0x0000FACC, 0x0000983B},
-{0x0000FACD, 0x00009B12}, {0x0000FACE, 0x00009F9C}, {0x0000FACF, 0x0002284A}, {0x0000FAD0, 0x00022844},
-{0x0000FAD1, 0x000233D5}, {0x0000FAD2, 0x00003B9D}, {0x0000FAD3, 0x00004018}, {0x0000FAD4, 0x00004039},
-{0x0000FAD5, 0x00025249}, {0x0000FAD6, 0x00025CD0}, {0x0000FAD7, 0x00027ED3}, {0x0000FAD8, 0x00009F43},
-{0x0000FAD9, 0x00009F8E}, {0x0000FB1D, 0x000005D9}, {0x0000FB1D, 0x000005B4}, {0x0000FB1F, 0x000005F2},
-{0x0000FB1F, 0x000005B7}, {0x0000FB2A, 0x000005E9}, {0x0000FB2A, 0x000005C1}, {0x0000FB2B, 0x000005E9},
-{0x0000FB2B, 0x000005C2}, {0x0000FB2C, 0x000005E9}, {0x0000FB2C, 0x000005BC}, {0x0000FB2C, 0x000005C1},
-{0x0000FB2D, 0x000005E9}, {0x0000FB2D, 0x000005BC}, {0x0000FB2D, 0x000005C2}, {0x0000FB2E, 0x000005D0},
-{0x0000FB2E, 0x000005B7}, {0x0000FB2F, 0x000005D0}, {0x0000FB2F, 0x000005B8}, {0x0000FB30, 0x000005D0},
-{0x0000FB30, 0x000005BC}, {0x0000FB31, 0x000005D1}, {0x0000FB31, 0x000005BC}, {0x0000FB32, 0x000005D2},
-{0x0000FB32, 0x000005BC}, {0x0000FB33, 0x000005D3}, {0x0000FB33, 0x000005BC}, {0x0000FB34, 0x000005D4},
-{0x0000FB34, 0x000005BC}, {0x0000FB35, 0x000005D5}, {0x0000FB35, 0x000005BC}, {0x0000FB36, 0x000005D6},
-{0x0000FB36, 0x000005BC}, {0x0000FB38, 0x000005D8}, {0x0000FB38, 0x000005BC}, {0x0000FB39, 0x000005D9},
-{0x0000FB39, 0x000005BC}, {0x0000FB3A, 0x000005DA}, {0x0000FB3A, 0x000005BC}, {0x0000FB3B, 0x000005DB},
-{0x0000FB3B, 0x000005BC}, {0x0000FB3C, 0x000005DC}, {0x0000FB3C, 0x000005BC}, {0x0000FB3E, 0x000005DE},
-{0x0000FB3E, 0x000005BC}, {0x0000FB40, 0x000005E0}, {0x0000FB40, 0x000005BC}, {0x0000FB41, 0x000005E1},
-{0x0000FB41, 0x000005BC}, {0x0000FB43, 0x000005E3}, {0x0000FB43, 0x000005BC}, {0x0000FB44, 0x000005E4},
-{0x0000FB44, 0x000005BC}, {0x0000FB46, 0x000005E6}, {0x0000FB46, 0x000005BC}, {0x0000FB47, 0x000005E7},
-{0x0000FB47, 0x000005BC}, {0x0000FB48, 0x000005E8}, {0x0000FB48, 0x000005BC}, {0x0000FB49, 0x000005E9},
-{0x0000FB49, 0x000005BC}, {0x0000FB4A, 0x000005EA}, {0x0000FB4A, 0x000005BC}, {0x0000FB4B, 0x000005D5},
-{0x0000FB4B, 0x000005B9}, {0x0000FB4C, 0x000005D1}, {0x0000FB4C, 0x000005BF}, {0x0000FB4D, 0x000005DB},
-{0x0000FB4D, 0x000005BF}, {0x0000FB4E, 0x000005E4}, {0x0000FB4E, 0x000005BF}, {0x0001109A, 0x00011099},
-{0x0001109A, 0x000110BA}, {0x0001109C, 0x0001109B}, {0x0001109C, 0x000110BA}, {0x000110AB, 0x000110A5},
-{0x000110AB, 0x000110BA}, {0x0001112E, 0x00011131}, {0x0001112E, 0x00011127}, {0x0001112F, 0x00011132},
-{0x0001112F, 0x00011127}, {0x0001134B, 0x00011347}, {0x0001134B, 0x0001133E}, {0x0001134C, 0x00011347},
-{0x0001134C, 0x00011357}, {0x000114BB, 0x000114B9}, {0x000114BB, 0x000114BA}, {0x000114BC, 0x000114B9},
-{0x000114BC, 0x000114B0}, {0x000114BE, 0x000114B9}, {0x000114BE, 0x000114BD}, {0x000115BA, 0x000115B8},
-{0x000115BA, 0x000115AF}, {0x000115BB, 0x000115B9}, {0x000115BB, 0x000115AF}, {0x0001D15E, 0x0001D157},
-{0x0001D15E, 0x0001D165}, {0x0001D15F, 0x0001D158}, {0x0001D15F, 0x0001D165}, {0x0001D160, 0x0001D158},
-{0x0001D160, 0x0001D165}, {0x0001D160, 0x0001D16E}, {0x0001D161, 0x0001D158}, {0x0001D161, 0x0001D165},
-{0x0001D161, 0x0001D16F}, {0x0001D162, 0x0001D158}, {0x0001D162, 0x0001D165}, {0x0001D162, 0x0001D170},
-{0x0001D163, 0x0001D158}, {0x0001D163, 0x0001D165}, {0x0001D163, 0x0001D171}, {0x0001D164, 0x0001D158},
-{0x0001D164, 0x0001D165}, {0x0001D164, 0x0001D172}, {0x0001D1BB, 0x0001D1B9}, {0x0001D1BB, 0x0001D165},
-{0x0001D1BC, 0x0001D1BA}, {0x0001D1BC, 0x0001D165}, {0x0001D1BD, 0x0001D1B9}, {0x0001D1BD, 0x0001D165},
-{0x0001D1BD, 0x0001D16E}, {0x0001D1BE, 0x0001D1BA}, {0x0001D1BE, 0x0001D165}, {0x0001D1BE, 0x0001D16E},
-{0x0001D1BF, 0x0001D1B9}, {0x0001D1BF, 0x0001D165}, {0x0001D1BF, 0x0001D16F}, {0x0001D1C0, 0x0001D1BA},
-{0x0001D1C0, 0x0001D165}, {0x0001D1C0, 0x0001D16F}, {0x0002F800, 0x00004E3D}, {0x0002F801, 0x00004E38},
-{0x0002F802, 0x00004E41}, {0x0002F803, 0x00020122}, {0x0002F804, 0x00004F60}, {0x0002F805, 0x00004FAE},
-{0x0002F806, 0x00004FBB}, {0x0002F807, 0x00005002}, {0x0002F808, 0x0000507A}, {0x0002F809, 0x00005099},
-{0x0002F80A, 0x000050E7}, {0x0002F80B, 0x000050CF}, {0x0002F80C, 0x0000349E}, {0x0002F80D, 0x0002063A},
-{0x0002F80E, 0x0000514D}, {0x0002F80F, 0x00005154}, {0x0002F810, 0x00005164}, {0x0002F811, 0x00005177},
-{0x0002F812, 0x0002051C}, {0x0002F813, 0x000034B9}, {0x0002F814, 0x00005167}, {0x0002F815, 0x0000518D},
-{0x0002F816, 0x0002054B}, {0x0002F817, 0x00005197}, {0x0002F818, 0x000051A4}, {0x0002F819, 0x00004ECC},
-{0x0002F81A, 0x000051AC}, {0x0002F81B, 0x000051B5}, {0x0002F81C, 0x000291DF}, {0x0002F81D, 0x000051F5},
-{0x0002F81E, 0x00005203}, {0x0002F81F, 0x000034DF}, {0x0002F820, 0x0000523B}, {0x0002F821, 0x00005246},
-{0x0002F822, 0x00005272}, {0x0002F823, 0x00005277}, {0x0002F824, 0x00003515}, {0x0002F825, 0x000052C7},
-{0x0002F826, 0x000052C9}, {0x0002F827, 0x000052E4}, {0x0002F828, 0x000052FA}, {0x0002F829, 0x00005305},
-{0x0002F82A, 0x00005306}, {0x0002F82B, 0x00005317}, {0x0002F82C, 0x00005349}, {0x0002F82D, 0x00005351},
-{0x0002F82E, 0x0000535A}, {0x0002F82F, 0x00005373}, {0x0002F830, 0x0000537D}, {0x0002F831, 0x0000537F},
-{0x0002F832, 0x0000537F}, {0x0002F833, 0x0000537F}, {0x0002F834, 0x00020A2C}, {0x0002F835, 0x00007070},
-{0x0002F836, 0x000053CA}, {0x0002F837, 0x000053DF}, {0x0002F838, 0x00020B63}, {0x0002F839, 0x000053EB},
-{0x0002F83A, 0x000053F1}, {0x0002F83B, 0x00005406}, {0x0002F83C, 0x0000549E}, {0x0002F83D, 0x00005438},
-{0x0002F83E, 0x00005448}, {0x0002F83F, 0x00005468}, {0x0002F840, 0x000054A2}, {0x0002F841, 0x000054F6},
-{0x0002F842, 0x00005510}, {0x0002F843, 0x00005553}, {0x0002F844, 0x00005563}, {0x0002F845, 0x00005584},
-{0x0002F846, 0x00005584}, {0x0002F847, 0x00005599}, {0x0002F848, 0x000055AB}, {0x0002F849, 0x000055B3},
-{0x0002F84A, 0x000055C2}, {0x0002F84B, 0x00005716}, {0x0002F84C, 0x00005606}, {0x0002F84D, 0x00005717},
-{0x0002F84E, 0x00005651}, {0x0002F84F, 0x00005674}, {0x0002F850, 0x00005207}, {0x0002F851, 0x000058EE},
-{0x0002F852, 0x000057CE}, {0x0002F853, 0x000057F4}, {0x0002F854, 0x0000580D}, {0x0002F855, 0x0000578B},
-{0x0002F856, 0x00005832}, {0x0002F857, 0x00005831}, {0x0002F858, 0x000058AC}, {0x0002F859, 0x000214E4},
-{0x0002F85A, 0x000058F2}, {0x0002F85B, 0x000058F7}, {0x0002F85C, 0x00005906}, {0x0002F85D, 0x0000591A},
-{0x0002F85E, 0x00005922}, {0x0002F85F, 0x00005962}, {0x0002F860, 0x000216A8}, {0x0002F861, 0x000216EA},
-{0x0002F862, 0x000059EC}, {0x0002F863, 0x00005A1B}, {0x0002F864, 0x00005A27}, {0x0002F865, 0x000059D8},
-{0x0002F866, 0x00005A66}, {0x0002F867, 0x000036EE}, {0x0002F868, 0x000036FC}, {0x0002F869, 0x00005B08},
-{0x0002F86A, 0x00005B3E}, {0x0002F86B, 0x00005B3E}, {0x0002F86C, 0x000219C8}, {0x0002F86D, 0x00005BC3},
-{0x0002F86E, 0x00005BD8}, {0x0002F86F, 0x00005BE7}, {0x0002F870, 0x00005BF3}, {0x0002F871, 0x00021B18},
-{0x0002F872, 0x00005BFF}, {0x0002F873, 0x00005C06}, {0x0002F874, 0x00005F53}, {0x0002F875, 0x00005C22},
-{0x0002F876, 0x00003781}, {0x0002F877, 0x00005C60}, {0x0002F878, 0x00005C6E}, {0x0002F879, 0x00005CC0},
-{0x0002F87A, 0x00005C8D}, {0x0002F87B, 0x00021DE4}, {0x0002F87C, 0x00005D43}, {0x0002F87D, 0x00021DE6},
-{0x0002F87E, 0x00005D6E}, {0x0002F87F, 0x00005D6B}, {0x0002F880, 0x00005D7C}, {0x0002F881, 0x00005DE1},
-{0x0002F882, 0x00005DE2}, {0x0002F883, 0x0000382F}, {0x0002F884, 0x00005DFD}, {0x0002F885, 0x00005E28},
-{0x0002F886, 0x00005E3D}, {0x0002F887, 0x00005E69}, {0x0002F888, 0x00003862}, {0x0002F889, 0x00022183},
-{0x0002F88A, 0x0000387C}, {0x0002F88B, 0x00005EB0}, {0x0002F88C, 0x00005EB3}, {0x0002F88D, 0x00005EB6},
-{0x0002F88E, 0x00005ECA}, {0x0002F88F, 0x0002A392}, {0x0002F890, 0x00005EFE}, {0x0002F891, 0x00022331},
-{0x0002F892, 0x00022331}, {0x0002F893, 0x00008201}, {0x0002F894, 0x00005F22}, {0x0002F895, 0x00005F22},
-{0x0002F896, 0x000038C7}, {0x0002F897, 0x000232B8}, {0x0002F898, 0x000261DA}, {0x0002F899, 0x00005F62},
-{0x0002F89A, 0x00005F6B}, {0x0002F89B, 0x000038E3}, {0x0002F89C, 0x00005F9A}, {0x0002F89D, 0x00005FCD},
-{0x0002F89E, 0x00005FD7}, {0x0002F89F, 0x00005FF9}, {0x0002F8A0, 0x00006081}, {0x0002F8A1, 0x0000393A},
-{0x0002F8A2, 0x0000391C}, {0x0002F8A3, 0x00006094}, {0x0002F8A4, 0x000226D4}, {0x0002F8A5, 0x000060C7},
-{0x0002F8A6, 0x00006148}, {0x0002F8A7, 0x0000614C}, {0x0002F8A8, 0x0000614E}, {0x0002F8A9, 0x0000614C},
-{0x0002F8AA, 0x0000617A}, {0x0002F8AB, 0x0000618E}, {0x0002F8AC, 0x000061B2}, {0x0002F8AD, 0x000061A4},
-{0x0002F8AE, 0x000061AF}, {0x0002F8AF, 0x000061DE}, {0x0002F8B0, 0x000061F2}, {0x0002F8B1, 0x000061F6},
-{0x0002F8B2, 0x00006210}, {0x0002F8B3, 0x0000621B}, {0x0002F8B4, 0x0000625D}, {0x0002F8B5, 0x000062B1},
-{0x0002F8B6, 0x000062D4}, {0x0002F8B7, 0x00006350}, {0x0002F8B8, 0x00022B0C}, {0x0002F8B9, 0x0000633D},
-{0x0002F8BA, 0x000062FC}, {0x0002F8BB, 0x00006368}, {0x0002F8BC, 0x00006383}, {0x0002F8BD, 0x000063E4},
-{0x0002F8BE, 0x00022BF1}, {0x0002F8BF, 0x00006422}, {0x0002F8C0, 0x000063C5}, {0x0002F8C1, 0x000063A9},
-{0x0002F8C2, 0x00003A2E}, {0x0002F8C3, 0x00006469}, {0x0002F8C4, 0x0000647E}, {0x0002F8C5, 0x0000649D},
-{0x0002F8C6, 0x00006477}, {0x0002F8C7, 0x00003A6C}, {0x0002F8C8, 0x0000654F}, {0x0002F8C9, 0x0000656C},
-{0x0002F8CA, 0x0002300A}, {0x0002F8CB, 0x000065E3}, {0x0002F8CC, 0x000066F8}, {0x0002F8CD, 0x00006649},
-{0x0002F8CE, 0x00003B19}, {0x0002F8CF, 0x00006691}, {0x0002F8D0, 0x00003B08}, {0x0002F8D1, 0x00003AE4},
-{0x0002F8D2, 0x00005192}, {0x0002F8D3, 0x00005195}, {0x0002F8D4, 0x00006700}, {0x0002F8D5, 0x0000669C},
-{0x0002F8D6, 0x000080AD}, {0x0002F8D7, 0x000043D9}, {0x0002F8D8, 0x00006717}, {0x0002F8D9, 0x0000671B},
-{0x0002F8DA, 0x00006721}, {0x0002F8DB, 0x0000675E}, {0x0002F8DC, 0x00006753}, {0x0002F8DD, 0x000233C3},
-{0x0002F8DE, 0x00003B49}, {0x0002F8DF, 0x000067FA}, {0x0002F8E0, 0x00006785}, {0x0002F8E1, 0x00006852},
-{0x0002F8E2, 0x00006885}, {0x0002F8E3, 0x0002346D}, {0x0002F8E4, 0x0000688E}, {0x0002F8E5, 0x0000681F},
-{0x0002F8E6, 0x00006914}, {0x0002F8E7, 0x00003B9D}, {0x0002F8E8, 0x00006942}, {0x0002F8E9, 0x000069A3},
-{0x0002F8EA, 0x000069EA}, {0x0002F8EB, 0x00006AA8}, {0x0002F8EC, 0x000236A3}, {0x0002F8ED, 0x00006ADB},
-{0x0002F8EE, 0x00003C18}, {0x0002F8EF, 0x00006B21}, {0x0002F8F0, 0x000238A7}, {0x0002F8F1, 0x00006B54},
-{0x0002F8F2, 0x00003C4E}, {0x0002F8F3, 0x00006B72}, {0x0002F8F4, 0x00006B9F}, {0x0002F8F5, 0x00006BBA},
-{0x0002F8F6, 0x00006BBB}, {0x0002F8F7, 0x00023A8D}, {0x0002F8F8, 0x00021D0B}, {0x0002F8F9, 0x00023AFA},
-{0x0002F8FA, 0x00006C4E}, {0x0002F8FB, 0x00023CBC}, {0x0002F8FC, 0x00006CBF}, {0x0002F8FD, 0x00006CCD},
-{0x0002F8FE, 0x00006C67}, {0x0002F8FF, 0x00006D16}, {0x0002F900, 0x00006D3E}, {0x0002F901, 0x00006D77},
-{0x0002F902, 0x00006D41}, {0x0002F903, 0x00006D69}, {0x0002F904, 0x00006D78}, {0x0002F905, 0x00006D85},
-{0x0002F906, 0x00023D1E}, {0x0002F907, 0x00006D34}, {0x0002F908, 0x00006E2F}, {0x0002F909, 0x00006E6E},
-{0x0002F90A, 0x00003D33}, {0x0002F90B, 0x00006ECB}, {0x0002F90C, 0x00006EC7}, {0x0002F90D, 0x00023ED1},
-{0x0002F90E, 0x00006DF9}, {0x0002F90F, 0x00006F6E}, {0x0002F910, 0x00023F5E}, {0x0002F911, 0x00023F8E},
-{0x0002F912, 0x00006FC6}, {0x0002F913, 0x00007039}, {0x0002F914, 0x0000701E}, {0x0002F915, 0x0000701B},
-{0x0002F916, 0x00003D96}, {0x0002F917, 0x0000704A}, {0x0002F918, 0x0000707D}, {0x0002F919, 0x00007077},
-{0x0002F91A, 0x000070AD}, {0x0002F91B, 0x00020525}, {0x0002F91C, 0x00007145}, {0x0002F91D, 0x00024263},
-{0x0002F91E, 0x0000719C}, {0x0002F91F, 0x000243AB}, {0x0002F920, 0x00007228}, {0x0002F921, 0x00007235},
-{0x0002F922, 0x00007250}, {0x0002F923, 0x00024608}, {0x0002F924, 0x00007280}, {0x0002F925, 0x00007295},
-{0x0002F926, 0x00024735}, {0x0002F927, 0x00024814}, {0x0002F928, 0x0000737A}, {0x0002F929, 0x0000738B},
-{0x0002F92A, 0x00003EAC}, {0x0002F92B, 0x000073A5}, {0x0002F92C, 0x00003EB8}, {0x0002F92D, 0x00003EB8},
-{0x0002F92E, 0x00007447}, {0x0002F92F, 0x0000745C}, {0x0002F930, 0x00007471}, {0x0002F931, 0x00007485},
-{0x0002F932, 0x000074CA}, {0x0002F933, 0x00003F1B}, {0x0002F934, 0x00007524}, {0x0002F935, 0x00024C36},
-{0x0002F936, 0x0000753E}, {0x0002F937, 0x00024C92}, {0x0002F938, 0x00007570}, {0x0002F939, 0x0002219F},
-{0x0002F93A, 0x00007610}, {0x0002F93B, 0x00024FA1}, {0x0002F93C, 0x00024FB8}, {0x0002F93D, 0x00025044},
-{0x0002F93E, 0x00003FFC}, {0x0002F93F, 0x00004008}, {0x0002F940, 0x000076F4}, {0x0002F941, 0x000250F3},
-{0x0002F942, 0x000250F2}, {0x0002F943, 0x00025119}, {0x0002F944, 0x00025133}, {0x0002F945, 0x0000771E},
-{0x0002F946, 0x0000771F}, {0x0002F947, 0x0000771F}, {0x0002F948, 0x0000774A}, {0x0002F949, 0x00004039},
-{0x0002F94A, 0x0000778B}, {0x0002F94B, 0x00004046}, {0x0002F94C, 0x00004096}, {0x0002F94D, 0x0002541D},
-{0x0002F94E, 0x0000784E}, {0x0002F94F, 0x0000788C}, {0x0002F950, 0x000078CC}, {0x0002F951, 0x000040E3},
-{0x0002F952, 0x00025626}, {0x0002F953, 0x00007956}, {0x0002F954, 0x0002569A}, {0x0002F955, 0x000256C5},
-{0x0002F956, 0x0000798F}, {0x0002F957, 0x000079EB}, {0x0002F958, 0x0000412F}, {0x0002F959, 0x00007A40},
-{0x0002F95A, 0x00007A4A}, {0x0002F95B, 0x00007A4F}, {0x0002F95C, 0x0002597C}, {0x0002F95D, 0x00025AA7},
-{0x0002F95E, 0x00025AA7}, {0x0002F95F, 0x00007AEE}, {0x0002F960, 0x00004202}, {0x0002F961, 0x00025BAB},
-{0x0002F962, 0x00007BC6}, {0x0002F963, 0x00007BC9}, {0x0002F964, 0x00004227}, {0x0002F965, 0x00025C80},
-{0x0002F966, 0x00007CD2}, {0x0002F967, 0x000042A0}, {0x0002F968, 0x00007CE8}, {0x0002F969, 0x00007CE3},
-{0x0002F96A, 0x00007D00}, {0x0002F96B, 0x00025F86}, {0x0002F96C, 0x00007D63}, {0x0002F96D, 0x00004301},
-{0x0002F96E, 0x00007DC7}, {0x0002F96F, 0x00007E02}, {0x0002F970, 0x00007E45}, {0x0002F971, 0x00004334},
-{0x0002F972, 0x00026228}, {0x0002F973, 0x00026247}, {0x0002F974, 0x00004359}, {0x0002F975, 0x000262D9},
-{0x0002F976, 0x00007F7A}, {0x0002F977, 0x0002633E}, {0x0002F978, 0x00007F95}, {0x0002F979, 0x00007FFA},
-{0x0002F97A, 0x00008005}, {0x0002F97B, 0x000264DA}, {0x0002F97C, 0x00026523}, {0x0002F97D, 0x00008060},
-{0x0002F97E, 0x000265A8}, {0x0002F97F, 0x00008070}, {0x0002F980, 0x0002335F}, {0x0002F981, 0x000043D5},
-{0x0002F982, 0x000080B2}, {0x0002F983, 0x00008103}, {0x0002F984, 0x0000440B}, {0x0002F985, 0x0000813E},
-{0x0002F986, 0x00005AB5}, {0x0002F987, 0x000267A7}, {0x0002F988, 0x000267B5}, {0x0002F989, 0x00023393},
-{0x0002F98A, 0x0002339C}, {0x0002F98B, 0x00008201}, {0x0002F98C, 0x00008204}, {0x0002F98D, 0x00008F9E},
-{0x0002F98E, 0x0000446B}, {0x0002F98F, 0x00008291}, {0x0002F990, 0x0000828B}, {0x0002F991, 0x0000829D},
-{0x0002F992, 0x000052B3}, {0x0002F993, 0x000082B1}, {0x0002F994, 0x000082B3}, {0x0002F995, 0x000082BD},
-{0x0002F996, 0x000082E6}, {0x0002F997, 0x00026B3C}, {0x0002F998, 0x000082E5}, {0x0002F999, 0x0000831D},
-{0x0002F99A, 0x00008363}, {0x0002F99B, 0x000083AD}, {0x0002F99C, 0x00008323}, {0x0002F99D, 0x000083BD},
-{0x0002F99E, 0x000083E7}, {0x0002F99F, 0x00008457}, {0x0002F9A0, 0x00008353}, {0x0002F9A1, 0x000083CA},
-{0x0002F9A2, 0x000083CC}, {0x0002F9A3, 0x000083DC}, {0x0002F9A4, 0x00026C36}, {0x0002F9A5, 0x00026D6B},
-{0x0002F9A6, 0x00026CD5}, {0x0002F9A7, 0x0000452B}, {0x0002F9A8, 0x000084F1}, {0x0002F9A9, 0x000084F3},
-{0x0002F9AA, 0x00008516}, {0x0002F9AB, 0x000273CA}, {0x0002F9AC, 0x00008564}, {0x0002F9AD, 0x00026F2C},
-{0x0002F9AE, 0x0000455D}, {0x0002F9AF, 0x00004561}, {0x0002F9B0, 0x00026FB1}, {0x0002F9B1, 0x000270D2},
-{0x0002F9B2, 0x0000456B}, {0x0002F9B3, 0x00008650}, {0x0002F9B4, 0x0000865C}, {0x0002F9B5, 0x00008667},
-{0x0002F9B6, 0x00008669}, {0x0002F9B7, 0x000086A9}, {0x0002F9B8, 0x00008688}, {0x0002F9B9, 0x0000870E},
-{0x0002F9BA, 0x000086E2}, {0x0002F9BB, 0x00008779}, {0x0002F9BC, 0x00008728}, {0x0002F9BD, 0x0000876B},
-{0x0002F9BE, 0x00008786}, {0x0002F9BF, 0x000045D7}, {0x0002F9C0, 0x000087E1}, {0x0002F9C1, 0x00008801},
-{0x0002F9C2, 0x000045F9}, {0x0002F9C3, 0x00008860}, {0x0002F9C4, 0x00008863}, {0x0002F9C5, 0x00027667},
-{0x0002F9C6, 0x000088D7}, {0x0002F9C7, 0x000088DE}, {0x0002F9C8, 0x00004635}, {0x0002F9C9, 0x000088FA},
-{0x0002F9CA, 0x000034BB}, {0x0002F9CB, 0x000278AE}, {0x0002F9CC, 0x00027966}, {0x0002F9CD, 0x000046BE},
-{0x0002F9CE, 0x000046C7}, {0x0002F9CF, 0x00008AA0}, {0x0002F9D0, 0x00008AED}, {0x0002F9D1, 0x00008B8A},
-{0x0002F9D2, 0x00008C55}, {0x0002F9D3, 0x00027CA8}, {0x0002F9D4, 0x00008CAB}, {0x0002F9D5, 0x00008CC1},
-{0x0002F9D6, 0x00008D1B}, {0x0002F9D7, 0x00008D77}, {0x0002F9D8, 0x00027F2F}, {0x0002F9D9, 0x00020804},
-{0x0002F9DA, 0x00008DCB}, {0x0002F9DB, 0x00008DBC}, {0x0002F9DC, 0x00008DF0}, {0x0002F9DD, 0x000208DE},
-{0x0002F9DE, 0x00008ED4}, {0x0002F9DF, 0x00008F38}, {0x0002F9E0, 0x000285D2}, {0x0002F9E1, 0x000285ED},
-{0x0002F9E2, 0x00009094}, {0x0002F9E3, 0x000090F1}, {0x0002F9E4, 0x00009111}, {0x0002F9E5, 0x0002872E},
-{0x0002F9E6, 0x0000911B}, {0x0002F9E7, 0x00009238}, {0x0002F9E8, 0x000092D7}, {0x0002F9E9, 0x000092D8},
-{0x0002F9EA, 0x0000927C}, {0x0002F9EB, 0x000093F9}, {0x0002F9EC, 0x00009415}, {0x0002F9ED, 0x00028BFA},
-{0x0002F9EE, 0x0000958B}, {0x0002F9EF, 0x00004995}, {0x0002F9F0, 0x000095B7}, {0x0002F9F1, 0x00028D77},
-{0x0002F9F2, 0x000049E6}, {0x0002F9F3, 0x000096C3}, {0x0002F9F4, 0x00005DB2}, {0x0002F9F5, 0x00009723},
-{0x0002F9F6, 0x00029145}, {0x0002F9F7, 0x0002921A}, {0x0002F9F8, 0x00004A6E}, {0x0002F9F9, 0x00004A76},
-{0x0002F9FA, 0x000097E0}, {0x0002F9FB, 0x0002940A}, {0x0002F9FC, 0x00004AB2}, {0x0002F9FD, 0x00029496},
-{0x0002F9FE, 0x0000980B}, {0x0002F9FF, 0x0000980B}, {0x0002FA00, 0x00009829}, {0x0002FA01, 0x000295B6},
-{0x0002FA02, 0x000098E2}, {0x0002FA03, 0x00004B33}, {0x0002FA04, 0x00009929}, {0x0002FA05, 0x000099A7},
-{0x0002FA06, 0x000099C2}, {0x0002FA07, 0x000099FE}, {0x0002FA08, 0x00004BCE}, {0x0002FA09, 0x00029B30},
-{0x0002FA0A, 0x00009B12}, {0x0002FA0B, 0x00009C40}, {0x0002FA0C, 0x00009CFD}, {0x0002FA0D, 0x00004CCE},
-{0x0002FA0E, 0x00004CED}, {0x0002FA0F, 0x00009D67}, {0x0002FA10, 0x0002A0CE}, {0x0002FA11, 0x00004CF8},
-{0x0002FA12, 0x0002A105}, {0x0002FA13, 0x0002A20E}, {0x0002FA14, 0x0002A291}, {0x0002FA15, 0x00009EBB},
-{0x0002FA16, 0x00004D56}, {0x0002FA17, 0x00009EF9}, {0x0002FA18, 0x00009EFE}, {0x0002FA19, 0x00009F05},
-{0x0002FA1A, 0x00009F0F}, {0x0002FA1B, 0x00009F16}, {0x0002FA1D, 0x0002A600},
-};
-
 static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
     std::string result;
     for (size_t i = 0; i < cps.size(); ++i) {
@@ -1670,3 +271,7 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
     return map.at(utf8);
 }
 
+char32_t unicode_tolower(char32_t cp) {
+    auto it = unicode_map_lowercase.find(cp);
+    return it == unicode_map_lowercase.end() ? cp : it->second;
+}
index 6d14a5a333f571c5c9c17c24a5826ca8de226069..6a0be393a46b403ddf2cf0f47901874355ece359 100644 (file)
@@ -24,3 +24,5 @@ int unicode_cpt_type(const std::string & utf8);
 std::string unicode_byte_to_utf8(uint8_t byte);
 uint8_t unicode_utf8_to_byte(const std::string & utf8);
 
+// simple tolower that only implements one-to-one mapping, not one-to-many
+char32_t unicode_tolower(char32_t cp);
index 4bbc85ab6b2dcd9e2a26d067e7acccc034faf22f..ce8e6d867941f0137111b0b2210610c813714c7b 100644 (file)
@@ -1,5 +1,3 @@
-set(CMAKE_CXX_STANDARD 11)
-
 add_subdirectory(libwchess)
 
 if (EMSCRIPTEN)
index e05831dfb2a6ab88ef3cabcf975cc34d40e61349..177f67bd1999f4533c74165221f1b6be53df6e2c 100755 (executable)
@@ -98,6 +98,7 @@ if [ -f $SRC_WHISPER/ggml-src.patch ]; then
     # src/ggml-backend-impl.h     -> ggml-backend-impl.h
     # src/ggml-backend.c          -> ggml-backend.c
     # src/ggml-common.h           -> ggml-common.h
+    # src/ggml-cuda/*             -> ggml-cuda/
     # src/ggml-cuda.cu            -> ggml-cuda.cu
     # src/ggml-cuda.h             -> ggml-cuda.h
     # src/ggml-impl.h             -> ggml-impl.h
@@ -135,6 +136,7 @@ if [ -f $SRC_WHISPER/ggml-src.patch ]; then
         -e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
         -e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
         -e 's/src\/ggml-common\.h/ggml-common.h/g' \
+        -e 's/src\/ggml-cuda\//ggml-cuda\//g' \
         -e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
         -e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
         -e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
index 65d12799ab99a1f5969e7ee7908b8e5c427f199d..3fc2678786895e408dcaa26b1a21b90f32edcb6a 100755 (executable)
@@ -6,6 +6,7 @@ cp -rpv ../ggml/src/ggml-alloc.c        ./ggml-alloc.c
 cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
 cp -rpv ../ggml/src/ggml-backend.c      ./ggml-backend.c
 cp -rpv ../ggml/src/ggml-common.h       ./ggml-common.h
+cp -rpv ../ggml/src/ggml-cuda/*         ./ggml-cuda/
 cp -rpv ../ggml/src/ggml-cuda.cu        ./ggml-cuda.cu
 cp -rpv ../ggml/src/ggml-cuda.h         ./ggml-cuda.h
 cp -rpv ../ggml/src/ggml-kompute.cpp    ./ggml-kompute.cpp
index 2822b3b61dba8923452fdcd027ef43be53916be8..de71ffcca80cb21d9db03c070d94e7e2e51e7076 100755 (executable)
@@ -1,6 +1,8 @@
 #!/bin/bash
 
-cp -rpv ../llama.cpp/llama.h     ./examples/talk-llama/llama.h
-cp -rpv ../llama.cpp/llama.cpp   ./examples/talk-llama/llama.cpp
-cp -rpv ../llama.cpp/unicode.h   ./examples/talk-llama/unicode.h
-cp -rpv ../llama.cpp/unicode.cpp ./examples/talk-llama/unicode.cpp
+cp -rpv ../llama.cpp/llama.h          ./examples/talk-llama/llama.h
+cp -rpv ../llama.cpp/llama.cpp        ./examples/talk-llama/llama.cpp
+cp -rpv ../llama.cpp/unicode.h        ./examples/talk-llama/unicode.h
+cp -rpv ../llama.cpp/unicode.cpp      ./examples/talk-llama/unicode.cpp
+cp -rpv ../llama.cpp/unicode-data.h   ./examples/talk-llama/unicode-data.h
+cp -rpv ../llama.cpp/unicode-data.cpp ./examples/talk-llama/unicode-data.cpp
index 60b86c27581621b508ba468415d3aa82a117810e..7ceafec309d0c5517d0491ae1598139b68eceaff 100644 (file)
@@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
     for (int i = 0; i < graph->n_nodes; i++) {
         struct ggml_tensor * node = graph->nodes[i];
 
-        if (ggml_is_view(node)) {
+        // TODO: better way to add external dependencies
+        // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
+        // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
+        // itself is never used and should not be considered a dependency
+        if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
             struct ggml_tensor * view_src = node->view_src;
             ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
         }
@@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
 
             ggml_gallocr_hash_get(galloc, src)->n_children += 1;
 
-            // allocate explicit inputs and leafs
-            if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
+            // allocate explicit inputs
+            if (src->flags & GGML_TENSOR_FLAG_INPUT) {
                 ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
             }
         }
index e475e20e5f46a55d6ca5f3b23ffb2d3549ce9c2f..f121e1de420facd4b5a9a8487480f60b4cc14e4a 100644 (file)
@@ -103,6 +103,11 @@ extern "C" {
         // check if the backend supports an operation
         bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
 
+        // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
+        // these should be expensive operations with large batch sizes that may benefit from running on this backend
+        // even if the weight has to be copied from the CPU temporarily
+        bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+
         // (optional) event synchronization
         ggml_backend_event_t (*GGML_CALL event_new)         (ggml_backend_t backend);
         void                 (*GGML_CALL event_free)        (ggml_backend_event_t event);
index 31f8d5a6dd30befb6a4bea8676c457e8259c982f..402d86ef3ac8b206d3acf602ec6dfb854d1f1bc4 100644 (file)
@@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
     return err;
 }
 
-bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
     return backend->iface.graph_compute(backend, cgraph);
 }
 
@@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
     return backend->iface.supports_op(backend, op);
 }
 
+bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+    if (backend->iface.offload_op != NULL) {
+        return backend->iface.offload_op(backend, op);
+    }
+    return false;
+}
+
 // backend copy
 
 static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
@@ -413,7 +420,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
     ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
 
     // add forward decls here to avoid including the backend headers
-#ifdef GGML_USE_CUBLAS
+#ifdef GGML_USE_CUDA
     extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
     ggml_backend_cuda_reg_devices();
 #endif
@@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
 
     if (cpu_plan->cplan.work_size > 0) {
         cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
+        if (cpu_plan->cplan.work_data == NULL) {
+            free(cpu_plan);
+            return NULL;
+        }
     }
 
     cpu_plan->cplan.abort_callback      = cpu_ctx->abort_callback;
@@ -834,6 +845,7 @@ static struct ggml_backend_i cpu_backend_i = {
     /* .graph_plan_compute      = */ ggml_backend_cpu_graph_plan_compute,
     /* .graph_compute           = */ ggml_backend_cpu_graph_compute,
     /* .supports_op             = */ ggml_backend_cpu_supports_op,
+    /* .offload_op              = */ NULL,
     /* .event_new               = */ NULL,
     /* .event_free              = */ NULL,
     /* .event_record            = */ NULL,
@@ -999,11 +1011,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
 #endif
 
 #ifndef GGML_SCHED_MAX_SPLITS
-#define GGML_SCHED_MAX_SPLITS 256
+#define GGML_SCHED_MAX_SPLITS 2048
 #endif
 
 #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
-#define GGML_SCHED_MAX_SPLIT_INPUTS 16
+#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
 #endif
 
 #ifndef GGML_SCHED_MAX_COPIES
@@ -1043,8 +1055,9 @@ struct ggml_backend_sched {
     struct ggml_cgraph * graph;
 
     // graph splits
-    struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
+    struct ggml_backend_sched_split * splits;
     int n_splits;
+    int splits_capacity;
 
     // pipeline parallelism support
     int n_copies;
@@ -1114,40 +1127,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
     // TODO: use supports_op to check if the backend supports the op
 
     // assign pre-allocated nodes to their backend
-    // dst
-    int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
-    if (cur_backend != -1) {
+    int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
+    if (cur_backend_id != -1) {
         SET_CAUSE(tensor, "1.dst");
-        return cur_backend;
+        return cur_backend_id;
     }
 
     // view_src
     if (tensor->view_src != NULL) {
-        cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
-        if (cur_backend != -1) {
+        cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
+        if (cur_backend_id != -1) {
             SET_CAUSE(tensor, "1.vsrc");
-            return cur_backend;
+            return cur_backend_id;
         }
     }
 
-    // input
+    // graph input
     if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
-        cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
+        cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
         SET_CAUSE(tensor, "1.inp");
-        return cur_backend;
+        return cur_backend_id;
     }
 
     // assign nodes that use weights to the backend of the weights
+    // operations with weights are preferably run on the same backend as the weights
     for (int i = 0; i < GGML_MAX_SRC; i++) {
         const struct ggml_tensor * src = tensor->src[i];
         if (src == NULL) {
             continue;
         }
         if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
-            int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
-            // operations with weights are always run on the same backend as the weights
+            int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
+            // check if a backend with higher prio wants to offload the op
+            if (src_backend_id == sched->n_backends - 1) {
+                for (int b = 0; b < src_backend_id; b++) {
+                    if (ggml_backend_offload_op(sched->backends[b], tensor)) {
+                        SET_CAUSE(tensor, "1.off");
+                        return b;
+                    }
+                }
+            }
             SET_CAUSE(tensor, "1.wgt%d", i);
-            return src_backend;
+            return src_backend_id;
         }
     }
 
@@ -1227,28 +1248,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
     // pass 1: assign backends to ops with pre-allocated inputs
     for (int i = 0; i < graph->n_leafs; i++) {
         struct ggml_tensor * leaf = graph->leafs[i];
-        if (tensor_backend_id(leaf) != -1) {
+        int * leaf_backend_id = &tensor_backend_id(leaf);
+        if (*leaf_backend_id != -1) {
             // do not overwrite user assignments
             continue;
         }
-        tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
+        *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
     }
 
     for (int i = 0; i < graph->n_nodes; i++) {
         struct ggml_tensor * node = graph->nodes[i];
-        if (tensor_backend_id(node) != -1) {
+        int * node_backend_id = &tensor_backend_id(node);
+        if (*node_backend_id != -1) {
             // do not overwrite user assignments
             continue;
         }
-        tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
+        *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
         // src
         for (int j = 0; j < GGML_MAX_SRC; j++) {
             struct ggml_tensor * src = node->src[j];
             if (src == NULL) {
                 continue;
             }
-            if (tensor_backend_id(src) == -1) {
-                tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
+            int * src_backend_id = &tensor_backend_id(src);
+            if (*src_backend_id == -1) {
+                *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
             }
         }
     }
@@ -1270,21 +1294,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
             if (ggml_is_view_op(node->op)) {
                 continue;
             }
-            int tensor_backend_id = tensor_backend_id(node);
-            if (tensor_backend_id != -1) {
-                if (tensor_backend_id == sched->n_backends - 1) {
+            int * node_backend_id = &tensor_backend_id(node);
+            if (*node_backend_id != -1) {
+                if (*node_backend_id == sched->n_backends - 1) {
                     // skip cpu (lowest prio backend)
                     cur_backend_id = -1;
                 } else {
-                    cur_backend_id = tensor_backend_id;
+                    cur_backend_id = *node_backend_id;
                 }
             } else {
-                tensor_backend_id(node) = cur_backend_id;
+                *node_backend_id = cur_backend_id;
                 SET_CAUSE(node, "2.2");
             }
         }
     }
-
     // pass 2.1 expand gpu up
     {
         int cur_backend_id = -1;
@@ -1293,22 +1316,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
             if (ggml_is_view_op(node->op)) {
                 continue;
             }
-            int tensor_backend_id = tensor_backend_id(node);
-            if (tensor_backend_id != -1) {
-                if (tensor_backend_id == sched->n_backends - 1) {
+            int * node_backend_id = &tensor_backend_id(node);
+            if (*node_backend_id != -1) {
+                if (*node_backend_id == sched->n_backends - 1) {
                     // skip cpu (lowest prio backend)
                     cur_backend_id = -1;
                 } else {
-                    cur_backend_id = tensor_backend_id;
+                    cur_backend_id = *node_backend_id;
                 }
             } else {
-                tensor_backend_id(node) = cur_backend_id;
+                *node_backend_id = cur_backend_id;
                 SET_CAUSE(node, "2.1");
             }
         }
     }
-
-
     // pass 2.4 expand rest down
     {
         int cur_backend_id = -1;
@@ -1317,16 +1338,16 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
             if (ggml_is_view_op(node->op)) {
                 continue;
             }
-            int tensor_backend_id = tensor_backend_id(node);
-            if (tensor_backend_id != -1) {
-                cur_backend_id = tensor_backend_id;
+            int * node_backend_id = &tensor_backend_id(node);
+            if (*node_backend_id != -1) {
+                cur_backend_id = *node_backend_id;
             } else {
-                tensor_backend_id(node) = cur_backend_id;
+                *node_backend_id = cur_backend_id;
                 SET_CAUSE(node, "2.4");
             }
         }
     }
-        // pass 2.3 expand rest up
+    // pass 2.3 expand rest up
     {
         int cur_backend_id = -1;
         for (int i = graph->n_nodes - 1; i >= 0; i--) {
@@ -1334,11 +1355,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
             if (ggml_is_view_op(node->op)) {
                 continue;
             }
-            int tensor_backend_id = tensor_backend_id(node);
-            if (tensor_backend_id != -1) {
-                cur_backend_id = tensor_backend_id;
+            int * node_backend_id = &tensor_backend_id(node);
+            if (*node_backend_id != -1) {
+                cur_backend_id = *node_backend_id;
             } else {
-                tensor_backend_id(node) = cur_backend_id;
+                *node_backend_id = cur_backend_id;
                 SET_CAUSE(node, "2.3");
             }
         }
@@ -1351,9 +1372,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
     // pass 3: assign backends to remaining src from dst and view_src
     for (int i = 0; i < graph->n_nodes; i++) {
         struct ggml_tensor * node = graph->nodes[i];
-        int cur_backend_id = tensor_backend_id(node);
-        if (node->view_src != NULL && cur_backend_id == -1) {
-            cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
+        int * cur_backend_id = &tensor_backend_id(node);
+        if (node->view_src != NULL && *cur_backend_id == -1) {
+            *cur_backend_id = tensor_backend_id(node->view_src);
             SET_CAUSE(node, "3.vsrc");
         }
         for (int j = 0; j < GGML_MAX_SRC; j++) {
@@ -1361,14 +1382,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
             if (src == NULL) {
                 continue;
             }
-            int src_backend_id = tensor_backend_id(src);
-            if (src_backend_id == -1) {
+            int * src_backend_id = &tensor_backend_id(src);
+            if (*src_backend_id == -1) {
                 if (src->view_src != NULL) {
                     // views are always on the same backend as the source
-                    tensor_backend_id(src) = tensor_backend_id(src->view_src);
+                    *src_backend_id = tensor_backend_id(src->view_src);
                     SET_CAUSE(src, "3.vsrc");
                 } else {
-                    tensor_backend_id(src) = cur_backend_id;
+                    *src_backend_id = *cur_backend_id;
                     SET_CAUSE(src, "3.cur");
                 }
             }
@@ -1380,19 +1401,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
 
     // pass 4: split graph, find tensors that need to be copied
     {
-        int cur_split = 0;
+        int i_split = 0;
+        struct ggml_backend_sched_split * split = &sched->splits[0];
         // find the backend of the first split, skipping view ops
         for (int i = 0; i < graph->n_nodes; i++) {
             struct ggml_tensor * node = graph->nodes[i];
             if (!ggml_is_view_op(node->op)) {
-                sched->splits[0].backend_id = tensor_backend_id(node);
+                split->backend_id = tensor_backend_id(node);
                 break;
             }
         }
-        sched->splits[0].i_start = 0;
-        sched->splits[0].n_inputs = 0;
-        memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
-        int cur_backend_id = sched->splits[0].backend_id;
+        split->i_start = 0;
+        split->n_inputs = 0;
+        memset(split->inputs, 0, sizeof(split->inputs)); //HACK
+        int cur_backend_id = split->backend_id;
         for (int i = 0; i < graph->n_nodes; i++) {
             struct ggml_tensor * node = graph->nodes[i];
 
@@ -1400,18 +1422,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
                 continue;
             }
 
-            int tensor_backend_id = tensor_backend_id(node);
+            const int node_backend_id = tensor_backend_id(node);
 
-            GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
+            GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
 
-            if (tensor_backend_id != cur_backend_id) {
-                sched->splits[cur_split].i_end = i;
-                cur_split++;
-                GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
-                sched->splits[cur_split].backend_id = tensor_backend_id;
-                sched->splits[cur_split].i_start = i;
-                sched->splits[cur_split].n_inputs = 0;
-                cur_backend_id = tensor_backend_id;
+            // check if we should start a new split based on the sources of the current node
+            bool need_new_split = false;
+            if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
+                for (int j = 0; j < GGML_MAX_SRC; j++) {
+                    struct ggml_tensor * src = node->src[j];
+                    if (src == NULL) {
+                        continue;
+                    }
+                    // check if a weight is on a different backend
+                    // by starting a new split, the memory of the previously offloaded weights can be reused
+                    if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
+                        int src_backend_id = tensor_backend_id(src);
+                        if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
+                            need_new_split = true;
+                            break;
+                        }
+                    }
+                    // check if the split has too many inputs
+                    if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
+                        const size_t id = hash_id(src);
+                        int src_backend_id = sched->tensor_backend_id[id];
+                        if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
+                            //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
+                            need_new_split = true;
+                            break;
+                        }
+                    }
+                }
+            }
+
+            if (node_backend_id != cur_backend_id || need_new_split) {
+                split->i_end = i;
+                i_split++;
+                if (i_split >= sched->splits_capacity) {
+                    sched->splits_capacity *= 2;
+                    sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
+                    GGML_ASSERT(sched->splits != NULL);
+                }
+                GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
+                split = &sched->splits[i_split];
+                split->backend_id = node_backend_id;
+                split->i_start = i;
+                split->n_inputs = 0;
+                cur_backend_id = node_backend_id;
             }
 
             // find inputs that are not on the same backend
@@ -1421,10 +1479,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
                     continue;
                 }
 
-                int src_backend_id = tensor_backend_id(src);
+                const int src_backend_id = tensor_backend_id(src);
                 assert(src_backend_id != -1); // all inputs should be assigned by now
 
-                if (src->flags & GGML_TENSOR_FLAG_INPUT)  {
+                if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1)  {
                     size_t id = hash_id(src);
                     if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
                         ggml_backend_t backend = sched->backends[src_backend_id];
@@ -1441,7 +1499,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
                                 ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
                             }
                             sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
-                            tensor_backend_id(tensor_copy) = src_backend_id;
                             SET_CAUSE(tensor_copy, "4.cpy");
                         }
                         int n_graph_inputs = sched->n_graph_inputs++;
@@ -1450,9 +1507,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
                     }
                 }
 
-                if (src_backend_id != tensor_backend_id) {
+                if (src_backend_id != node_backend_id) {
                     // create a copy of the input in the split's backend
-                    size_t id = hash_id(src);
+                    const size_t id = hash_id(src);
                     if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
                         ggml_backend_t backend = sched->backends[cur_backend_id];
                         for (int c = 0; c < sched->n_copies; c++) {
@@ -1463,76 +1520,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
                                 ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
                             }
                             sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
-                            tensor_backend_id(tensor_copy) = cur_backend_id;
                             SET_CAUSE(tensor_copy, "4.cpy");
                         }
-                        int n_inputs = sched->splits[cur_split].n_inputs++;
+                        int n_inputs = split->n_inputs++;
                         GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
-                        sched->splits[cur_split].inputs[n_inputs] = src;
+                        split->inputs[n_inputs] = src;
                     }
                     node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
                 }
             }
         }
-        sched->splits[cur_split].i_end = graph->n_nodes;
-        sched->n_splits = cur_split + 1;
+        split->i_end = graph->n_nodes;
+        sched->n_splits = i_split + 1;
     }
 #ifdef DEBUG_PASS4
     fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
 #endif
 
-#ifndef NDEBUG
-    // sanity check: all sources should have the same backend as the node
-    for (int i = 0; i < graph->n_nodes; i++) {
-        struct ggml_tensor * node = graph->nodes[i];
-        ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
-        if (tensor_backend == NULL) {
-            fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
-        }
-        if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
-            fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
-                node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
-                node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
-                    ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
-        }
-        for (int j = 0; j < GGML_MAX_SRC; j++) {
-            struct ggml_tensor * src = node->src[j];
-            if (src == NULL) {
-                continue;
-            }
-            ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
-            if (src_backend != tensor_backend /* && src_backend != NULL */) {
-                fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
-                    node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
-                    j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
-            }
-            if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
-                fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
-                    src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
-                    src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
-                        ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
-            }
-        }
-    }
-    fflush(stderr);
-#endif
-
     // create copies of the graph for each split
     // TODO: avoid this copy
-    struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
+    struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
     for (int i = 0; i < sched->n_splits; i++) {
         struct ggml_backend_sched_split * split = &sched->splits[i];
         split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
 
         // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
         for (int j = 0; j < split->n_inputs; j++) {
+            assert(graph_copy->size > (graph_copy->n_nodes + 1));
+
             struct ggml_tensor * input = split->inputs[j];
-            struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
+            const size_t input_id = hash_id(input);
+            struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
 
             // add a dependency to the input source so that it is not freed before the copy is done
             struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
             input_dep->src[0] = input;
-            sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
+            sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
             graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
 
             // add a dependency to the input copy so that it is allocated at the start of the split
@@ -1541,6 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
         }
 
         for (int j = split->i_start; j < split->i_end; j++) {
+            assert(graph_copy->size > graph_copy->n_nodes);
             sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
             graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
         }
@@ -1625,13 +1649,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
                 }
                 ggml_backend_tensor_copy(input, input_cpy);
             } else {
+                // wait for the split backend to finish using the input before overwriting it
                 if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
                     ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
                 } else {
                     ggml_backend_synchronize(split_backend);
-                    ggml_backend_synchronize(input_backend);
                 }
-
                 ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
             }
         }
@@ -1701,17 +1724,21 @@ ggml_backend_sched_t ggml_backend_sched_new(
     struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
 
     // initialize hash table
-    sched->hash_set          = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
+    sched->hash_set          = ggml_hash_set_new(graph_size);
     sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
     sched->tensor_copies     = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
-    sched->node_backend_ids  = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
-    sched->leaf_backend_ids  = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
+
+    const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
+    sched->node_backend_ids  = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
+    sched->leaf_backend_ids  = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
 
     sched->n_backends = n_backends;
 
     sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
 
-    GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
+    const int initial_splits_capacity = 16;
+    sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
+    sched->splits_capacity = initial_splits_capacity;
 
     for (int b = 0; b < n_backends; b++) {
         sched->backends[b] = backends[b];
@@ -1742,6 +1769,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
     }
     ggml_gallocr_free(sched->galloc);
     ggml_free(sched->ctx);
+    free(sched->splits);
     free(sched->hash_set.keys);
     free(sched->tensor_backend_id);
     free(sched->tensor_copies);
@@ -1762,6 +1790,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
 }
 
 bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
+    GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
+
     ggml_backend_sched_split_graph(sched, measure_graph);
 
     // TODO: extract this to a separate function
@@ -1776,7 +1806,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
 }
 
 bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
-    GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
+    GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
 
     ggml_backend_sched_split_graph(sched, graph);
 
index 099d9c258794ed0b3ad460549ca446a10c875130..422457ab6fc50a245640ec06ea635745125c0ecc 100644 (file)
@@ -70,11 +70,11 @@ extern "C" {
     GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
     GGML_API void                      ggml_backend_graph_plan_free  (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
 
-    GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
-    GGML_API enum ggml_status ggml_backend_graph_compute     (ggml_backend_t backend, struct ggml_cgraph * cgraph);
-
-    GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
+    GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+    GGML_API enum ggml_status ggml_backend_graph_compute      (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+    GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
     GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
+    GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
 
     // tensor copy between different backends
     GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
index 0257c928cea52110215664d2d07432c20ffaeb6d..b2d67d5db529ccf7c8df056c81703b69c14a7143 100644 (file)
@@ -377,6 +377,27 @@ typedef struct {
 } block_iq1_s;
 static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
 
+// 1.75 bpw
+typedef struct {
+    uint8_t  qs[QK_K/8];      // grid index, low 8 bits
+    uint8_t  qh[QK_K/16];     // grid index, high 3 bits + grid shift bit (for two groups of 8)
+#if QK_K == 64
+    ggml_half d;
+#endif
+    uint8_t  scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
+} block_iq1_m;
+#if QK_K == 64
+static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
+#else
+static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
+#endif
+
+// Used by IQ1_M quants
+typedef union {
+    ggml_half f16;
+    uint16_t  u16;
+} iq1m_scale_t;
+
 // Non-linear quants
 #define QK4_NL 32
 typedef struct {
@@ -1050,6 +1071,7 @@ GGML_TABLE_END()
 
 #define NGRID_IQ1S 2048
 #define IQ1S_DELTA 0.125f
+#define IQ1M_DELTA 0.125f
 #if defined(GGML_COMMON_IMPL_C)
 GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
     0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,
index d1b5e52ba901113d3b829604924f545427364009..be8e33a56c40f45dac8807b419925379c72f3c0f 100644 (file)
 #include "ggml.h"
 #include "ggml-backend-impl.h"
 
-#if defined(GGML_USE_HIPBLAS)
-#define GGML_COMMON_DECL_HIP
-#define GGML_COMMON_IMPL_HIP
-#else
-#define GGML_COMMON_DECL_CUDA
-#define GGML_COMMON_IMPL_CUDA
-#endif
-#include "ggml-common.h"
+#include "ggml-cuda/common.cuh"
+#include "ggml-cuda/acc.cuh"
+#include "ggml-cuda/alibi.cuh"
+#include "ggml-cuda/arange.cuh"
+#include "ggml-cuda/argsort.cuh"
+#include "ggml-cuda/binbcast.cuh"
+#include "ggml-cuda/clamp.cuh"
+#include "ggml-cuda/concat.cuh"
+#include "ggml-cuda/convert.cuh"
+#include "ggml-cuda/cpy.cuh"
+#include "ggml-cuda/diagmask.cuh"
+#include "ggml-cuda/dmmv.cuh"
+#include "ggml-cuda/getrows.cuh"
+#include "ggml-cuda/im2col.cuh"
+#include "ggml-cuda/mmq.cuh"
+#include "ggml-cuda/mmvq.cuh"
+#include "ggml-cuda/norm.cuh"
+#include "ggml-cuda/pad.cuh"
+#include "ggml-cuda/pool2d.cuh"
+#include "ggml-cuda/quantize.cuh"
+#include "ggml-cuda/rope.cuh"
+#include "ggml-cuda/scale.cuh"
+#include "ggml-cuda/softmax.cuh"
+#include "ggml-cuda/sumrows.cuh"
+#include "ggml-cuda/tsembd.cuh"
+#include "ggml-cuda/unary.cuh"
+#include "ggml-cuda/upscale.cuh"
 
 #include <algorithm>
-#include <assert.h>
+#include <array>
 #include <atomic>
 #include <cinttypes>
 #include <cstddef>
 #include <cstdint>
 #include <float.h>
 #include <limits>
+#include <map>
+#include <memory>
+#include <mutex>
 #include <stdint.h>
 #include <stdio.h>
 #include <string>
 #include <vector>
-#include <map>
-#include <array>
-
-// stringize macro for converting __CUDA_ARCH_LIST__ (list of integers) to string
-#define STRINGIZE_IMPL(...) #__VA_ARGS__
-#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
-
-#if defined(GGML_USE_HIPBLAS)
-#include <hip/hip_runtime.h>
-#include <hipblas/hipblas.h>
-#include <hip/hip_fp16.h>
-#ifdef __HIP_PLATFORM_AMD__
-// for rocblas_initialize()
-#include "rocblas/rocblas.h"
-#endif // __HIP_PLATFORM_AMD__
-#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
-#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
-#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
-#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
-#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
-#define CUBLAS_OP_N HIPBLAS_OP_N
-#define CUBLAS_OP_T HIPBLAS_OP_T
-#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
-#define CUBLAS_TF32_TENSOR_OP_MATH 0
-#define CUDA_R_16F  HIPBLAS_R_16F
-#define CUDA_R_32F  HIPBLAS_R_32F
-#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
-#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
-#define cublasCreate hipblasCreate
-#define cublasGemmEx hipblasGemmEx
-#define cublasGemmBatchedEx hipblasGemmBatchedEx
-#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
-#define cublasHandle_t hipblasHandle_t
-#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
-#define cublasSetStream hipblasSetStream
-#define cublasSgemm hipblasSgemm
-#define cublasStatus_t hipblasStatus_t
-#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
-#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
-#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
-#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
-#define cudaDeviceProp hipDeviceProp_t
-#define cudaDeviceSynchronize hipDeviceSynchronize
-#define cudaError_t hipError_t
-#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
-#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
-#define cudaEventCreateWithFlags hipEventCreateWithFlags
-#define cudaEventDisableTiming hipEventDisableTiming
-#define cudaEventRecord hipEventRecord
-#define cudaEventSynchronize hipEventSynchronize
-#define cudaEvent_t hipEvent_t
-#define cudaEventDestroy hipEventDestroy
-#define cudaFree hipFree
-#define cudaFreeHost hipHostFree
-#define cudaGetDevice hipGetDevice
-#define cudaGetDeviceCount hipGetDeviceCount
-#define cudaGetDeviceProperties hipGetDeviceProperties
-#define cudaGetErrorString hipGetErrorString
-#define cudaGetLastError hipGetLastError
-#define cudaLaunchHostFunc hipLaunchHostFunc
-#ifdef GGML_HIP_UMA
-#define cudaMalloc hipMallocManaged
-#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
-#else
-#define cudaMalloc hipMalloc
-#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
-#endif
-#define cudaMemcpy hipMemcpy
-#define cudaMemcpyAsync hipMemcpyAsync
-#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
-#define cudaMemcpy2DAsync hipMemcpy2DAsync
-#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
-#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
-#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
-#define cudaMemcpyKind hipMemcpyKind
-#define cudaMemset hipMemset
-#define cudaMemsetAsync hipMemsetAsync
-#define cudaMemGetInfo hipMemGetInfo
-#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
-#define cudaSetDevice hipSetDevice
-#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
-#define cudaStreamFireAndForget hipStreamFireAndForget
-#define cudaStreamNonBlocking hipStreamNonBlocking
-#define cudaStreamPerThread hipStreamPerThread
-#define cudaStreamSynchronize hipStreamSynchronize
-#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
-#define cudaStream_t hipStream_t
-#define cudaSuccess hipSuccess
-#define __trap abort
-#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
-#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
-#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
-#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
-#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
-#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
-#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
-#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
-#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
-#else
-#include <cuda_runtime.h>
-#include <cuda.h>
-#include <cublas_v2.h>
-#include <cuda_fp16.h>
-
-#if CUDART_VERSION < 11020
-#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
-#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
-#define CUBLAS_COMPUTE_16F CUDA_R_16F
-#define CUBLAS_COMPUTE_32F CUDA_R_32F
-#define cublasComputeType_t cudaDataType_t
-#endif // CUDART_VERSION < 11020
-
-#endif // defined(GGML_USE_HIPBLAS)
-
-#define CUDART_HMAX     11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
-
-#define CC_PASCAL     600
-#define MIN_CC_DP4A   610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
-#define CC_VOLTA      700
-#define CC_OFFSET_AMD 1000000
-#define CC_RDNA1      (CC_OFFSET_AMD + 1010)
-#define CC_RDNA2      (CC_OFFSET_AMD + 1030)
-#define CC_RDNA3      (CC_OFFSET_AMD + 1100)
-
-#define GGML_CUDA_MAX_NODES 8192
-
-// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
-// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
-// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
-// -  7B quantum model: +100-200 MB
-// - 13B quantum model: +200-400 MB
-//
-//#define GGML_CUDA_FORCE_MMQ
-
-// TODO: improve this to be correct for more hardware
-//       for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
-#if !defined(GGML_CUDA_FORCE_MMQ)
-#define CUDA_USE_TENSOR_CORES
-#endif
-
-#define MMVQ_MAX_BATCH_SIZE  8 // max batch size to use MMVQ kernels
-#define  MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
-
-#if defined(GGML_USE_HIPBLAS)
-#define __CUDA_ARCH__ 1300
-
-#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
-    defined(__gfx1150__) || defined(__gfx1151__)
-#define RDNA3
-#endif
-
-#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
-    defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
-#define RDNA2
-#endif
-
-#ifndef __has_builtin
-    #define __has_builtin(x) 0
-#endif
-
-typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
-typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
-static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
-    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
-    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
-#if __has_builtin(__builtin_elementwise_sub_sat)
-    const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
-    return reinterpret_cast<const int &>(c);
-#else
-    int8x4_t c;
-    int16_t tmp;
-#pragma unroll
-    for (int i = 0; i < 4; i++) {
-        tmp = va[i] - vb[i];
-        if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
-        if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
-        c[i] = tmp;
-    }
-    return reinterpret_cast<int &>(c);
-#endif // __has_builtin(__builtin_elementwise_sub_sat)
-}
-
-static __device__ __forceinline__ int __vsub4(const int a, const int b) {
-    return __vsubss4(a, b);
-}
-
-static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
-    const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
-    const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
-    unsigned int c;
-    uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
-#pragma unroll
-    for (int i = 0; i < 4; ++i) {
-        vc[i] = va[i] == vb[i] ? 0xff : 0x00;
-    }
-    return c;
-}
-
-static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
-#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
-    c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
-    c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
-#elif defined(__gfx1010__) || defined(__gfx900__)
-    int tmp1;
-    int tmp2;
-    asm("\n \
-        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
-        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
-        v_add3_u32 %0, %1, %2, %0 \n \
-        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
-        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
-        v_add3_u32 %0, %1, %2, %0 \n \
-        "
-        : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
-        : "v"(a), "v"(b)
-    );
-#else
-    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
-    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
-    c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
-#endif
-    return c;
-}
-#endif // defined(GGML_USE_HIPBLAS)
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
 
 static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 
 [[noreturn]]
-static void ggml_cuda_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
+void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
     int id = -1; // in case cudaGetDevice fails
     cudaGetDevice(&id);
 
@@ -267,178 +60,9 @@ static void ggml_cuda_error(const char * stmt, const char * func, const char * f
     GGML_ASSERT(!"CUDA error");
 }
 
-#define CUDA_CHECK_GEN(err, success, error_fn)                                      \
-     do {                                                                           \
-        auto err_ = (err);                                                          \
-        if (err_ != (success)) {                                                    \
-            ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_));    \
-        }                                                                           \
-    } while (0)
-
-#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
-
-#if CUDART_VERSION >= 12000
-    static const char * cublas_get_error_str(const cublasStatus_t err) {
-        return cublasGetStatusString(err);
-    }
-#else
-    static const char * cublas_get_error_str(const cublasStatus_t err) {
-        switch (err) {
-            case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
-            case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
-            case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
-            case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
-            case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
-            case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
-            case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
-            case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
-            case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
-            default: return "unknown error";
-        }
-    }
-#endif // CUDART_VERSION >= 12000
-
-#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
-
-#if !defined(GGML_USE_HIPBLAS)
-static const char * cu_get_error_str(CUresult err) {
-    const char * err_str;
-    cuGetErrorString(err, &err_str);
-    return err_str;
-}
-#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
-#endif
-
-#if CUDART_VERSION >= 11100
-#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
-#else
-#define GGML_CUDA_ASSUME(x)
-#endif // CUDART_VERSION >= 11100
-
-#ifdef GGML_CUDA_F16
-typedef half dfloat; // dequantize float
-typedef half2 dfloat2;
-#else
-typedef float dfloat; // dequantize float
-typedef float2 dfloat2;
-#endif //GGML_CUDA_F16
-
-static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
-    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
-    int x32 = 0;
-    x32 |= x16[0] <<  0;
-    x32 |= x16[1] << 16;
-
-    return x32;
-}
-
-static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
-    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
-    int x32 = 0;
-    x32 |= x16[0] <<  0;
-    x32 |= x16[1] << 16;
-
-    return x32;
-}
-
-static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
-    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
-    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-template<typename T>
-using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
-typedef to_t_cuda_t<float> to_fp32_cuda_t;
-typedef to_t_cuda_t<half> to_fp16_cuda_t;
-
-typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
-typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
-typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
-typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
-typedef void (*ggml_cuda_op_mul_mat_t)(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
-    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
-    const int64_t src1_padded_row_size, cudaStream_t stream);
-typedef void (*ggml_cuda_op_flatten_t)(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream);
-
-typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
-typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
-typedef void (*load_tiles_cuda_t)(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
-typedef float (*vec_dot_q_mul_mat_cuda_t)(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
-
-#define WARP_SIZE 32
-#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
-
-#define CUDA_GELU_BLOCK_SIZE 256
-#define CUDA_SILU_BLOCK_SIZE 256
-#define CUDA_TANH_BLOCK_SIZE 256
-#define CUDA_RELU_BLOCK_SIZE 256
-#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
-#define CUDA_HARDSWISH_BLOCK_SIZE 256
-#define CUDA_SQR_BLOCK_SIZE 256
-#define CUDA_CPY_BLOCK_SIZE 32
-#define CUDA_SCALE_BLOCK_SIZE 256
-#define CUDA_CLAMP_BLOCK_SIZE 256
-#define CUDA_ROPE_BLOCK_SIZE 256
-#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
-#define CUDA_ALIBI_BLOCK_SIZE 32
-#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
-#define CUDA_QUANTIZE_BLOCK_SIZE 256
-#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
-#define CUDA_GET_ROWS_BLOCK_SIZE 256
-#define CUDA_UPSCALE_BLOCK_SIZE 256
-#define CUDA_CONCAT_BLOCK_SIZE 256
-#define CUDA_PAD_BLOCK_SIZE 256
-#define CUDA_ARANGE_BLOCK_SIZE 256
-#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
-#define CUDA_ACC_BLOCK_SIZE 256
-#define CUDA_IM2COL_BLOCK_SIZE 256
-#define CUDA_POOL2D_BLOCK_SIZE 256
-
-#define CUDA_Q8_0_NE_ALIGN 2048
-
-// dmmv = dequantize_mul_mat_vec
-#ifndef GGML_CUDA_DMMV_X
-#define GGML_CUDA_DMMV_X 32
-#endif
-#ifndef GGML_CUDA_MMV_Y
-#define GGML_CUDA_MMV_Y 1
-#endif
-
-#ifndef K_QUANTS_PER_ITERATION
-#define K_QUANTS_PER_ITERATION 2
-#else
-static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
-#endif
-
-#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
-#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
-#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
-
-#define MUL_MAT_SRC1_COL_STRIDE 128
-
-#define MAX_STREAMS 8
-static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
-
-struct ggml_tensor_extra_gpu {
-    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
-    cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
-};
-
 // this is faster on Windows
 // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
-static void ggml_cuda_set_device(const int device) {
+void ggml_cuda_set_device(int device) {
     int current_device;
     CUDA_CHECK(cudaGetDevice(&current_device));
 
@@ -449,10801 +73,2329 @@ static void ggml_cuda_set_device(const int device) {
     CUDA_CHECK(cudaSetDevice(device));
 }
 
-static int g_device_count = -1;
-static int g_main_device = 0;
-static std::array<float, GGML_CUDA_MAX_DEVICES> g_default_tensor_split = {};
+int ggml_cuda_get_device() {
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    return id;
+}
 
-struct cuda_device_capabilities {
-    int     cc;                 // compute capability
-    size_t  smpb;               // max. shared memory per block
-    bool    vmm;                // virtual memory support
-    size_t  vmm_granularity;    // granularity of virtual memory
-};
+static ggml_cuda_device_info ggml_cuda_init() {
+#ifdef __HIP_PLATFORM_AMD__
+    // Workaround for a rocBLAS bug when using multiple graphics cards:
+    // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
+    rocblas_initialize();
+    CUDA_CHECK(cudaDeviceSynchronize());
+#endif
 
-static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, 0, false, 0} };
+    ggml_cuda_device_info info = {};
 
-static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+    cudaError_t err = cudaGetDeviceCount(&info.device_count);
+    if (err != cudaSuccess) {
+        fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
+        return info;
+    }
 
-[[noreturn]]
-static __device__ void no_device_code(
-    const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
+    GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
 
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
-           file_name, line, function_name, arch);
-    (void) arch_list;
+    int64_t total_vram = 0;
+#if defined(GGML_CUDA_FORCE_MMQ)
+    fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   yes\n", __func__);
 #else
-    printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
-           file_name, line, function_name, arch, arch_list);
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    __trap();
+    fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   no\n", __func__);
+#endif
+#if defined(CUDA_USE_TENSOR_CORES)
+    fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
+#else
+    fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
+#endif
+    fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
+    for (int id = 0; id < info.device_count; ++id) {
+        int device_vmm = 0;
 
-    (void) no_device_code; // suppress unused function warning
-}
+#if !defined(GGML_USE_HIPBLAS)
+        CUdevice device;
+        CU_CHECK(cuDeviceGet(&device, id));
+        CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
 
-#ifdef __CUDA_ARCH__
-#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
-#else
-#define NO_DEVICE_CODE GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
-#endif // __CUDA_ARCH__
+        if (device_vmm) {
+            CUmemAllocationProp alloc_prop = {};
+            alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+            alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+            alloc_prop.location.id = id;
+            CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
+        }
+#endif // !defined(GGML_USE_HIPBLAS)
+        info.devices[id].vmm = !!device_vmm;
 
-static __device__ __forceinline__ float warp_reduce_sum(float x) {
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        x += __shfl_xor_sync(0xffffffff, x, mask, 32);
-    }
-    return x;
-}
+        cudaDeviceProp prop;
+        CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
+        fprintf(stderr, "  Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
 
-static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
-        a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
-    }
-    return a;
-}
+        info.default_tensor_split[id] = total_vram;
+        total_vram += prop.totalGlobalMem;
 
-#ifdef GGML_CUDA_F16
-static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
-#pragma unroll
-   for (int mask = 16; mask > 0; mask >>= 1) {
-       a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
-   }
-   return a;
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+        info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
 #else
-   (void) a;
-   NO_DEVICE_CODE;
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
-}
-#endif // GGML_CUDA_F16
+        info.devices[id].cc = 100*prop.major + 10*prop.minor;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+        info.devices[id].smpb = prop.sharedMemPerBlock;
+    }
 
-static __device__ __forceinline__ float warp_reduce_max(float x) {
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+    for (int id = 0; id < info.device_count; ++id) {
+        info.default_tensor_split[id] /= total_vram;
     }
-    return x;
-}
 
-//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
-//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
-//#pragma unroll
-//    for (int mask = 16; mask > 0; mask >>= 1) {
-//        x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
-//    }
-//    return x;
-//#else
-//    (void) x;
-//    NO_DEVICE_CODE;
-//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
-//}
+    // configure logging to stdout
+    // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 
-static __device__ __forceinline__ float op_repeat(const float a, const float b) {
-    return b;
-    GGML_UNUSED(a);
+    return info;
 }
 
-static __device__ __forceinline__ float op_add(const float a, const float b) {
-    return a + b;
+const ggml_cuda_device_info & ggml_cuda_info() {
+    static ggml_cuda_device_info info = ggml_cuda_init();
+    return info;
 }
 
-static __device__ __forceinline__ float op_mul(const float a, const float b) {
-    return a * b;
-}
+// #define DEBUG_CUDA_MALLOC
 
-static __device__ __forceinline__ float op_div(const float a, const float b) {
-    return a / b;
-}
+// buffer pool for cuda (legacy)
+struct ggml_cuda_pool_leg : public ggml_cuda_pool {
+    static const int MAX_BUFFERS = 256;
 
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
-        int ne0, int ne1, int ne2, int ne3,
-        int ne10, int ne11, int ne12, int ne13,
-        /*int s0, */ int s1,  int s2,  int s3,
-        /*int s10,*/ int s11, int s12, int s13) {
-    const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
-    const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
-    const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
-    const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
-
-    if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
-        return;
-    }
+    int device;
+    struct ggml_cuda_buffer {
+        void * ptr = nullptr;
+        size_t size = 0;
+    };
 
-    const int i11 = i1 % ne11;
-    const int i12 = i2 % ne12;
-    const int i13 = i3 % ne13;
+    ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
+    size_t pool_size = 0;
 
-    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
-    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
-    const size_t i_dst  = i_src0;
+    explicit ggml_cuda_pool_leg(int device) :
+        device(device) {
+    }
 
-    const src0_t * src0_row = src0 + i_src0;
-    const src1_t * src1_row = src1 + i_src1;
-    dst_t * dst_row = dst + i_dst;
+    ~ggml_cuda_pool_leg() {
+        ggml_cuda_set_device(device);
+        for (int i = 0; i < MAX_BUFFERS; ++i) {
+            ggml_cuda_buffer & b = buffer_pool[i];
+            if (b.ptr != nullptr) {
+                CUDA_CHECK(cudaFree(b.ptr));
+                pool_size -= b.size;
+            }
+        }
+        GGML_ASSERT(pool_size == 0);
+    }
 
-    for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
-        const int i10 = i0 % ne10;
-        dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+    void * alloc(size_t size, size_t * actual_size) override {
+#ifdef DEBUG_CUDA_MALLOC
+        int nnz = 0;
+        size_t max_size = 0;
+#endif
+        size_t best_diff = 1ull << 36;
+        int ibest = -1;
+        for (int i = 0; i < MAX_BUFFERS; ++i) {
+            ggml_cuda_buffer& b = buffer_pool[i];
+            if (b.ptr != nullptr) {
+#ifdef DEBUG_CUDA_MALLOC
+                ++nnz;
+                if (b.size > max_size) max_size = b.size;
+#endif
+                if (b.size >= size) {
+                    size_t diff = b.size - size;
+                    if (diff < best_diff) {
+                        best_diff = diff;
+                        ibest = i;
+                        if (!best_diff) {
+                            void * ptr = b.ptr;
+                            *actual_size = b.size;
+                            b.ptr = nullptr;
+                            b.size = 0;
+                            return ptr;
+                        }
+                    }
+                }
+            }
+        }
+        if (ibest >= 0) {
+            ggml_cuda_buffer& b = buffer_pool[ibest];
+            void * ptr = b.ptr;
+            *actual_size = b.size;
+            b.ptr = nullptr;
+            b.size = 0;
+            return ptr;
+        }
+        void * ptr;
+        size_t look_ahead_size = (size_t) (1.05 * size);
+        look_ahead_size = 256 * ((look_ahead_size + 255)/256);
+        ggml_cuda_set_device(device);
+        CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
+        *actual_size = look_ahead_size;
+        pool_size += look_ahead_size;
+#ifdef DEBUG_CUDA_MALLOC
+        fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
+                (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
+#endif
+        return ptr;
     }
-}
 
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
-        int ne0, int ne1, int ne2, int ne3,
-        int ne10, int ne11, int ne12, int ne13,
-        /*int s0, */ int s1,  int s2,  int s3,
-        /*int s10,*/ int s11, int s12, int s13) {
+    void free(void * ptr, size_t size) override {
+        for (int i = 0; i < MAX_BUFFERS; ++i) {
+            ggml_cuda_buffer& b = buffer_pool[i];
+            if (b.ptr == nullptr) {
+                b.ptr = ptr;
+                b.size = size;
+                return;
+            }
+        }
+        fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
+        ggml_cuda_set_device(device);
+        CUDA_CHECK(cudaFree(ptr));
+        pool_size -= size;
+    }
+};
 
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+// pool with virtual memory
+#if !defined(GGML_USE_HIPBLAS)
+struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
+    static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
 
-    const int i3 = i/(ne2*ne1*ne0);
-    const int i2 = (i/(ne1*ne0)) % ne2;
-    const int i1 = (i/ne0) % ne1;
-    const int i0 = i % ne0;
+    int device;
+    CUdeviceptr pool_addr = 0;
+    size_t pool_used = 0;
+    size_t pool_size = 0;
+    size_t granularity;
 
-    if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
-        return;
+    explicit ggml_cuda_pool_vmm(int device) :
+        device(device),
+        granularity(ggml_cuda_info().devices[device].vmm_granularity) {
     }
 
-    const int i11 = i1 % ne11;
-    const int i12 = i2 % ne12;
-    const int i13 = i3 % ne13;
+    ~ggml_cuda_pool_vmm() {
+        if (pool_addr != 0) {
+            CU_CHECK(cuMemUnmap(pool_addr, pool_size));
+            CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
+        }
+    }
 
-    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
-    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
-    const size_t i_dst  = i_src0;
+    void * alloc(size_t size, size_t * actual_size) override {
+        // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
+        const size_t alignment = 128;
+        size = alignment * ((size + alignment - 1) / alignment);
 
-    const src0_t * src0_row = src0 + i_src0;
-    const src1_t * src1_row = src1 + i_src1;
-    dst_t * dst_row = dst + i_dst;
+        size_t avail = pool_size - pool_used;
 
-    const int i10 = i0 % ne10;
-    dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
-}
+        if (size > avail) {
+            // round up to the next multiple of the granularity
+            size_t reserve_size = size - avail;
+            reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
 
-static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
-    const int ne10, const int ne11, const int ne12,
-    const int nb1, const int nb2, int offset) {
-    const int i = blockDim.x * blockIdx.x + threadIdx.x;
-    if (i >= ne) {
-        return;
-    }
-    int src1_idx = i - offset;
-    int oz = src1_idx / nb2;
-    int oy = (src1_idx - (oz * nb2)) / nb1;
-    int ox = src1_idx % nb1;
-    if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
-        dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
-    } else {
-        dst[i] = x[i];
-    }
-}
+            GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
 
-static __global__ void gelu_f32(const float * x, float * dst, const int k) {
-    const float GELU_COEF_A    = 0.044715f;
-    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+            // allocate more physical memory
+            CUmemAllocationProp prop = {};
+            prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+            prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+            prop.location.id = device;
+            CUmemGenericAllocationHandle handle;
+            CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
 
-    if (i >= k) {
-        return;
-    }
+            // reserve virtual address space (if not already reserved)
+            if (pool_addr == 0) {
+                CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
+            }
 
-    float xi = x[i];
-    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
-}
+            // map at the end of the pool
+            CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
 
-static __global__ void silu_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+            // the memory allocation handle is no longer needed after mapping
+            CU_CHECK(cuMemRelease(handle));
 
-    if (i >= k) {
-        return;
-    }
-    dst[i] = x[i] / (1.0f + expf(-x[i]));
-}
+            // set access
+            CUmemAccessDesc access = {};
+            access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+            access.location.id = device;
+            access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
+            CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
 
-static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
-    const float GELU_QUICK_COEF = -1.702f;
-    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
-    if (i >= k) {
-        return;
-    }
-    dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
-}
+            // add to the pool
+            pool_size += reserve_size;
 
-static __global__ void tanh_f32(const float * x, float * dst, int k) {
-    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
-    if (i >= k) {
-        return;
-    }
-    dst[i] = tanhf(x[i]);
-}
+            //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
+            //       device, (unsigned long long) (pool_size/1024/1024),
+            //       (unsigned long long) (reserve_size/1024/1024));
+        }
 
-static __global__ void relu_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+        GGML_ASSERT(pool_addr != 0);
 
-    if (i >= k) {
-        return;
-    }
-    dst[i] = fmaxf(x[i], 0);
-}
+        void * ptr = (void *) (pool_addr + pool_used);
+        *actual_size = size;
+        pool_used += size;
 
-static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+#ifdef DEBUG_CUDA_MALLOC
+        printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
+#endif
 
-    if (i >= k) {
-        return;
+        return ptr;
     }
-    dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
-}
 
-static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+    void free(void * ptr, size_t size) override {
+#ifdef DEBUG_CUDA_MALLOC
+        printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
+#endif
 
-    if (i >= k) {
-        return;
-    }
-    dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
-}
+        pool_used -= size;
 
-static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
-    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
-    if (i >= k) {
-        return;
+        // all deallocations must be in reverse order of the allocations
+        GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
     }
-    dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
-}
-
-static __global__ void sqr_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+};
+#endif // !defined(GGML_USE_HIPBLAS)
 
-    if (i >= k) {
-        return;
+std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
+#if !defined(GGML_USE_HIPBLAS)
+    if (ggml_cuda_info().devices[device].vmm) {
+        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
     }
-    dst[i] = x[i] * x[i];
+#endif
+    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
 }
 
-template <int block_size>
-static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    const int tid = threadIdx.x;
+// cuda buffer
 
-    float2 mean_var = make_float2(0.f, 0.f);
+struct ggml_backend_cuda_buffer_context {
+    int device;
+    void * dev_ptr = nullptr;
+    std::string name;
 
-    for (int col = tid; col < ncols; col += block_size) {
-        const float xi = x[row*ncols + col];
-        mean_var.x += xi;
-        mean_var.y += xi * xi;
+    ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
+        device(device), dev_ptr(dev_ptr),
+        name(GGML_CUDA_NAME + std::to_string(device)) {
     }
 
-    // sum up partial sums
-    mean_var = warp_reduce_sum(mean_var);
-    if (block_size > WARP_SIZE) {
-        __shared__ float2 s_sum[32];
-        int warp_id = threadIdx.x / WARP_SIZE;
-        int lane_id = threadIdx.x % WARP_SIZE;
-        if (lane_id == 0) {
-            s_sum[warp_id] = mean_var;
-        }
-        __syncthreads();
-        mean_var = s_sum[lane_id];
-        mean_var = warp_reduce_sum(mean_var);
+    ~ggml_backend_cuda_buffer_context() {
+        CUDA_CHECK(cudaFree(dev_ptr));
     }
+};
 
-    const float mean = mean_var.x / ncols;
-    const float var = mean_var.y / ncols - mean * mean;
-    const float inv_std = rsqrtf(var + eps);
-
-    for (int col = tid; col < ncols; col += block_size) {
-        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
-    }
+GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+    return ctx->name.c_str();
 }
 
-static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
-    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
-    if (nidx >= ne0) {
-        return;
-    }
-    // operation
-    int offset_dst =
-        nidx +
-        blockIdx.y * ne0 +
-        blockIdx.z * ne0 * gridDim.y;
-    if (blockIdx.z < ne02) { // src0
-        int offset_src =
-            nidx +
-            blockIdx.y * ne0 +
-            blockIdx.z * ne0 * gridDim.y;
-        dst[offset_dst] = x[offset_src];
-    } else {
-        int offset_src =
-            nidx +
-            blockIdx.y * ne0 +
-            (blockIdx.z - ne02) * ne0 *  gridDim.y;
-        dst[offset_dst] = y[offset_src];
-    }
+GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
+    return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
 }
 
-static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
-    // blockIdx.z: idx of ne02*ne03
-    // blockIdx.y: idx of ne01*scale_factor, aka ne1
-    // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
-    // ne00xne01: ne00 * ne01
-    int ne0 = ne00 * scale_factor;
-    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
-    if (nidx >= ne0) {
-        return;
-    }
-    // operation
-    int i00 = nidx / scale_factor;
-    int i01 = blockIdx.y / scale_factor;
-    int offset_src =
-        i00 +
-        i01 * ne00 +
-        blockIdx.z * ne00xne01;
-    int offset_dst =
-        nidx +
-        blockIdx.y * ne0 +
-        blockIdx.z * ne0 * gridDim.y;
-    dst[offset_dst] = x[offset_src];
+GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+    delete ctx;
 }
 
-static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
-    // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
-    // blockIdx.y: idx of ne1
-    // blockIDx.x: idx of ne0 / BLOCK_SIZE
-    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
-    if (nidx >= ne0) {
-        return;
-    }
-
-    // operation
-    int offset_dst =
-        nidx +
-        blockIdx.y * ne0 +
-        blockIdx.z * ne0 * gridDim.y;
-    if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
-        int offset_src =
-            nidx +
-            blockIdx.y * ne00 +
-            blockIdx.z * ne00 * ne01;
-        dst[offset_dst] = x[offset_src];
-    } else {
-        dst[offset_dst] = 0.0f;
-    }
+GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+    return ctx->dev_ptr;
 }
 
-static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
-    // blockIDx.x: idx of ne0 / BLOCK_SIZE
-    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
-    if (nidx >= ne0) {
+GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+
+    if (tensor->view_src != NULL && tensor->view_offs == 0) {
+        assert(tensor->view_src->buffer->buft == buffer->buft);
+        tensor->backend = tensor->view_src->backend;
+        tensor->extra = tensor->view_src->extra;
         return;
     }
-    dst[nidx] = start + step * nidx;
-}
 
-static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
-    // blockIDx.y: idx of timesteps->ne[0]
-    // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
-    int i = blockIdx.y;
-    int j = threadIdx.x + blockIdx.x * blockDim.x;
-    float * embed_data = (float *)((char *)dst +  i*nb1);
+    if (ggml_is_quantized(tensor->type)) {
+        // initialize padding to 0 to avoid possible NaN values
+        size_t original_size = ggml_nbytes(tensor);
+        size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 
-    if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
-        embed_data[dim] = 0.f;
+        if (padded_size > original_size && tensor->view_src == nullptr) {
+            ggml_cuda_set_device(ctx->device);
+            CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
+        }
     }
+}
 
-    int half = dim / 2;
-    if (j >= half) {
-        return;
-    }
+GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 
-    float timestep = timesteps[i];
-    float freq = (float)expf(-logf(max_period) * j / half);
-    float arg = timestep * freq;
-    embed_data[j] = cosf(arg);
-    embed_data[j + half] = sinf(arg);
+    ggml_cuda_set_device(ctx->device);
+    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
+    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 }
 
-template <int block_size>
-static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
-    // blockIdx.x: num_groups idx
-    // threadIdx.x: block_size idx
-    int start = blockIdx.x * group_size;
-    int end = start + group_size;
+GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 
-    start += threadIdx.x;
+    ggml_cuda_set_device(ctx->device);
+    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
+    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+}
 
-    if (end >= ne_elements) {
-        end = ne_elements;
-    }
-
-    float tmp = 0.0f; // partial sum for thread in warp
-
-    for (int j = start; j < end; j += block_size) {
-        tmp += x[j];
-    }
-
-    tmp = warp_reduce_sum(tmp);
-    if (block_size > WARP_SIZE) {
-        __shared__ float s_sum[32];
-        int warp_id = threadIdx.x / WARP_SIZE;
-        int lane_id = threadIdx.x % WARP_SIZE;
-        if (lane_id == 0) {
-            s_sum[warp_id] = tmp;
-        }
-        __syncthreads();
-        tmp = s_sum[lane_id];
-        tmp = warp_reduce_sum(tmp);
-    }
-
-    float mean = tmp / group_size;
-    tmp = 0.0f;
-
-    for (int j = start; j < end; j += block_size) {
-        float xi = x[j] - mean;
-        dst[j] = xi;
-        tmp += xi * xi;
-    }
-
-    tmp = warp_reduce_sum(tmp);
-    if (block_size > WARP_SIZE) {
-        __shared__ float s_sum[32];
-        int warp_id = threadIdx.x / WARP_SIZE;
-        int lane_id = threadIdx.x % WARP_SIZE;
-        if (lane_id == 0) {
-            s_sum[warp_id] = tmp;
+GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+    if (ggml_backend_buffer_is_cuda(src->buffer)) {
+        ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
+        ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
+        if (src_ctx->device == dst_ctx->device) {
+            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
+        } else {
+#ifdef GGML_CUDA_NO_PEER_COPY
+            return false;
+#else
+            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
+#endif
         }
-        __syncthreads();
-        tmp = s_sum[lane_id];
-        tmp = warp_reduce_sum(tmp);
+        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+        return true;
     }
+    return false;
 
-    float variance = tmp / group_size;
-    float scale = rsqrtf(variance + eps);
-    for (int j = start; j < end; j += block_size) {
-        dst[j] *= scale;
-    }
+    GGML_UNUSED(buffer);
 }
 
-template <int block_size>
-static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    const int tid = threadIdx.x;
-
-    float tmp = 0.0f; // partial sum for thread in warp
-
-    for (int col = tid; col < ncols; col += block_size) {
-        const float xi = x[row*ncols + col];
-        tmp += xi * xi;
-    }
-
-    // sum up partial sums
-    tmp = warp_reduce_sum(tmp);
-    if (block_size > WARP_SIZE) {
-        __shared__ float s_sum[32];
-        int warp_id = threadIdx.x / WARP_SIZE;
-        int lane_id = threadIdx.x % WARP_SIZE;
-        if (lane_id == 0) {
-            s_sum[warp_id] = tmp;
-        }
-        __syncthreads();
-        tmp = s_sum[lane_id];
-        tmp = warp_reduce_sum(tmp);
-    }
-
-    const float mean = tmp / ncols;
-    const float scale = rsqrtf(mean + eps);
+GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 
-    for (int col = tid; col < ncols; col += block_size) {
-        dst[row*ncols + col] = scale * x[row*ncols + col];
-    }
+    ggml_cuda_set_device(ctx->device);
+    CUDA_CHECK(cudaDeviceSynchronize());
+    CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
+    CUDA_CHECK(cudaDeviceSynchronize());
 }
 
-static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q4_0 * x = (const block_q4_0 *) vx;
-
-    const dfloat d = x[ib].d;
+static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
+    /* .get_name        = */ ggml_backend_cuda_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
+    /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
+    /* .clear           = */ ggml_backend_cuda_buffer_clear,
+    /* .reset           = */ NULL,
+};
 
-    const int vui = x[ib].qs[iqs];
+// cuda buffer type
+struct ggml_backend_cuda_buffer_type_context {
+    int device;
+    std::string name;
+};
 
-    v.x = vui & 0xF;
-    v.y = vui >> 4;
+GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 
-#ifdef GGML_CUDA_F16
-    v = __hsub2(v, {8.0f, 8.0f});
-    v = __hmul2(v, {d, d});
-#else
-    v.x = (v.x - 8.0f) * d;
-    v.y = (v.y - 8.0f) * d;
-#endif // GGML_CUDA_F16
+    return ctx->name.c_str();
 }
 
-static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q4_1 * x = (const block_q4_1 *) vx;
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+
+    ggml_cuda_set_device(buft_ctx->device);
 
-    const dfloat d = __low2half(x[ib].dm);
-    const dfloat m = __high2half(x[ib].dm);
+    size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
 
-    const int vui = x[ib].qs[iqs];
+    void * dev_ptr;
+    cudaError_t err = cudaMalloc(&dev_ptr, size);
+    if (err != cudaSuccess) {
+        fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
+        return nullptr;
+    }
 
-    v.x = vui & 0xF;
-    v.y = vui >> 4;
+    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
 
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-    v = __hadd2(v, {m, m});
-#else
-    v.x = (v.x * d) + m;
-    v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
+    return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
 }
 
-static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q5_0 * x = (const block_q5_0 *) vx;
+GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    return 128;
 
-    const dfloat d = x[ib].d;
+    GGML_UNUSED(buft);
+}
 
-    uint32_t qh;
-    memcpy(&qh, x[ib].qh, sizeof(qh));
+GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+    size_t size = ggml_nbytes(tensor);
+    int64_t ne0 = tensor->ne[0];
 
-    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+    if (ggml_is_quantized(tensor->type)) {
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
+    }
 
-    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
-    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
+    return size;
 
-#ifdef GGML_CUDA_F16
-    v = __hsub2(v, {16.0f, 16.0f});
-    v = __hmul2(v, {d, d});
-#else
-    v.x = (v.x - 16.0f) * d;
-    v.y = (v.y - 16.0f) * d;
-#endif // GGML_CUDA_F16
+    GGML_UNUSED(buft);
 }
 
-static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q5_1 * x = (const block_q5_1 *) vx;
-
-    const dfloat d = __low2half(x[ib].dm);
-    const dfloat m = __high2half(x[ib].dm);
-
-    uint32_t qh;
-    memcpy(&qh, x[ib].qh, sizeof(qh));
-
-    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    if (!ggml_backend_is_cuda(backend)) {
+        return false;
+    }
 
-    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
-    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
+    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-    v = __hadd2(v, {m, m});
-#else
-    v.x = (v.x * d) + m;
-    v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
+    return buft_ctx->device == cuda_ctx->device;
 }
 
-static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q8_0 * x = (const block_q8_0 *) vx;
-
-    const dfloat d = x[ib].d;
+static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_cuda_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
+    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
+    /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
+    /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
+    /* .is_host          = */ NULL,
+};
 
-    v.x = x[ib].qs[iqs + 0];
-    v.y = x[ib].qs[iqs + 1];
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
+    static std::mutex mutex;
+    std::lock_guard<std::mutex> lock(mutex);
 
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-#else
-    v.x *= d;
-    v.y *= d;
-#endif // GGML_CUDA_F16
-}
+    if (device >= ggml_backend_cuda_get_device_count()) {
+        return nullptr;
+    }
 
-template<typename dst_t>
-static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+    static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
 
-    const int i = blockIdx.x;
+    static bool ggml_backend_cuda_buffer_type_initialized = false;
 
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int il  = tid/8;
-    const int ir  = tid%8;
-    const int ib = 8*i + ir;
-    if (ib >= nb32) {
-        return;
+    if (!ggml_backend_cuda_buffer_type_initialized) {
+        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
+            ggml_backend_cuda_buffer_types[i] = {
+                /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
+                /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
+            };
+        }
+        ggml_backend_cuda_buffer_type_initialized = true;
     }
 
-    dst_t * y = yy + 256*i + 32*ir + 4*il;
+    return &ggml_backend_cuda_buffer_types[device];
+}
 
-    const block_q4_0 * x = (const block_q4_0 *)vx + ib;
-    const float d = __half2float(x->d);
-    const float dm = -8*d;
+// cuda split buffer
 
-    const uint8_t * q = x->qs + 4*il;
+static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
+    int64_t min_compute_capability = INT_MAX;
+    int64_t max_compute_capability = INT_MIN;
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
+            if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
+                min_compute_capability = ggml_cuda_info().devices[id].cc;
+            }
+            if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
+                max_compute_capability = ggml_cuda_info().devices[id].cc;
+            }
+        }
+    }
 
-    for (int l = 0; l < 4; ++l) {
-        y[l+ 0] = d * (q[l] & 0xF) + dm;
-        y[l+16] = d * (q[l] >>  4) + dm;
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    switch(type) {
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
+        case GGML_TYPE_F16:
+        case GGML_TYPE_F32:
+            return 1;
+        case GGML_TYPE_Q2_K:
+            return max_compute_capability >= CC_RDNA2 ? 128 : 32;
+        case GGML_TYPE_Q3_K:
+            return min_compute_capability < CC_RDNA2 ? 128 : 64;
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+        case GGML_TYPE_Q6_K:
+        case GGML_TYPE_IQ2_XXS:
+        case GGML_TYPE_IQ2_XS:
+        case GGML_TYPE_IQ2_S:
+        case GGML_TYPE_IQ3_XXS:
+        case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
+        case GGML_TYPE_IQ4_NL:
+        case GGML_TYPE_IQ4_XS:
+        case GGML_TYPE_IQ3_S:
+            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
+        default:
+            GGML_ASSERT(false);
+    }
+#else
+    switch(type) {
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+            return max_compute_capability >= CC_VOLTA ? 128 : 64;
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+            return 64;
+        case GGML_TYPE_F16:
+        case GGML_TYPE_F32:
+            return 1;
+        case GGML_TYPE_Q2_K:
+        case GGML_TYPE_Q3_K:
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+        case GGML_TYPE_IQ2_XXS:
+        case GGML_TYPE_IQ2_XS:
+        case GGML_TYPE_IQ2_S:
+        case GGML_TYPE_IQ3_XXS:
+        case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
+        case GGML_TYPE_IQ4_NL:
+        case GGML_TYPE_IQ4_XS:
+        case GGML_TYPE_IQ3_S:
+            return max_compute_capability >= CC_VOLTA ? 128 : 64;
+        case GGML_TYPE_Q6_K:
+            return 64;
+        default:
+            GGML_ASSERT(false);
     }
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
+    const int64_t nrows = ggml_nrows(tensor);
+    const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
 
-    const int i = blockIdx.x;
+    *row_low = id == 0 ? 0 : nrows*tensor_split[id];
+    *row_low -= *row_low % rounding;
 
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int il  = tid/8;
-    const int ir  = tid%8;
-    const int ib = 8*i + ir;
-    if (ib >= nb32) {
-        return;
+    if (id == ggml_backend_cuda_get_device_count() - 1) {
+        *row_high = nrows;
+    } else {
+        *row_high = nrows*tensor_split[id + 1];
+        *row_high -= *row_high % rounding;
     }
+}
 
-    dst_t * y = yy + 256*i + 32*ir + 4*il;
+static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
+    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 
-    const block_q4_1 * x = (const block_q4_1 *)vx + ib;
-    const float2 d = __half22float2(x->dm);
+    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
+}
 
-    const uint8_t * q = x->qs + 4*il;
+struct ggml_backend_cuda_split_buffer_type_context {
+    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+};
 
-    for (int l = 0; l < 4; ++l) {
-        y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
-        y[l+16] = d.x * (q[l] >>  4) + d.y;
+struct ggml_backend_cuda_split_buffer_context {
+    ~ggml_backend_cuda_split_buffer_context() {
+        for (ggml_tensor_extra_gpu * extra : tensor_extras) {
+            for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
+                for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
+                    if (extra->events[id][is] != nullptr) {
+                        CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
+                    }
+                }
+                if (extra->data_device[id] != nullptr) {
+                    CUDA_CHECK(cudaFree(extra->data_device[id]));
+                }
+            }
+            delete extra;
+        }
     }
-}
 
-//================================== k-quants
+    std::vector<ggml_tensor_extra_gpu *> tensor_extras;
+};
 
-template<typename dst_t>
-static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+    return GGML_CUDA_NAME "_Split";
 
-    const int i   = blockIdx.x;
-    const block_q2_K * x = (const block_q2_K *) vx;
+    GGML_UNUSED(buffer);
+}
 
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int n   = tid/32;
-    const int l   = tid - 32*n;
-    const int is  = 8*n + l/16;
+static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
+    return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
+    GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
+}
 
-    const uint8_t q = x[i].qs[32*n + l];
-    dst_t * y = yy + i*QK_K + 128*n;
+GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+    delete ctx;
+}
 
-    float dall = __low2half(x[i].dm);
-    float dmin = __high2half(x[i].dm);
-    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
-    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
-    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
-    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
-#else
-    const int is = tid/16;  // 0 or 1
-    const int il = tid%16;  // 0...15
-    const uint8_t q = x[i].qs[il] >> (2*is);
-    dst_t * y = yy + i*QK_K + 16*is + il;
-    float dall = __low2half(x[i].dm);
-    float dmin = __high2half(x[i].dm);
-    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
-    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
-#endif
+GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+    // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
+    return (void *)0x1000;
 
+    GGML_UNUSED(buffer);
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+    GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
 
-    const int i = blockIdx.x;
-    const block_q3_K * x = (const block_q3_K *) vx;
+    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 
-#if QK_K == 256
-    const int r = threadIdx.x/4;
-    const int tid = r/2;
-    const int is0 = r%2;
-    const int l0 = 16*is0 + 4*(threadIdx.x%4);
-    const int n = tid / 4;
-    const int j = tid - 4*n;
+    const int64_t ne0 = tensor->ne[0];
 
-    uint8_t m = 1 << (4*n + j);
-    int is = 8*n + 2*j + is0;
-    int shift = 2*j;
+    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
+    ctx->tensor_extras.push_back(extra);
 
-    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
-                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
-                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
-                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
-    float d_all = x[i].d;
-    float dl = d_all * (us - 32);
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        int64_t row_low, row_high;
+        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 
-    dst_t * y = yy + i*QK_K + 128*n + 32*j;
-    const uint8_t * q = x[i].qs + 32*n;
-    const uint8_t * hm = x[i].hmask;
+        int64_t nrows_split = row_high - row_low;
+        if (nrows_split == 0) {
+            continue;
+        }
 
-    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
-#else
-    const int tid = threadIdx.x;
-    const int is  = tid/16;  // 0 or 1
-    const int il  = tid%16;  // 0...15
-    const int im  = il/8;    // 0...1
-    const int in  = il%8;    // 0...7
+        size_t size = ggml_nbytes_split(tensor, nrows_split);
+        const size_t original_size = size;
 
-    dst_t * y = yy + i*QK_K + 16*is + il;
+        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
 
-    const uint8_t q = x[i].qs[il] >> (2*is);
-    const uint8_t h = x[i].hmask[in] >> (2*is + im);
-    const float   d = (float)x[i].d;
+        // FIXME: do not crash if cudaMalloc fails
+        // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
+        ggml_cuda_set_device(id);
+        char * buf;
+        CUDA_CHECK(cudaMalloc(&buf, size));
 
-    if (is == 0) {
-        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
-        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
-    } else {
-        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
-        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
-    }
-#endif
+        // set padding to 0 to avoid possible NaN values
+        if (size > original_size) {
+            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
+        }
 
-}
+        extra->data_device[id] = buf;
 
-#if QK_K == 256
-static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
-    if (j < 4) {
-        d = q[j] & 63; m = q[j + 4] & 63;
-    } else {
-        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
-        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
+        for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
+            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
+        }
     }
+    tensor->extra = extra;
 }
-#endif
-
-template<typename dst_t>
-static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-    const block_q4_K * x = (const block_q4_K *) vx;
-
-    const int i = blockIdx.x;
 
-#if QK_K == 256
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int il  = tid/8;
-    const int ir  = tid%8;
-    const int is  = 2*il;
-    const int n   = 4;
-
-    dst_t * y = yy + i*QK_K + 64*il + n*ir;
-
-    const float dall = __low2half(x[i].dm);
-    const float dmin = __high2half(x[i].dm);
-
-    const uint8_t * q = x[i].qs + 32*il + n*ir;
-
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, sc, m);
-    const float d1 = dall * sc; const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, sc, m);
-    const float d2 = dall * sc; const float m2 = dmin * m;
-    for (int l = 0; l < n; ++l) {
-        y[l + 0] = d1 * (q[l] & 0xF) - m1;
-        y[l +32] = d2 * (q[l] >>  4) - m2;
-    }
-#else
-    const int tid = threadIdx.x;
-    const uint8_t * q = x[i].qs;
-    dst_t * y = yy + i*QK_K;
-    const float d = (float)x[i].dm[0];
-    const float m = (float)x[i].dm[1];
-    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
-    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
-#endif
-}
+GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    // split tensors must always be set in their entirety at once
+    GGML_ASSERT(offset == 0);
+    GGML_ASSERT(size == ggml_nbytes(tensor));
 
-template<typename dst_t>
-static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-    const block_q5_K * x = (const block_q5_K *) vx;
+    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 
-    const int i = blockIdx.x;
+    const int64_t ne0 = tensor->ne[0];
+    const size_t nb1 = tensor->nb[1];
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 
-#if QK_K == 256
-    // assume 64 threads - this is very slightly better than the one below
-    const int tid = threadIdx.x;
-    const int il  = tid/16;   // il is in 0...3
-    const int ir  = tid%16;   // ir is in 0...15
-    const int is  = 2*il;     // is is in 0...6
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        int64_t row_low, row_high;
+        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 
-    dst_t * y = yy + i*QK_K + 64*il + 2*ir;
+        int64_t nrows_split = row_high - row_low;
+        if (nrows_split == 0) {
+            continue;
+        }
 
-    const float dall = __low2half(x[i].dm);
-    const float dmin = __high2half(x[i].dm);
+        const size_t offset_split = row_low*nb1;
+        size_t size = ggml_nbytes_split(tensor, nrows_split);
+        const size_t original_size = size;
 
-    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
-    const uint8_t * qh = x[i].qh + 2*ir;
+        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
 
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, sc, m);
-    const float d1 = dall * sc; const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, sc, m);
-    const float d2 = dall * sc; const float m2 = dmin * m;
+        const char * buf_host = (const char *)data + offset_split;
+        CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
+    }
 
-    uint8_t   hm  = 1 << (2*il);
-    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
-    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
-    hm <<= 1;
-    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
-    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
-#else
-    const int tid = threadIdx.x;
-    const uint8_t q = x[i].qs[tid];
-    const int im = tid/8;  // 0...3
-    const int in = tid%8;  // 0...7
-    const int is = tid/16; // 0 or 1
-    const uint8_t h = x[i].qh[in] >> im;
-    const float d = x[i].d;
-    dst_t * y = yy + i*QK_K + tid;
-    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
-    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
-#endif
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+    }
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-    const block_q6_K * x = (const block_q6_K *) vx;
-
-    const int i = blockIdx.x;
-#if QK_K == 256
-
-    // assume 64 threads - this is very slightly better than the one below
-    const int tid = threadIdx.x;
-    const int ip  = tid/32;   // ip is 0 or 1
-    const int il  = tid - 32*ip; // 0...32
-    const int is  = 8*ip + il/16;
-
-    dst_t * y = yy + i*QK_K + 128*ip + il;
-
-    const float d = x[i].d;
+GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    // split tensors must always be set in their entirety at once
+    GGML_ASSERT(offset == 0);
+    GGML_ASSERT(size == ggml_nbytes(tensor));
 
-    const uint8_t * ql = x[i].ql + 64*ip + il;
-    const uint8_t   qh = x[i].qh[32*ip + il];
-    const int8_t  * sc = x[i].scales + is;
+    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 
-    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
-    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
-    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
-#else
+    const int64_t ne0 = tensor->ne[0];
+    const size_t nb1 = tensor->nb[1];
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int ip  = tid/16;         // 0 or 1
-    const int il  = tid - 16*ip;    // 0...15
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        int64_t row_low, row_high;
+        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 
-    dst_t * y = yy + i*QK_K + 16*ip + il;
+        int64_t nrows_split = row_high - row_low;
+        if (nrows_split == 0) {
+            continue;
+        }
 
-    const float d = x[i].d;
+        const size_t offset_split = row_low*nb1;
+        size_t size = ggml_nbytes_split(tensor, nrows_split);
+        const size_t original_size = size;
 
-    const uint8_t   ql = x[i].ql[16*ip + il];
-    const uint8_t   qh = x[i].qh[il] >> (2*ip);
-    const int8_t  * sc = x[i].scales;
+        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
 
-    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
-    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-#endif
-}
+        char * buf_host = (char *)data + offset_split;
+        CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
+    }
 
-inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            return true;
-        default:
-            return false;
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
     }
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq2_xxs * x = (const block_iq2_xxs  *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const uint16_t * q2 = x[i].qs + 4*ib;
-    const uint8_t  * aux8 = (const uint8_t *)q2;
-    const uint8_t  * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
-    const uint32_t aux32 = q2[2] | (q2[3] << 16);
-    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
-    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
-    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
-    assert(false);
-#endif
-
+GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    GGML_UNUSED(buffer);
+    GGML_UNUSED(value);
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq2_xs * x = (const block_iq2_xs *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const uint16_t * q2 = x[i].qs + 4*ib;
-    const uint8_t  * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
-    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
-    const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
-    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
-    assert(false);
-#endif
+static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
+    /* .get_name        = */ ggml_backend_cuda_split_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
+    /* .cpy_tensor      = */ NULL,
+    /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
+    /* .reset           = */ NULL,
+};
 
-}
+// cuda split buffer type
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq2_s * x = (const block_iq2_s *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
-    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
-    const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
-    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
-    assert(false);
-#endif
+GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    return GGML_CUDA_NAME "_Split";
 
+    GGML_UNUSED(buft);
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq3_xxs * x = (const block_iq3_xxs  *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const uint8_t  * q3 = x[i].qs + 8*ib;
-    const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
-    const uint8_t  * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
-    const uint8_t  * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
-    const uint32_t aux32 = gas[0] | (gas[1] << 16);
-    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
-    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
-    for (int j = 0; j < 4; ++j) {
-        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
-        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
-    }
-#else
-    assert(false);
-#endif
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
+    // instead, we allocate them for each tensor separately in init_tensor
+    // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
+    // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
+    ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
 
+    return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq3_s * x = (const block_iq3_s *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const uint8_t * qs = x[i].qs + 8*ib;
-    const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
-    const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
-    const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
-    const uint8_t signs = x[i].signs[4*ib + il];
-    for (int j = 0; j < 4; ++j) {
-        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
-        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
-    }
-#else
-    assert(false);
-#endif
+GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    return 128;
 
+    GGML_UNUSED(buft);
 }
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_iq1_s * x = (const block_iq1_s  *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
-    const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
-    const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
-    uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
-    grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
-    grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
-    grid32[0] &= 0x0f0f0f0f;
-    for (int j = 0; j < 8; ++j) {
-        y[j] = d * (q[j] + delta);
-    }
-#else
-    assert(false);
-#endif
+GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
 
-}
+    size_t total_size = 0;
+
+    const int64_t ne0 = tensor->ne[0];
 
-static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        int64_t row_low, row_high;
+        get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
 
-template<typename dst_t>
-static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+        int64_t nrows_split = row_high - row_low;
+        if (nrows_split == 0) {
+            continue;
+        }
 
-    const int i   = blockIdx.x;
-    const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
+        total_size += ggml_nbytes_split(tensor, nrows_split);
 
-    const int tid = threadIdx.x;
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
-    const uint8_t  * q4 = x[ib].qs + 4*il;
-    const float d = (float)x[ib].d;
-    for (int j = 0; j < 4; ++j) {
-        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
-        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
+        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
     }
 
+    return total_size;
 }
 
-#if QK_K != 64
-template<typename dst_t>
-static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-    const int i   = blockIdx.x;
-    const block_iq4_xs * x = (const block_iq4_xs *)vx;
-
-    const int tid = threadIdx.x;
-    const int il = tid/8; // 0...3
-    const int ib = tid%8; // 0...7
-    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
-    const uint8_t  * q4 = x[i].qs + 16*ib + 4*il;
-    const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
-    for (int j = 0; j < 4; ++j) {
-        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
-        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
-    }
-}
-#endif
+GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    return ggml_backend_is_cuda(backend);
 
-static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+    GGML_UNUSED(buft);
+}
 
-    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+    return false;
 
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
+    GGML_UNUSED(buft);
+}
 
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
+static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_cuda_split_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
+    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
+    /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
+    /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
+    /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
+};
 
-    const block_q2_K * x = (const block_q2_K *)vx + ib0;
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
+    static std::mutex mutex;
+    std::lock_guard<std::mutex> lock(mutex);
 
-    float tmp = 0; // partial sum for thread in warp
+    static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
 
-#if QK_K == 256
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
+    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
 
-    const int step = 16/K_QUANTS_PER_ITERATION;
+    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
+    if (all_zero) {
+        tensor_split_arr = ggml_cuda_info().default_tensor_split;
+    } else {
+        float split_sum = 0.0f;
+        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
+            tensor_split_arr[i] = split_sum;
+            split_sum += tensor_split[i];
+        }
+        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
+            tensor_split_arr[i] /= split_sum;
+        }
+    }
 
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
+    auto it = buft_map.find(tensor_split_arr);
+    if (it != buft_map.end()) {
+        return &it->second;
+    }
 
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
-    const int q_offset = 32*im + l0;
-    const int s_offset = 8*im;
-    const int y_offset = 128*im + l0;
+    struct ggml_backend_buffer_type buft {
+        /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
+        /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
+    };
 
-    uint32_t aux[4];
-    const uint8_t * d = (const uint8_t *)aux;
-    const uint8_t * m = (const uint8_t *)(aux + 2);
+    auto result = buft_map.emplace(tensor_split_arr, buft);
+    return &result.first->second;
+}
 
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+// host buffer type
 
-        const float   * y = yy + i * QK_K + y_offset;
-        const uint8_t * q = x[i].qs + q_offset;
+GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    return GGML_CUDA_NAME "_Host";
 
-        const float dall = __low2half(x[i].dm);
-        const float dmin = __high2half(x[i].dm);
+    GGML_UNUSED(buft);
+}
 
-        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
-        aux[0] = a[0] & 0x0f0f0f0f;
-        aux[1] = a[1] & 0x0f0f0f0f;
-        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
-        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
+    return GGML_CUDA_NAME "_Host";
 
-        float sum1 = 0, sum2 = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
-                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
-                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
-                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
-                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
-                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
-                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
-                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
-            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
-                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+    GGML_UNUSED(buffer);
+}
 
-        }
-        tmp += dall * sum1 - dmin * sum2;
+GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    CUDA_CHECK(cudaFreeHost(buffer->context));
+}
 
+static void * ggml_cuda_host_malloc(size_t size) {
+    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
+        return nullptr;
     }
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
-    const int offset = tid * K_QUANTS_PER_ITERATION;
-
-    uint32_t uaux[2];
-    const uint8_t * d = (const uint8_t *)uaux;
 
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-
-        const float   * y = yy + i * QK_K + offset;
-        const uint8_t * q = x[i].qs + offset;
-        const uint32_t * s = (const uint32_t *)x[i].scales;
+    void * ptr = nullptr;
+    cudaError_t err = cudaMallocHost((void **) &ptr, size);
+    if (err != cudaSuccess) {
+        // clear the error
+        cudaGetLastError();
+        fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
+            size/1024.0/1024.0, cudaGetErrorString(err));
+        return nullptr;
+    }
 
-        uaux[0] = s[0] & 0x0f0f0f0f;
-        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
+    return ptr;
+}
 
-        const float2 dall = __half22float2(x[i].dm);
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    void * ptr = ggml_cuda_host_malloc(size);
 
-        float sum1 = 0, sum2 = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            const uint8_t ql = q[l];
-            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
-                  + y[l+16] * d[1] * ((ql >> 2) & 3)
-                  + y[l+32] * d[2] * ((ql >> 4) & 3)
-                  + y[l+48] * d[3] * ((ql >> 6) & 3);
-            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
-        }
-        tmp += dall.x * sum1 - dall.y * sum2;
+    if (ptr == nullptr) {
+        // fallback to cpu buffer
+        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
     }
-#endif
 
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
+    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+    buffer->buft = buft;
+    buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
+    buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
 
-    if (threadIdx.x == 0) {
-        dst[row] = tmp;
-    }
+    return buffer;
 }
 
-static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q3_K * x = (const block_q3_K *)vx + ib0;
-
-    float tmp = 0; // partial sum for thread in warp
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
+    static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
+        /* .iface    = */ {
+            /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
+            /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
+            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
+            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
+            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
+            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+        },
+        /* .context  = */ nullptr,
+    };
 
-#if QK_K == 256
+    return &ggml_backend_cuda_buffer_type_host;
+}
 
-    const uint16_t kmask1 = 0x0303;
-    const uint16_t kmask2 = 0x0f0f;
+//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
+//    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
+//}
 
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
+/// kernels
 
-    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
-    const int step = 16/K_QUANTS_PER_ITERATION;
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0....15 or 0...7
+typedef void (*ggml_cuda_op_mul_mat_t)(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream);
 
-    const uint8_t m = 1 << (4*im);
+#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
+#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
+#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
 
-    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
-    const int q_offset =  32*im + l0;
-    const int y_offset = 128*im + l0;
+#define MUL_MAT_SRC1_COL_STRIDE 128
 
-    uint16_t utmp[4];
-    const int8_t * s = (const int8_t *)utmp;
+static __global__ void mul_mat_p021_f16_f32(
+    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
 
-    const uint16_t s_shift = 4*im;
+    const half * x = (const half *) vx;
 
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
+    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+    const int channel_x = channel / (nchannels_y / nchannels_x);
 
-        const float   * y  = yy + i * QK_K + y_offset;
-        const uint8_t * q = x[i].qs + q_offset;
-        const uint8_t * h = x[i].hmask + l0;
+    const int nrows_y = ncols_x;
+    const int nrows_dst = nrows_x;
+    const int row_dst = row_x;
 
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
-        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
+    float tmp = 0.0f;
 
-        const float d = x[i].d;
+    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
+        const int col_x = col_x0 + threadIdx.x;
 
-        float sum = 0;
-        for (int l = 0; l < n; ++l) {
-            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
-                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
-                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
-                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
-            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
-                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
-                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
-                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
+        if (col_x >= ncols_x) {
+            break;
         }
-        tmp += d * sum;
-
-    }
-#else
-
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
-    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
-    const int in = offset/8;                                 // 0 or 1
-    const int im = offset%8;                                 // 0...7
 
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+        // x is transposed and permuted
+        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
+        const float xi = __half2float(x[ix]);
 
-        const float   * y = yy + i * QK_K + offset;
-        const uint8_t * q = x[i].qs + offset;
-        const uint8_t * s = x[i].scales;
+        const int row_y = col_x;
 
-        const float dall = (float)x[i].d;
+        // y is not transposed but permuted
+        const int iy = channel*nrows_y + row_y;
 
-        float sum = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            const uint8_t hl = x[i].hmask[im+l] >> in;
-            const uint8_t ql = q[l];
-            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
-                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
-                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
-                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
-        }
-        tmp += sum;
+        tmp += xi * y[iy];
     }
-#endif
+
+    // dst is not transposed and not permuted
+    const int idst = channel*nrows_dst + row_dst;
 
     // sum up partial sums and write back result
     tmp = warp_reduce_sum(tmp);
 
     if (threadIdx.x == 0) {
-        dst[row] = tmp;
+        dst[idst] = tmp;
     }
 }
 
-static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q4_K * x = (const block_q4_K *)vx + ib0;
-
-#if QK_K == 256
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
-
-    const int il  = tid/step;                            // 0...3
-    const int ir  = tid - step*il;                       // 0...7 or 0...3
-    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-#if K_QUANTS_PER_ITERATION == 2
-    uint32_t q32[4];
-    const uint8_t * q4 = (const uint8_t *)q32;
-#else
-    uint16_t q16[4];
-    const uint8_t * q4 = (const uint8_t *)q16;
-#endif
-
-    float tmp = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
+    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
+    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
 
-        const float   * y1 = yy + i*QK_K + y_offset;
-        const float   * y2 = y1 + 128;
+    const half * x = (const half *) vx;
 
-        const float dall = __low2half(x[i].dm);
-        const float dmin = __high2half(x[i].dm);
+    const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
+    const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
+    const int channel_x = channel / channel_x_divisor;
 
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+    const int nrows_y   = ncols_x;
+    const int nrows_dst = nrows_x;
+    const int row_dst   = row_x;
 
-#if K_QUANTS_PER_ITERATION == 2
-        const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
-        const uint32_t * q2 = q1 + 16;
+    const int idst = channel*nrows_dst + row_dst;
 
-        q32[0] = q1[0] & 0x0f0f0f0f;
-        q32[1] = q1[0] & 0xf0f0f0f0;
-        q32[2] = q2[0] & 0x0f0f0f0f;
-        q32[3] = q2[0] & 0xf0f0f0f0;
+    float tmp = 0.0f;
 
-        float4 s = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        for (int l = 0; l < 4; ++l) {
-            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
-            s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
-            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
-        }
-        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#else
-        const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
-        const uint16_t * q2 = q1 + 32;
-
-        q16[0] = q1[0] & 0x0f0f;
-        q16[1] = q1[0] & 0xf0f0;
-        q16[2] = q2[0] & 0x0f0f;
-        q16[3] = q2[0] & 0xf0f0;
-
-        float4 s = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        for (int l = 0; l < 2; ++l) {
-            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
-            s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
-            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
-        }
-        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#endif
+    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
+        const int col_x = col_x0 + threadIdx.x;
 
-    }
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
-
-    const int step = tid * K_QUANTS_PER_ITERATION;
-
-    uint16_t aux16[2];
-    const uint8_t * s = (const uint8_t *)aux16;
-
-    float tmp = 0;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-        const uint8_t * q = x[i].qs + step;
-        const float   * y = yy + i*QK_K + step;
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux16[0] = a[0] & 0x0f0f;
-        aux16[1] = (a[0] >> 4) & 0x0f0f;
-        const float d = (float)x[i].dm[0];
-        const float m = (float)x[i].dm[1];
-        float sum = 0.f;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
-                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
-                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
-                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
+        if (col_x >= ncols_x) {
+            break;
         }
-        tmp += sum;
-    }
-
-#endif
 
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
+        const int row_y = col_x;
 
-    if (tid == 0) {
-        dst[row] = tmp;
-    }
-}
+        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
+        const int iy = channel*nrows_y + row_y;
 
-static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
-
-    const int row = blockIdx.x;
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q5_K * x = (const block_q5_K *)vx + ib0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-#if QK_K == 256
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int tid = threadIdx.x/2;  // 0...15
-    const int ix  = threadIdx.x%2;
-
-    const int il  = tid/4;     // 0...3
-    const int ir  = tid - 4*il;// 0...3
-    const int n   = 2;
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    const uint8_t hm1  = 1 << (2*im);
-    const uint8_t hm2  = hm1 << 4;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-    uint16_t q16[8];
-    const uint8_t * q4 = (const uint8_t *)q16;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2) {
-
-        const uint8_t * ql1 = x[i].qs + q_offset;
-        const uint8_t * qh  = x[i].qh + l0;
-        const float   * y1  = yy + i*QK_K + y_offset;
-        const float   * y2  = y1 + 128;
-
-        const float dall = __low2half(x[i].dm);
-        const float dmin = __high2half(x[i].dm);
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
-        float4 sum = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        const uint16_t * q1 = (const uint16_t *)ql1;
-        const uint16_t * q2 = q1 + 32;
-        q16[0] = q1[0] & 0x0f0f;
-        q16[1] = q1[8] & 0x0f0f;
-        q16[2] = (q1[0] >> 4) & 0x0f0f;
-        q16[3] = (q1[8] >> 4) & 0x0f0f;
-        q16[4] = q2[0] & 0x0f0f;
-        q16[5] = q2[8] & 0x0f0f;
-        q16[6] = (q2[0] >> 4) & 0x0f0f;
-        q16[7] = (q2[8] >> 4) & 0x0f0f;
-        for (int l = 0; l < n; ++l) {
-            sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
-                   + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
-            sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
-                   + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
-            sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
-                   + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
-            sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
-                   + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
-            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
-                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
-        }
-        tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
-    }
+        const float xi = __half2float(x[ix]);
 
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
-    const int step = tid * K_QUANTS_PER_ITERATION;
-    const int im = step/8;
-    const int in = step%8;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-        const uint8_t * q = x[i].qs + step;
-        const int8_t  * s = x[i].scales;
-        const float   * y = yy + i*QK_K + step;
-        const float     d = x[i].d;
-        float sum = 0.f;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            const uint8_t h = x[i].qh[in+j] >> im;
-            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
-                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
-                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
-                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
-        }
-        tmp += sum;
+        tmp += xi * y[iy];
     }
-#endif
 
     // sum up partial sums and write back result
     tmp = warp_reduce_sum(tmp);
 
     if (threadIdx.x == 0) {
-        dst[row] = tmp;
+        dst[idst] = tmp;
     }
 }
 
-static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
+static void ggml_mul_mat_p021_f16_f32_cuda(
+    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
+    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
 
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
+    const dim3 block_nums(1, nrows_x, nchannels_y);
+    const dim3 block_dims(WARP_SIZE, 1, 1);
+    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
+}
 
-    const block_q6_K * x = (const block_q6_K *)vx + ib0;
+static void ggml_mul_mat_vec_nc_f16_f32_cuda(
+    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
+    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
 
-#if QK_K == 256
+    const dim3 block_nums(1, nrows_x, nchannels_y);
+    const dim3 block_dims(WARP_SIZE, 1, 1);
+    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
+        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
+}
 
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+static cudaError_t ggml_cuda_cpy_tensor_2d(
+    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
 
-    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
+    char * src_ptr = (char *) src->data;
+    char * dst_ptr = (char *) dst;
 
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
+    const int64_t ne0 = src->ne[0];
+    const int64_t nb0 = src->nb[0];
+    const int64_t nb1 = src->nb[1];
+    const int64_t nb2 = src->nb[2];
+    const int64_t nb3 = src->nb[3];
+    const enum ggml_type type = src->type;
+    const int64_t ts = ggml_type_size(type);
+    const int64_t bs = ggml_blck_size(type);
+    int64_t i1_diff = i1_high - i1_low;
 
-#if K_QUANTS_PER_ITERATION == 1
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
-    const int is = 0;
-#else
-    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
-    const int is = in / 4;
-#endif
-    const int ql_offset = 64*im + l0;
-    const int qh_offset = 32*im + l0;
-    const int s_offset  =  8*im + is;
-    const int y_offset = 128*im + l0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        const float   * y  = yy + i * QK_K + y_offset;
-        const uint8_t * ql = x[i].ql + ql_offset;
-        const uint8_t * qh = x[i].qh + qh_offset;
-        const int8_t  * s  = x[i].scales + s_offset;
-
-        const float d = x[i].d;
-
-#if K_QUANTS_PER_ITERATION == 1
-        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
-                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
-                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
-                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
-                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
-                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
-                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
-                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
-        tmp += sum;
-#else
-        float sum = 0;
-        for (int l = 0; l < 4; ++l) {
-            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
-                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
-                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
-                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
+    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
+    if (nb0 == ts && nb1 == ts*ne0/bs) {
+        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
+    } else if (nb0 == ts) {
+        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
+    } else {
+        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
+            const void * rx = (const void *) ((const char *) x + i1*nb1);
+            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
+            // pretend the row is a matrix with cols=1
+            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
+            if (r != cudaSuccess) {
+                return r;
+            }
         }
-        tmp += sum;
-#endif
-
+        return cudaSuccess;
     }
+}
 
-#else
+static void ggml_cuda_op_mul_mat_cublas(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+    GGML_ASSERT(src0_dd_i  != nullptr);
+    GGML_ASSERT(src1_ddf_i != nullptr);
+    GGML_ASSERT(dst_dd_i   != nullptr);
 
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne10 = src1->ne[0];
 
-    const int step = tid * K_QUANTS_PER_ITERATION;
+    const int64_t ne0 = dst->ne[0];
 
-    float tmp = 0; // partial sum for thread in warp
+    const int64_t row_diff = row_high - row_low;
 
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+    int id = ggml_cuda_get_device();
 
-        const float   * y  = yy + i * QK_K + step;
-        const uint8_t * ql = x[i].ql + step;
-        const uint8_t * qh = x[i].qh + step;
-        const int8_t  * s  = x[i].scales;
+    // the main device has a larger memory buffer to hold the results from all GPUs
+    // ldc == nrows of the matrix that cuBLAS writes into
+    int ldc = id == ctx.device ? ne0 : row_diff;
 
-        const float d = x[i+0].d;
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
 
-        float sum = 0;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
-                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
-                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
-                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
+    if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
+        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
+        ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
+        if (src0->type != GGML_TYPE_F16) {
+            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
+            GGML_ASSERT(to_fp16_cuda != nullptr);
+            size_t ne = row_diff*ne00;
+            src0_as_f16.alloc(ne);
+            to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
         }
-        tmp += sum;
+        const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
 
-    }
+        ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
+        if (src1->type != GGML_TYPE_F16) {
+            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+            GGML_ASSERT(to_fp16_cuda != nullptr);
+            size_t ne = src1_ncols*ne10;
+            src1_as_f16.alloc(ne);
+            to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
+        }
+        const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
+        ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
 
-#endif
+        const half alpha_f16 = 1.0f;
+        const half beta_f16 = 0.0f;
 
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
+        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
+        CUBLAS_CHECK(
+            cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
+                    row_diff, src1_ncols, ne10,
+                    &alpha_f16, src0_ptr,       CUDA_R_16F, ne00,
+                                src1_ptr,       CUDA_R_16F, ne10,
+                    &beta_f16,   dst_f16.get(), CUDA_R_16F, ldc,
+                    CUBLAS_COMPUTE_16F,
+                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 
-    if (tid == 0) {
-        dst[row] = tmp;
-    }
-}
+        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+        to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
+    } else {
+        ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
+        ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
 
-static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const half * x = (const half *) vx;
+        if (src0->type != GGML_TYPE_F32) {
+            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
+            GGML_ASSERT(to_fp32_cuda != nullptr);
+            src0_ddq_as_f32.alloc(row_diff*ne00);
+            to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
+        }
+        if (src1->type != GGML_TYPE_F32) {
+            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
+            GGML_ASSERT(to_fp32_cuda != nullptr);
+            src1_ddq_as_f32.alloc(src1_ncols*ne10);
+            to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
+        }
 
-    // automatic half -> float type cast if dfloat == float
-    v.x = x[ib + iqs + 0];
-    v.y = x[ib + iqs + 1];
-}
+        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
+        const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
 
-static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
-    const int ix = blockDim.x*blockIdx.x + threadIdx.x;
+        const float alpha = 1.0f;
+        const float beta = 0.0f;
 
-    if (ix >= kx_padded) {
-        return;
+        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
+        CUBLAS_CHECK(
+            cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
+                    row_diff, src1_ncols, ne10,
+                    &alpha, src0_ddf_i,  ne00,
+                            src1_ddf1_i, ne10,
+                    &beta,  dst_dd_i,    ldc));
     }
 
-    const int iy = blockDim.y*blockIdx.y + threadIdx.y;
-
-    const int i_padded = iy*kx_padded + ix;
-
-    block_q8_1 * y = (block_q8_1 *) vy;
-
-    const int ib = i_padded / QK8_1; // block index
-    const int iqs = i_padded % QK8_1; // quant index
-
-    const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
-    float amax = fabsf(xi);
-    float sum = xi;
-
-    amax = warp_reduce_max(amax);
-    sum = warp_reduce_sum(sum);
+    GGML_UNUSED(dst);
+    GGML_UNUSED(src1_ddq_i);
+    GGML_UNUSED(src1_padded_row_size);
+}
 
-    const float d = amax / 127;
-    const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
+static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
+    static bool peer_access_enabled = false;
 
-    y[ib].qs[iqs] = q;
+    const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
 
-    if (iqs > 0) {
+    if (peer_access_enabled == enable_peer_access) {
         return;
     }
 
-    reinterpret_cast<half&>(y[ib].ds.x) = d;
-    reinterpret_cast<half&>(y[ib].ds.y) = sum;
-}
-
-template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static __global__ void k_get_rows(
-            const void * src0, const int32_t * src1, dst_t * dst,
-            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
-            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
-            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
-            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
-            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
-
-    const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
-    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
-    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
-
-    if (i00 >= ne00) {
-        return;
+#ifdef NDEBUG
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        ggml_cuda_set_device(id);
+        CUDA_CHECK(cudaDeviceSynchronize());
     }
 
-    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
-
-    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
-    const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        ggml_cuda_set_device(id);
 
-    const int ib = i00/qk; // block index
-    const int iqs = (i00%qk)/qr; // quant index
-    const int iybs = i00 - i00%qk; // dst block start index
-    const int y_offset = qr == 1 ? 1 : qk/2;
+        for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
+            if (id == id_other) {
+                continue;
+            }
+            if (id != main_device && id_other != main_device) {
+                continue;
+            }
 
-    // dequantize
-    dfloat2 v;
-    dequantize_kernel(src0_row, ib, iqs, v);
-
-    dst_row[iybs + iqs + 0]        = v.x;
-    dst_row[iybs + iqs + y_offset] = v.y;
-}
-
-template<typename src0_t, typename dst_t>
-static __global__ void k_get_rows_float(
-            const src0_t * src0, const int32_t * src1, dst_t * dst,
-            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
-            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
-            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
-            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
-            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
-
-    const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
-    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
-    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
-
-    if (i00 >= ne00) {
-        return;
-    }
-
-    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
-
-    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
-    const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
-
-    dst_row[i00] = src0_row[i00];
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
-    const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
-
-    if (i >= k) {
-        return;
+            int can_access_peer;
+            CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
+            if (can_access_peer) {
+                if (enable_peer_access) {
+                    cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
+                    if (err != cudaErrorPeerAccessAlreadyEnabled) {
+                        CUDA_CHECK(err);
+                    }
+                } else {
+                    cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
+                    if (err != cudaErrorPeerAccessNotEnabled) {
+                        CUDA_CHECK(err);
+                    }
+                }
+            }
+        }
     }
 
-    const int ib = i/qk; // block index
-    const int iqs = (i%qk)/qr; // quant index
-    const int iybs = i - i%qk; // y block start index
-    const int y_offset = qr == 1 ? 1 : qk/2;
+    ggml_cuda_set_device(main_device);
+#endif // NDEBUG
 
-    // dequantize
-    dfloat2 v;
-    dequantize_kernel(vx, ib, iqs, v);
+    peer_access_enabled = enable_peer_access;
 
-    y[iybs + iqs + 0]        = v.x;
-    y[iybs + iqs + y_offset] = v.y;
+    GGML_UNUSED(main_device);
 }
 
-template <typename src_t, typename dst_t>
-static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
+static void ggml_cuda_op_mul_mat(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
+    const bool convert_src1_to_q8_1) {
 
-    const src_t * x = (src_t *) vx;
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+    const int64_t ne03 = src0->ne[3];
 
-    y[i] = x[i];
-}
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+    const int64_t ne13 = src1->ne[3];
+    const int64_t nrows1 = ggml_nrows(src1);
 
-template <bool need_check>
-static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
-#if __CUDA_ARCH__ >= CC_PASCAL
-    constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
+    GGML_ASSERT(ne03 == ne13);
 
-    const int   i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
-    const int * x0 = ((int *) vx) + blockIdx.x * nint;
-    half2 * y2 = (half2 *) (y + i0);
+    const int64_t ne0 = dst->ne[0];
+    const int64_t ne1 = dst->ne[1];
 
-    __shared__ int vals[nint];
+    const int nb2 = dst->nb[2];
+    const int nb3 = dst->nb[3];
 
-#pragma unroll
-    for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
-        if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
-            break;
-        }
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
+    ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
+    ggml_backend_cuda_buffer_context * dst_ctx  = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
 
-        const int ix = ix0 + threadIdx.x;
-        vals[ix] = x0[ix];
-    }
+    GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
 
-#pragma unroll
-    for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
-        if (need_check && i0 + iy + 2*threadIdx.x >= k) {
-            return;
-        }
+    GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 
-        const half * b0 = ((const half  *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
-        const half    d = *b0;
-        const char2  qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
+    const int64_t i02_divisor = ne12 / ne02;
 
-        y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
-    }
-#else
-    (void) vx; (void) y; (void) k;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_PASCAL
-}
+    const size_t src0_ts = ggml_type_size(src0->type);
+    const size_t src0_bs = ggml_blck_size(src0->type);
+    const size_t q8_1_ts = sizeof(block_q8_1);
+    const size_t q8_1_bs = QK8_1;
 
-// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
-// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+    const bool src0_is_contiguous = ggml_is_contiguous(src0);
+    const bool src1_is_contiguous = ggml_is_contiguous(src1);
 
-#define VDR_Q4_0_Q8_1_MMVQ 2
-#define VDR_Q4_0_Q8_1_MMQ  4
+    const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
-    const int * v, const int * u, const float & d4, const half2 & ds8) {
+    const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
+    GGML_ASSERT(!(split && ne02 > 1));
+    GGML_ASSERT(!(split && ne03 > 1));
+    GGML_ASSERT(!(split && ne02 < ne12));
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
+    ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
 
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
-        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
 
-        // SIMD dot product of quantized values
-        sumi = __dp4a(vi0, u[2*i+0], sumi);
-        sumi = __dp4a(vi1, u[2*i+1], sumi);
+    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+    if (split) {
+        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+        tensor_split = buft_ctx->tensor_split;
     }
 
-    const float2 ds8f = __half22float2(ds8);
+    struct dev_data {
+        ggml_cuda_pool_alloc<char>  src0_dd_alloc;
+        ggml_cuda_pool_alloc<float> src1_ddf_alloc;
+        ggml_cuda_pool_alloc<char>  src1_ddq_alloc;
+        ggml_cuda_pool_alloc<float>   dst_dd_alloc;
 
-    // second part effectively subtracts 8 from each quant value
-    return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+        char  *  src0_dd = nullptr;
+        float * src1_ddf = nullptr; // float
+        char  * src1_ddq = nullptr; // q8_1
+        float *   dst_dd = nullptr;
 
-#define VDR_Q4_1_Q8_1_MMVQ 2
-#define VDR_Q4_1_Q8_1_MMQ  4
+        int64_t  row_low;
+        int64_t row_high;
+    };
 
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
-    const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
+    dev_data dev[GGML_CUDA_MAX_DEVICES];
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
+    int used_devices = 0;
 
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
-        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        // by default, use all rows
+        dev[id].row_low  = 0;
+        dev[id].row_high = ne01;
 
-        // SIMD dot product of quantized values
-        sumi = __dp4a(vi0, u[2*i+0], sumi);
-        sumi = __dp4a(vi1, u[2*i+1], sumi);
-    }
+        // for multi GPU, get the row boundaries from tensor split
+        // and round to mul_mat_q tile sizes
+        if (split) {
+            const int64_t rounding = get_row_rounding(src0->type, tensor_split);
 
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm4, ds8));
-    const float d4d8 = tmp.x;
-    const float m4s8 = tmp.y;
-#else
-    const float2 dm4f = __half22float2(dm4);
-    const float2 ds8f = __half22float2(ds8);
-    const float d4d8 = dm4f.x * ds8f.x;
-    const float m4s8 = dm4f.y * ds8f.y;
-#endif // GGML_CUDA_F16
-
-    // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
-    return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+            if (id != 0) {
+                dev[id].row_low  = ne01*tensor_split[id];
+                if (dev[id].row_low < ne01) {
+                    dev[id].row_low -= dev[id].row_low % rounding;
+                }
+            }
 
-#define VDR_Q5_0_Q8_1_MMVQ 2
-#define VDR_Q5_0_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
-    const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
-        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
-        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
-        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
-        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
-        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
-
-        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
-        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
-        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
-        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
-        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
-        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+            if (id != ggml_backend_cuda_get_device_count() - 1) {
+                dev[id].row_high  = ne01*tensor_split[id + 1];
+                if (dev[id].row_high < ne01) {
+                    dev[id].row_high -= dev[id].row_high % rounding;
+                }
+            }
+        }
     }
 
-    const float2 ds8f = __half22float2(ds8);
-
-    // second part effectively subtracts 16 from each quant value
-    return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+        if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
+            continue;
+        }
 
-#define VDR_Q5_1_Q8_1_MMVQ 2
-#define VDR_Q5_1_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
-    const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
-        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
-        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
-        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
-        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
-        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
-
-        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
-        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
-        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
-        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
-        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
-        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
-    }
+        used_devices++;
 
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm5, ds8));
-    const float d5d8 = tmp.x;
-    const float m5s8 = tmp.y;
-#else
-    const float2 dm5f = __half22float2(dm5);
-    const float2 ds8f = __half22float2(ds8);
-    const float d5d8 = dm5f.x * ds8f.x;
-    const float m5s8 = dm5f.y * ds8f.y;
-#endif // GGML_CUDA_F16
+        const bool src1_on_device = id == src1_ctx->device;
+        const bool  dst_on_device = id == dst_ctx->device;
 
-    // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
-    return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+        ggml_cuda_set_device(id);
+        cudaStream_t stream = ctx.stream(id, 0);
 
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+        if (src0_is_contiguous) {
+            dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
+        } else {
+            dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
+        }
 
-#define VDR_Q8_0_Q8_1_MMVQ 2
-#define VDR_Q8_0_Q8_1_MMQ 8
+        if (src1_on_device && src1_is_contiguous) {
+            dev[id].src1_ddf = (float *) src1->data;
+        } else {
+            dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
+        }
 
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
-    const int * v, const int * u, const float & d8_0, const float & d8_1) {
+        if (convert_src1_to_q8_1) {
+            dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
+            if (src1_on_device && src1_is_contiguous) {
+                quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
+                CUDA_CHECK(cudaGetLastError());
+            }
+        }
 
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        // SIMD dot product of quantized values
-        sumi = __dp4a(v[i], u[i], sumi);
+        if (dst_on_device) {
+            dev[id].dst_dd = (float *) dst->data;
+        } else {
+            const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
+            dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
+        }
     }
 
-    return d8_0*d8_1 * sumi;
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
-    const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        // SIMD dot product of quantized values
-        sumi = __dp4a(v[i], u[i], sumi);
+    // if multiple devices are used they need to wait for the main device
+    // here an event is recorded that signals that the main device has finished calculating the input data
+    if (split && used_devices > 1) {
+        ggml_cuda_set_device(ctx.device);
+        CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
     }
 
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm8, ds8));
-    const float d8d8 = tmp.x;
-    const float m8s8 = tmp.y;
-#else
-    const float2 dm8f = __half22float2(dm8);
-    const float2 ds8f = __half22float2(ds8);
-    const float d8d8 = dm8f.x * ds8f.x;
-    const float m8s8 = dm8f.y * ds8f.y;
-#endif // GGML_CUDA_F16
-
-    // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
-    return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q2_K_Q8_1_MMVQ 1
-#define VDR_Q2_K_Q8_1_MMQ  2
+    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
+    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
+        const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
+        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
-    const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const half2 & dm2, const float * __restrict__ d8) {
+        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+            if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
+                continue;
+            }
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
+            const bool src1_on_device = id == src1_ctx->device;
+            const bool  dst_on_device = id == dst_ctx->device;
+            const int64_t row_diff = dev[id].row_high - dev[id].row_low;
 
-#pragma unroll
-    for (int i = 0; i < QR2_K; ++i) {
-        const int sc = scales[2*i];
+            ggml_cuda_set_device(id);
+            cudaStream_t stream = ctx.stream(id, is);
 
-        const int vi = (v >> (2*i)) & 0x03030303;
+            // wait for main GPU data if necessary
+            if (split && (id != ctx.device || is != 0)) {
+                CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
+            }
 
-        sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
+                const int64_t i03 = i0 / ne12;
+                const int64_t i02 = i0 % ne12;
 
-        // fill int with 4x m
-        int m = sc >> 4;
-        m |= m <<  8;
-        m |= m << 16;
-        sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
-    }
+                const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 
-    const float2 dm2f = __half22float2(dm2);
+                // for split tensors the data begins at i0 == i0_offset_low
+                char  *  src0_dd_i =  dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
+                float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
+                char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
+                float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 
-    return dm2f.x*sumf_d - dm2f.y*sumf_m;
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+                // the main device memory buffer can be on VRAM scratch, with space for all partial results
+                // in that case an offset on dst_ddf_i is needed
+                if (id == ctx.device) {
+                    dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
+                }
 
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const half2 & dm2, const float & d8) {
+                // copy src0, src1 to device if necessary
+                if (src1_is_contiguous) {
+                    if (id != ctx.device) {
+                        if (convert_src1_to_q8_1) {
+                            char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
+                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
+                                                            src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
+                        } else {
+                            float * src1_ddf_i_source = (float *) src1->data;
+                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
+                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
+                                                            src1_ncols*ne10*sizeof(float), stream));
+                        }
+                    }
+                } else if (src1_on_device && !src1_is_contiguous) {
+                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
+                                src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
+                } else {
+                    GGML_ASSERT(false);
+                }
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi_d = 0;
-    int sumi_m = 0;
+                if (convert_src1_to_q8_1 && !src1_is_contiguous) {
+                    quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
+                    CUDA_CHECK(cudaGetLastError());
+                }
 
-#pragma unroll
-    for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
-        int sumi_d_sc = 0;
+                if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
+                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
+                }
 
-        const int sc = scales[i0 / (QI8_1/2)];
+                // do the computation
+                op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
+                    dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
+                CUDA_CHECK(cudaGetLastError());
 
-        // fill int with 4x m
-        int m = sc >> 4;
-        m |= m <<  8;
-        m |= m << 16;
+                // copy dst to host or other device if necessary
+                if (!dst_on_device) {
+                    void * dst_off_device = dst->data;
+                    if (split) {
+                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
+                        // dst is NOT transposed.
+                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
+                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
+                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
+                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+                        dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
+#if !defined(GGML_USE_HIPBLAS)
+                        // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
+                        cudaMemcpy3DPeerParms p = {};
+                        p.dstDevice = ctx.device;
+                        p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
+                        p.srcDevice = id;
+                        p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
+                        p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
+                        CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
+#else
+                        // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
+                        CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
+                                                        dst_dd_i, row_diff*sizeof(float),
+                                                        row_diff*sizeof(float), src1_ncols,
+                                                        cudaMemcpyDeviceToDevice, stream));
+#endif
+                    } else {
+                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+                        dhf_dst_i += src1_col_0*ne0;
+                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
+                    }
+                }
 
-#pragma unroll
-        for (int i = i0; i < i0 + QI8_1/2; ++i) {
-            sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
-            sumi_m    = __dp4a(m,    u[i], sumi_m); // multiply sum of q8_1 values with m
+                // add event for the main device to wait on until other device is done
+                if (split && (id != ctx.device || is != 0)) {
+                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
+                }
+            }
         }
-
-        sumi_d += sumi_d_sc * (sc & 0xF);
     }
 
-    const float2 dm2f = __half22float2(dm2);
+    // main device waits for all other devices to be finished
+    if (split && ggml_backend_cuda_get_device_count() > 1) {
+        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
+        is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
 
-    return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+        ggml_cuda_set_device(ctx.device);
+        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+            if (dev[id].row_low == dev[id].row_high) {
+                continue;
+            }
+            for (int64_t is = 0; is < is_max; ++is) {
+                CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
+            }
+        }
+    }
 }
 
-#define VDR_Q3_K_Q8_1_MMVQ 1
-#define VDR_Q3_K_Q8_1_MMQ  2
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
-    const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const int & scale_offset, const float & d3, const float * __restrict__ d8) {
+static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
+    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
+    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf = 0.0f;
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
 
-#pragma unroll
-    for (int i = 0; i < QR3_K; ++i) {
-        const int isc = scale_offset + 2*i;
+    const int64_t ne12 = src1->ne[2];
 
-        const int isc_low = isc % (QK_K/32);
-        const int sc_shift_low = 4 * (isc / (QK_K/32));
-        const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
+    cudaStream_t main_stream = ctx.stream();
 
-        const int isc_high = isc % (QK_K/64);
-        const int sc_shift_high = 2 * (isc / (QK_K/64));
-        const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+    void  * src0_ddq = src0->data;
+    float * src1_ddf = (float *) src1->data;
+    float * dst_ddf  = (float *) dst->data;
 
-        const int sc = (sc_low | sc_high) - 32;
+    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
+}
 
-        const int vil = (vl >> (2*i)) & 0x03030303;
+static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
+    GGML_ASSERT(!ggml_is_transposed(src0));
+    GGML_ASSERT(!ggml_is_transposed(src1));
+    GGML_ASSERT(!ggml_is_permuted(src0));
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 
-        const int vih = ((vh >> i) << 2) & 0x04040404;
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
 
-        const int vi = __vsubss4(vil, vih);
+    const int64_t nb01 = src0->nb[1];
+    const int64_t nb02 = src0->nb[2];
 
-        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
-    }
+    const int64_t ne12 = src1->ne[2];
 
-    return d3 * sumf;
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+    cudaStream_t main_stream = ctx.stream();
 
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
-    const float & d3, const float & d8) {
+    void  * src0_ddq = src0->data;
+    float * src1_ddf = (float *) src1->data;
+    float * dst_ddf  = (float *) dst->data;
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
+    const int64_t row_stride_x = nb01 / sizeof(half);
+    const int64_t channel_stride_x = nb02 / sizeof(half);
 
-#pragma unroll
-    for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
-        int sumi_sc = 0;
-
-        for (int i = i0; i < i0 + QI8_1/2; ++i) {
-            sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
-        }
-
-        sumi += sumi_sc * scales[i0 / (QI8_1/2)];
-    }
-
-    return d3*d8 * sumi;
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 }
 
-#define VDR_Q4_K_Q8_1_MMVQ 2
-#define VDR_Q4_K_Q8_1_MMQ  8
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR4_K; ++i) {
-        const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
-        const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
-
-        const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
-        const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
+static __global__ void k_compute_batched_ptrs(
+        const half * src0_as_f16, const half * src1_as_f16, char * dst,
+        const void ** ptrs_src, void ** ptrs_dst,
+        int64_t ne12, int64_t ne13,
+        int64_t ne23,
+        size_t  nb02, size_t  nb03,
+        size_t  nb12, size_t  nb13,
+        size_t  nbd2, size_t  nbd3,
+        int64_t r2,   int64_t r3) {
+    int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
+    int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
 
-        sumf_d += d8[i] * (dot1 * sc[i]);
-        sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
+    if (i13 >= ne13 || i12 >= ne12) {
+        return;
     }
 
-    const float2 dm4f = __half22float2(dm4);
-
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
+    int64_t i03 = i13 / r3;
+    int64_t i02 = i12 / r2;
 
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
+    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
+    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
 }
 
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(!ggml_is_transposed(src0));
+    GGML_ASSERT(!ggml_is_transposed(src1));
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
+    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 
-#pragma unroll
-    for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
-        int sumi_d = 0;
+    GGML_TENSOR_BINARY_OP_LOCALS
 
-#pragma unroll
-        for (int j = 0; j < QI8_1; ++j) {
-            sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
-        }
+    const int64_t ne_dst = ggml_nelements(dst);
 
-        const float2 ds8f = __half22float2(ds8[i]);
+    cudaStream_t main_stream = ctx.stream();
 
-        sumf_d += ds8f.x * (sc[i] * sumi_d);
-        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
-    }
+    CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
 
-    const float2 dm4f = __half22float2(dm4);
+    void * src0_ddq = src0->data;
+    half * src0_f16 = (half *) src0_ddq;
+    float * src1_ddf = (float *) src1->data;
+    float * dst_ddf  = (float *) dst->data;
 
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
+    // convert src1 to fp16
+    ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
+    if (src1->type != GGML_TYPE_F16) {
+        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+        const int64_t ne_src1 = ggml_nelements(src1);
+        src1_f16_alloc.alloc(ne_src1);
+        GGML_ASSERT(to_fp16_cuda != nullptr);
+        to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
+    }
+    half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
 
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+    ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
+    char * dst_t;
 
-#define VDR_Q5_K_Q8_1_MMVQ 2
-#define VDR_Q5_K_Q8_1_MMQ  8
+    cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
+    cudaDataType_t      cu_data_type    = CUDA_R_16F;
 
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
-    const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
+    // dst strides
+    size_t nbd2 = dst->nb[2];
+    size_t nbd3 = dst->nb[3];
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
+    const half  alpha_f16 = 1.0f;
+    const half  beta_f16  = 0.0f;
 
-#pragma unroll
-    for (int i = 0; i < QR5_K; ++i) {
-        const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
-        const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+    const float alpha_f32 = 1.0f;
+    const float beta_f32  = 0.0f;
 
-        const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
-        const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+    const void * alpha = &alpha_f16;
+    const void * beta  = &beta_f16;
 
-        const int v0i = vl0i | vh0i;
-        const int v1i = vl1i | vh1i;
+    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+        dst_t = (char *) dst_f16.alloc(ne_dst);
 
-        const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
-        const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
+        nbd2 /= sizeof(float) / sizeof(half);
+        nbd3 /= sizeof(float) / sizeof(half);
+    } else {
+        dst_t = (char *) dst_ddf;
 
-        sumf_d += d8[i] * (dot1 * sc[i]);
-        sumf_m += d8[i] * (dot2 * m[i]);
+        cu_compute_type = CUBLAS_COMPUTE_32F;
+        cu_data_type    = CUDA_R_32F;
 
+        alpha = &alpha_f32;
+        beta  = &beta_f32;
     }
 
-    const float2 dm5f = __half22float2(dm5);
-
-    return dm5f.x*sumf_d - dm5f.y*sumf_m;
-
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+    GGML_ASSERT(ne12 % ne02 == 0);
+    GGML_ASSERT(ne13 % ne03 == 0);
 
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
+    // broadcast factors
+    const int64_t r2 = ne12/ne02;
+    const int64_t r3 = ne13/ne03;
 
-#pragma unroll
-    for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
-        int sumi_d = 0;
+#if 0
+    // use cublasGemmEx
+    {
+        for (int i13 = 0; i13 < ne13; ++i13) {
+            for (int i12 = 0; i12 < ne12; ++i12) {
+                int i03 = i13 / r3;
+                int i02 = i12 / r2;
 
-#pragma unroll
-        for (int j = 0; j < QI8_1; ++j) {
-            sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
+                CUBLAS_CHECK(
+                        cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
+                            ne01, ne11, ne10,
+                            alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
+                                   (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
+                            beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
+                            cu_compute_type,
+                            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+            }
         }
-
-        const float2 ds8f = __half22float2(ds8[i]);
-
-        sumf_d += ds8f.x * (sc[i] * sumi_d);
-        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
     }
-
-    const float2 dm4f = __half22float2(dm4);
-
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
-
 #else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q6_K_Q8_1_MMVQ 1
-#define VDR_Q6_K_Q8_1_MMQ  8
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
-    const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
-    const float & d, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR6_K; ++i) {
-        const int sc = scales[4*i];
-
-        const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+    if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
+        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
+        // use cublasGemmStridedBatchedEx
+        CUBLAS_CHECK(
+        cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
+                ne01, ne11, ne10,
+                alpha, (const char *) src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00,  // strideA
+                       (const char *) src1_f16, CUDA_R_16F,   nb11/nb10, nb12/nb10,  // strideB
+                beta,  (      char *)    dst_t, cu_data_type, ne01,       nb2/nb0,   // strideC
+                ne12*ne13,
+                cu_compute_type,
+                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+    } else {
+        // use cublasGemmBatchedEx
+        const int ne23 = ne12*ne13;
 
-        const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+        ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
+        ggml_cuda_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);
 
-        const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
+        dim3 block_dims(ne13, ne12);
+        k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
+                src0_f16, src1_f16, dst_t,
+                ptrs_src.get(), ptrs_dst.get(),
+                ne12, ne13,
+                ne23,
+                nb02, nb03,
+                src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
+                src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
+                nbd2, nbd3,
+                r2, r3);
+        CUDA_CHECK(cudaGetLastError());
 
-        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+        CUBLAS_CHECK(
+        cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
+                ne01, ne11, ne10,
+                alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
+                       (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   nb11/nb10,
+                beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
+                ne23,
+                cu_compute_type,
+                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
     }
+#endif
 
-    return d*sumf;
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+        to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
+    }
 }
 
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
-    const float & d6, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
+static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
 
-#pragma unroll
-    for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
-        int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+    int64_t min_compute_capability = INT_MAX;
 
-#pragma unroll
-        for (int i = i0; i < i0 + 2; ++i) {
-            sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
-            sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+    bool any_pascal_with_slow_fp16 = false;
+    if (split) {
+        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+        auto & tensor_split = buft_ctx->tensor_split;
+        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+            // skip devices that are not going to do any work:
+            if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
+                continue;
+            }
 
-            sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
-            sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
+            if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
+                min_compute_capability = ggml_cuda_info().devices[id].cc;
+            }
+            if (ggml_cuda_info().devices[id].cc == 610) {
+                any_pascal_with_slow_fp16 = true;
+            }
         }
-
-        sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
+    } else {
+        min_compute_capability    = ggml_cuda_info().devices[ctx.device].cc;
+        any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
     }
 
-    return d6 * sumf_d;
-
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
-
-    int v[VDR_Q4_0_Q8_1_MMVQ];
-    int u[2*VDR_Q4_0_Q8_1_MMVQ];
+    // check data types and tensor shapes for custom matrix multiplication kernels:
+    bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
+        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+        && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
 
-#pragma unroll
-    for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
-        v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
-    }
+    bool          use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
+        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
 
-    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
-}
+    bool              use_mul_mat_q =  ggml_cuda_supports_mmq(src0->type)
+        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
 
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh; (void)x_sc;
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 
-    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
+    const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
 
-    *x_ql = tile_x_qs;
-    *x_dm = (half2 *) tile_x_d;
-}
+#ifdef CUDA_USE_TENSOR_CORES
+    use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
+#endif // CUDA_USE_TENSOR_CORES
 
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh; (void)x_sc;
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+#else
 
-    const int kbx  = k / QI4_0;
-    const int kqsx = k % QI4_0;
+    // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
+    const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
 
-    const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+    // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
+    use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
+    use_mul_mat_q     = use_mul_mat_q     && min_compute_capability >= MIN_CC_DP4A;
 
-    float * x_dmf = (float *) x_dm;
+#ifdef CUDA_USE_TENSOR_CORES
+    // when tensor cores are available, use them for large batch size
+    // ref: https://github.com/ggerganov/llama.cpp/pull/3776
+    use_mul_mat_q     = use_mul_mat_q     && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
+#endif // CUDA_USE_TENSOR_CORES
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    // if mmvq is available it's a better choice than dmmv:
+#ifndef GGML_CUDA_FORCE_DMMV
+    use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
+#endif // GGML_CUDA_FORCE_DMMV
 
-        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+    // debug helpers
+    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
+    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
+    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
+    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
+    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
+    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
 
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
-        // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+    if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+        // KQ single-batch
+        ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
+    } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+        // KQV single-batch
+        ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
+    } else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
+        // KQ + KQV multi-batch
+        ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
+    } else if (use_dequantize_mul_mat_vec) {
+        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
+    } else if (use_mul_mat_vec_q) {
+        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
+    } else if (use_mul_mat_q) {
+        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
+    } else {
+        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
     }
+}
 
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
-    const int kbxd = k % blocks_per_tile_x_row;
+#if 0
+template<typename ... Srcs>
+static __global__ void k_compute_batched_ptrs_id(
+        const void ** ptrs_src, void ** ptrs_dst,
+        int ne12, int ne13,
+        int ne23,
+        int nb02, int nb03,
+        int nb12, int nb13,
+        int nb2, int nb3,
+        int r2, int r3,
+        ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
+        const half * src1_f16, half * dst_f16,
+        const int32_t * ids, const int id,
+        Srcs... src0s) {
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
-        int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+    int i = ids[id];
 
-        if (need_check) {
-            i = min(i, i_max);
+    half * src0_f16;
+    const void * srcs_ar[] = { (const half *) src0s... };
+    if (src0_type == GGML_TYPE_F16) {
+        src0_f16 = (half *) srcs_ar[i];
+    } else {
+        src0_f16 = src0_as_f16;
+        if (threadIdx.x == 0 && threadIdx.y == 0) {
+            const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
+            to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
         }
-
-        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
     }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh; (void)x_sc;
 
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const float * x_dmf = (const float *) x_dm;
-
-    int u[2*VDR_Q4_0_Q8_1_MMQ];
+    int i13 = blockIdx.x * blockDim.x + threadIdx.x;
+    int i12 = blockIdx.y * blockDim.y + threadIdx.y;
 
-#pragma unroll
-    for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+    if (i13 >= ne13 || i12 >= ne12) {
+        return;
     }
 
-    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
-         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+    int i03 = i13 / r3;
+    int i02 = i12 / r2;
 
-    int v[VDR_Q4_1_Q8_1_MMVQ];
-    int u[2*VDR_Q4_1_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
-        v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
-    }
-
-    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh; (void)x_sc;
-
-    __shared__ int   tile_x_qs[mmq_y * (WARP_SIZE) +     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
-
-    *x_ql = tile_x_qs;
-    *x_dm = tile_x_dm;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh; (void)x_sc;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI4_1;
-    const int kqsx = k % QI4_1;
-
-    const block_q4_1 * bx0 = (const block_q4_1 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
-        int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh; (void)x_sc;
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-
-    int u[2*VDR_Q4_1_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
-    }
-
-    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
-         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
-
-    int vl[VDR_Q5_0_Q8_1_MMVQ];
-    int vh[VDR_Q5_0_Q8_1_MMVQ];
-    int  u[2*VDR_Q5_0_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
-        vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
-        vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
-    }
-
-    return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh; (void)x_sc;
-
-    __shared__ int  tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
-
-    *x_ql = tile_x_ql;
-    *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh; (void)x_sc;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI5_0;
-    const int kqsx = k % QI5_0;
-
-    const block_q5_0 * bx0 = (const block_q5_0 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        const int ql = get_int_from_uint8(bxi->qs, kqsx);
-        const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
-
-        int qs0 = (ql >>  0)   & 0x0F0F0F0F;
-        qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
-        qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
-        qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
-        qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
-        qs0     = __vsubss4(qs0, 0x10101010); // subtract 16
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
-
-        int qs1 = (ql >>  4)   & 0x0F0F0F0F;
-        qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
-        qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
-        qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
-        qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
-        qs1     = __vsubss4(qs1, 0x10101010); // subtract 16
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
-    const int kbxd = k % blocks_per_tile_x_row;
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
-        int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh; (void)x_sc;
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    int u[2*VDR_Q5_0_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
-    }
-
-    return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
-        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
-
-    int vl[VDR_Q5_1_Q8_1_MMVQ];
-    int vh[VDR_Q5_1_Q8_1_MMVQ];
-    int  u[2*VDR_Q5_1_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
-        vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
-        vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
-    }
-
-    return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh; (void)x_sc;
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
+    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02   + i03*nb03;
+    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
+    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)  dst_f16 + i12* nb2/2 + i13* nb3/2;
 }
 
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh; (void)x_sc;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset < nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
+    const struct ggml_tensor * ids = dst->src[0];
+    const struct ggml_tensor * src1 = dst->src[1];
+    const struct ggml_tensor * src00 = dst->src[2];
 
-    const int kbx  = k / QI5_1;
-    const int kqsx = k % QI5_1;
+    const int id = dst->op_params[0];
 
-    const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+    GGML_ASSERT(!ggml_is_transposed(src00));
+    GGML_ASSERT(!ggml_is_transposed(src1));
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
+    GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
+    const int64_t ne01 = src00->ne[1];
+    const int64_t ne02 = src00->ne[2];
+    const int64_t ne03 = src00->ne[3];
 
-        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+    //const int64_t nb01 = src00->nb[1];
+    const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
+    const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
 
-        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
-        const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+    const int64_t ne13 = src1->ne[3];
 
-        int qs0 = (ql >>  0) & 0x0F0F0F0F;
-        qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
-        qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
-        qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
-        qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
+    //const int64_t nb11 = src1->nb[1];
+    const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
+    const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
 
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+    const int64_t ne1 = ggml_nelements(src1);
+    const int64_t ne  = ggml_nelements(dst);
 
-        int qs1 = (ql >>  4) & 0x0F0F0F0F;
-        qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
-        qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
-        qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
-        qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
+    ggml_cuda_set_device(g_main_device);
+    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
-    }
+    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
 
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
-    const int kbxd = k % blocks_per_tile_x_row;
+    //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    //void * src0_ddq = src0_extra->data_device[g_main_device];
+    //half * src0_as_f16 = (half *) src0_ddq;
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
-        int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
 
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
 
-        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+    // convert src1 to fp16
+    const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+    GGML_ASSERT(to_fp16_cuda != nullptr);
 
-        x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
-    }
-}
+    size_t src1_as = 0;
+    half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
+    to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
 
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh; (void)x_sc;
+    size_t dst_as = 0;
+    half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
 
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+    GGML_ASSERT(ne12 % ne02 == 0);
+    GGML_ASSERT(ne13 % ne03 == 0);
 
-    int u[2*VDR_Q5_1_Q8_1_MMQ];
+    // broadcast factors
+    const int64_t r2 = ne12/ne02;
+    const int64_t r3 = ne13/ne03;
 
-#pragma unroll
-    for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
-    }
+    const half alpha_f16 = 1.0f;
+    const half beta_f16  = 0.0f;
 
-    return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
-        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
+    // use cublasGemmBatchedEx
+    const int ne23 = ne12*ne13;
 
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+    const void ** ptrs_src = nullptr;
+          void ** ptrs_dst = nullptr;
 
-    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
+    size_t ptrs_src_s = 0;
+    size_t ptrs_dst_s = 0;
 
-    int v[VDR_Q8_0_Q8_1_MMVQ];
-    int u[VDR_Q8_0_Q8_1_MMVQ];
+    ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
+    ptrs_dst = (      void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
 
-#pragma unroll
-    for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
-        v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
-        u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+    int64_t src0_ne = ggml_nelements(src00);
+    half * src0_as_f16 = nullptr;
+    size_t src0_as = 0;
+    if (src00->type != GGML_TYPE_F16) {
+        src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
     }
 
-    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh; (void)x_sc;
-
-    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
-
-    *x_ql = tile_x_qs;
-    *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh; (void)x_sc;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI8_0;
-    const int kqsx = k % QI8_0;
-    float * x_dmf = (float *) x_dm;
-
-    const block_q8_0 * bx0 = (const block_q8_0 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
+    dim3 block_dims(ne13, ne12);
+    k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
+            ptrs_src, ptrs_dst,
+            ne12, ne13,
+            ne23,
+            ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
+            nb12, nb13,
+            dst->nb[2], dst->nb[3],
+            r2, r3,
+            src00->type, src0_as_f16, src0_ne,
+            src1_as_f16, dst_f16,
+            (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
+            dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
+            dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
+            dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
+            dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
+    );
+    CUDA_CHECK(cudaGetLastError());
 
-        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+    CUBLAS_CHECK(
+    cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
+            ne01, ne11, ne10,
+            &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
+                        (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
+            &beta_f16,  (      void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
+            ne23,
+            CUBLAS_COMPUTE_16F,
+            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+    if (src0_as != 0) {
+        ggml_cuda_pool_free(src0_as_f16, src0_as);
     }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
-        int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+    if (ptrs_src_s != 0) {
+        ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
     }
-}
-
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh; (void)x_sc;
-
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
-         y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q2_K * bq2_K = (const block_q2_K *) vbq;
-
-    const int bq8_offset = QR2_K * (iqs / QI8_1);
-    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
-    const uint8_t * scales = bq2_K->scales + scale_offset;
-
-    const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
-    int    u[QR2_K];
-    float d8[QR2_K];
-
-#pragma unroll
-    for (int i = 0; i < QR2_K; ++ i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
-        d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+    if (ptrs_dst_s != 0) {
+        ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
     }
 
-    return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh;
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
+    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+    to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
 
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
+    ggml_cuda_pool_free(src1_as_f16, src1_as);
+    ggml_cuda_pool_free(dst_f16, dst_as);
 }
+#endif
 
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI2_K;
-    const int kqsx = k % QI2_K;
-
-    const block_q2_K * bx0 = (const block_q2_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
-    const int kbxd = k % blocks_per_tile_x_row;
+static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+#if 0
+    ggml_cuda_mul_mat_id_cublas(dst);
+    // TODO: mmq/mmv support
+#endif
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
-        int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+    cudaStream_t stream = ctx.stream();
 
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    const size_t nb11 = src1->nb[1];
+    const size_t nb1  =  dst->nb[1];
 
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+    const struct ggml_tensor * ids = src0;
+    const int32_t id = ((int32_t *) dst->op_params)[0];
+    const int32_t n_as = ((int32_t *) dst->op_params)[1];
 
-        x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
-    }
+    std::vector<char> ids_host(ggml_nbytes(ids));
+    const char * ids_dev = (const char *) ids->data;
+    CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
+    CUDA_CHECK(cudaStreamSynchronize(stream));
 
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
-        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+    ggml_tensor src1_row = *src1;
+    ggml_tensor dst_row = *dst;
 
-        if (need_check) {
-            i = min(i, i_max);
-        }
+    char * src1_original = (char *) src1->data;
+    char * dst_original  = (char *)  dst->data;
 
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+    if (src1->ne[1] == 1) {
+        for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+            const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 
-        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh;
-
-    const int kbx = k / QI2_K;
-    const int ky  = (k % QI2_K) * QR2_K;
-    const float * y_df = (const float *) y_ds;
-
-    int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
-
-    const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
-    const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
-
-#pragma unroll
-    for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
-        v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
-    }
-
-    const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
-
-    const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
-    return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q3_K * bq3_K = (const block_q3_K *) vbq;
-
-    const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
-    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
-    const float d = bq3_K->d;
-
-    const int vl = get_int_from_uint8(bq3_K->qs, iqs);
-
-    // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
-    const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
-
-    int    u[QR3_K];
-    float d8[QR3_K];
-
-#pragma unroll
-    for (int i = 0; i < QR3_K; ++i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
-        d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
-    }
-
-    return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
-    __shared__ int   tile_x_qh[mmq_y * (WARP_SIZE/2)     + mmq_y/2];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_qh = tile_x_qh;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI3_K;
-    const int kqsx = k % QI3_K;
-
-    const block_q3_K * bx0 = (const block_q3_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
-    const int kbxd = k % blocks_per_tile_x_row;
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
-        int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
-        int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
-
-        // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
-        x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
-        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
-
-        const int ksc = k % (QI3_K/4);
-
-        const int ksc_low = ksc % (QI3_K/8);
-        const int shift_low = 4 * (ksc / (QI3_K/8));
-        const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
-
-        const int ksc_high = QI3_K/8;
-        const int shift_high = 2 * ksc;
-        const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
-
-        const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
-
-        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kbx  = k / QI3_K;
-    const int ky  = (k % QI3_K) * QR3_K;
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
-
-    int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
-        const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
-        const int shift = 2 * ((ky % 32) / 8);
-        const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
-
-        const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
-        const int vlh = (vh << 2) & 0x04040404;
-
-        v[l] = __vsubss4(vll, vlh);
-    }
-
-    const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
-    return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
-    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
-    int    v[2];
-    int    u[2*QR4_K];
-    float d8[QR4_K];
-
-    // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
-    const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
-
-    // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
-    // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
-    // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
-    // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
-
-    const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
-    v[0] = q4[0];
-    v[1] = q4[4];
-
-    const uint16_t * scales = (const uint16_t *)bq4_K->scales;
-    uint16_t aux[2];
-    const int j = bq8_offset/2;
-    if (j < 2) {
-        aux[0] = scales[j+0] & 0x3f3f;
-        aux[1] = scales[j+2] & 0x3f3f;
-    } else {
-        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
-        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
-    }
-    const uint8_t * sc = (const uint8_t *)aux;
-    const uint8_t * m  = sc + 2;
-
-    for (int i = 0; i < QR4_K; ++i) {
-        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
-        d8[i] = __low2float(bq8i->ds);
-
-        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
-        u[2*i+0] = q8[0];
-        u[2*i+1] = q8[4];
-    }
-
-    return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
-
-#else
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-    uint16_t aux16[2];
-    const uint8_t * s = (const uint8_t *)aux16;
-
-    const uint16_t * a = (const uint16_t *)bq4_K->scales;
-    aux16[0] = a[0] & 0x0f0f;
-    aux16[1] = (a[0] >> 4) & 0x0f0f;
-
-    const float dall = bq4_K->dm[0];
-    const float dmin = bq4_K->dm[1];
-
-    const float d8_1 = __low2float(bq8_1[0].ds);
-    const float d8_2 = __low2float(bq8_1[1].ds);
-
-    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
-    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
-    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
-    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
-
-    const int * q4 = (const int *)bq4_K->qs + (iqs/2);
-    const int v1 = q4[0];
-    const int v2 = q4[4];
-
-    const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
-    const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
-    const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
-    const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
-
-    sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
-    sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
-
-    return dall * sumf_d - dmin * sumf_m;
-
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-
-#endif
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh;
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI4_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI4_K; // == k if QK_K == 256
-
-    const block_q4_K * bx0 = (const block_q4_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
-        int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-#if QK_K == 256
-        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
-#else
-        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
-#endif
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
-
-        const int * scales = (const int *) bxi->scales;
-
-        const int ksc = k % (WARP_SIZE/8);
-
-        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
-        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
-        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh;
-
-    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
-
-    const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
-    return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
-                                      x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
-    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
-
-    int   vl[2];
-    int   vh[2];
-    int    u[2*QR5_K];
-    float d8[QR5_K];
-
-    const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
-    const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
-    const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
-
-    vl[0] = ql[0];
-    vl[1] = ql[4];
-
-    vh[0] = qh[0] >> bq8_offset;
-    vh[1] = qh[4] >> bq8_offset;
-
-    const uint16_t * scales = (const uint16_t *)bq5_K->scales;
-    uint16_t aux[2];
-    const int j = bq8_offset/2;
-    if (j < 2) {
-        aux[0] = scales[j+0] & 0x3f3f;
-        aux[1] = scales[j+2] & 0x3f3f;
-    } else {
-        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
-        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
-    }
-    const uint8_t * sc = (const uint8_t *)aux;
-    const uint8_t * m  = sc + 2;
-
-#pragma unroll
-    for (int i = 0; i < QR5_K; ++i) {
-        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
-        d8[i] = __low2float(bq8i->ds);
-
-        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
-        u[2*i+0] = q8[0];
-        u[2*i+1] = q8[4];
-    }
-
-    return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
-
-#else
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
-
-    const int8_t * s = bq5_K->scales;
-
-    const float d = bq5_K->d;
-
-    const float d8_1 = __low2half(bq8_1[0].ds);
-    const float d8_2 = __low2half(bq8_1[1].ds);
-
-    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
-    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
-    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
-    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
-
-    const int * ql = (const int *)bq5_K->qs + (iqs/2);
-    const int vl1 = ql[0];
-    const int vl2 = ql[4];
-
-    const int step = 4 * (iqs/2); // 0, 4, 8, 12
-    const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
-    const int in = step%8; // 0, 4, 0, 4
-    const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
-
-    const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
-    const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
-    const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
-    const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
-
-    const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
-                       + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
-
-    return d * sumf_d;
-
-#else
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-
-#endif
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh;
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI5_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI5_K; // == k if QK_K == 256
-
-    const block_q5_K * bx0 = (const block_q5_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
-        const int ky = QR5_K*kqsx;
-
-        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
-        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
-        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
-        const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
-        const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
-        const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
-
-        const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
-        const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
-
-        x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
-        x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
-        int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-#if QK_K == 256
-        x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
-#endif
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
-
-        const int * scales = (const int *) bxi->scales;
-
-        const int ksc = k % (WARP_SIZE/8);
-
-        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
-        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
-        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh;
-
-    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
-
-    const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
-    const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
-    return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
-                                      x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q6_K * bq6_K = (const block_q6_K *) vbq;
-
-    const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
-    const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
-    const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
-
-    const int vl = get_int_from_uint8(bq6_K->ql, iqs);
-    const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
-
-    const int8_t * scales = bq6_K->scales + scale_offset;
-
-    int    u[QR6_K];
-    float d8[QR6_K];
-
-#pragma unroll
-    for (int i = 0; i < QR6_K; ++i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
-        d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
-    }
-
-    return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-    (void)x_qh;
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-    (void)x_qh;
-
-    GGML_CUDA_ASSUME(i_offset >= 0);
-    GGML_CUDA_ASSUME(i_offset <  nwarps);
-    GGML_CUDA_ASSUME(k >= 0);
-    GGML_CUDA_ASSUME(k <  WARP_SIZE);
-
-    const int kbx  = k / QI6_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI6_K; // == k if QK_K == 256
-
-    const block_q6_K * bx0 = (const block_q6_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
-        const int ky = QR6_K*kqsx;
-
-        const int ql = get_int_from_uint8(bxi->ql, kqsx);
-        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
-        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
-        const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
-        const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
-        const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
-
-        const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
-        const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
-
-        x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
-        x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
-        int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-    (void)x_qh;
-
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
-
-    const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
-    const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
-    return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if QK_K == 256
-    const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
-
-#if QR2_XXS == 8
-    const int ib32 = iqs;
-    const uint16_t * q2 = bq2->qs + 4*ib32;
-    const uint8_t  * aux8 = (const uint8_t *)q2;
-    const int8_t   * q8 = bq8_1[ib32].qs;
-    uint32_t aux32 = q2[2] | (q2[3] << 16);
-    int sumi = 0;
-    for (int l = 0; l < 4; ++l) {
-        const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
-        const uint8_t  signs = ksigns_iq2xs[aux32 & 127];
-        for (int j = 0; j < 8; ++j) {
-            sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
-        }
-        q8 += 8;
-        aux32 >>= 7;
-    }
-    const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
-    return d * sumi;
-#else
-    // iqs is 0...15
-    const int ib32 = iqs/2;
-    const int il = iqs%2;
-    const uint16_t * q2 = bq2->qs + 4*ib32;
-    const uint8_t  * aux8 = (const uint8_t *)q2;
-    const uint8_t  * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
-    const uint8_t  * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
-    const uint32_t aux32 = q2[2] | (q2[3] << 16);
-    const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
-    const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
-    const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
-    const int8_t * q8 = bq8_1[ib32].qs + 16*il;
-    int sumi1 = 0, sumi2 = 0;
-    for (int j = 0; j < 8; ++j) {
-        sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
-        sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
-    }
-    return d * (sumi1 + sumi2);
-#endif
-#else
-    assert(false);
-    return 0.f;
-#endif
-}
-
-static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
-    const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
-
-    const int ib32 = iqs;
-    const uint16_t * q2 = bq2->qs + 4*ib32;
-    const int8_t   * q8 = bq8_1[ib32].qs;
-    const uint8_t ls1 = bq2->scales[ib32] & 0xf;
-    const uint8_t ls2 = bq2->scales[ib32] >>  4;
-    int sumi1 = 0;
-    for (int l = 0; l < 2; ++l) {
-        const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
-        const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
-        const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
-        const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
-        sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
-        sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
-        q8 += 8;
-    }
-    int sumi2 = 0;
-    for (int l = 2; l < 4; ++l) {
-        const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
-        const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
-        const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
-        const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
-        sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
-        sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
-        q8 += 8;
-    }
-    const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
-    return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-#else
-    (void) ksigns64;
-    assert(false);
-    return 0.f;
-#endif
-#else
-    (void) ksigns64;
-    assert(false);
-    return 0.f;
-#endif
-}
-
-// TODO
-static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
-    const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
-
-    const int ib32 = iqs;
-    const int8_t  * q8 = bq8_1[ib32].qs;
-    const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
-    const uint8_t ls1 = bq2->scales[ib32] & 0xf;
-    const uint8_t ls2 = bq2->scales[ib32] >>  4;
-    int sumi1 = 0;
-    for (int l = 0; l < 2; ++l) {
-        const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
-        const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
-        const uint32_t signs1 = __vcmpeq4(((signs[l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
-        const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
-        const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
-        sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
-        sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
-        q8 += 8;
-    }
-    int sumi2 = 0;
-    for (int l = 2; l < 4; ++l) {
-        const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
-        const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
-        const uint32_t signs1 = __vcmpeq4(((signs[l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
-        const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
-        const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
-        sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
-        sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
-        q8 += 8;
-    }
-    const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
-    return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-#else
-    (void) ksigns64;
-    assert(false);
-    return 0.f;
-#endif
-#else
-    (void) ksigns64;
-    assert(false);
-    return 0.f;
-#endif
-}
-
-static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
-    const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
-
-    const int ib32 = iqs;
-    const uint8_t  * q3 = bq2->qs + 8*ib32;
-    const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
-    const int8_t   * q8 = bq8_1[ib32].qs;
-    uint32_t aux32 = gas[0] | (gas[1] << 16);
-    int sumi = 0;
-    for (int l = 0; l < 4; ++l) {
-        const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
-        const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
-        const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
-        const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
-        const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
-        sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
-        sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
-        q8 += 8;
-        aux32 >>= 7;
-    }
-    const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
-    return d * sumi;
-#else
-    assert(false);
-    return 0.f;
-#endif
-#else
-    assert(false);
-    return 0.f;
-#endif
-}
-
-// TODO: don't use lookup table for signs
-static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
-    const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
-
-    const int ib32 = iqs;
-    const uint8_t  * qs = bq2->qs + 8*ib32;
-    const int8_t   * q8 = bq8_1[ib32].qs;
-    int sumi = 0;
-    for (int l = 0; l < 4; ++l) {
-        const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
-        const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
-        uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
-        uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
-        const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
-        const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
-        sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
-        sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
-        q8 += 8;
-    }
-    const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
-    return d * sumi;
-#else
-    assert(false);
-    return 0.f;
-#endif
-#else
-    assert(false);
-    return 0.f;
-#endif
-}
-
-static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if QK_K == 256
-    const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
-
-    const int ib32 = iqs;
-    int sumi = 0;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const int * q8 = (const int *)bq8_1[ib32].qs;
-    for (int l = 0; l < 4; ++l) {
-        const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
-        int grid0 = grid[0] & 0x0f0f0f0f;
-        int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
-        sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
-    }
-#else
-    const int8_t * q8 = bq8_1[ib32].qs;
-    for (int l = 0; l < 4; ++l) {
-        const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
-        for (int j = 0; j < 4; ++j) {
-            sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
-        }
-        q8 += 8;
-    }
-#endif
-    const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
-    const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
-    const float d = d1q * __low2float (bq8_1[ib32].ds);
-    const float m = d1q * __high2float(bq8_1[ib32].ds);
-    return d * sumi + m * delta;
-#else
-    assert(false);
-    return 0.f;
-#endif
-}
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
-        int & val1, int & val2) {
-
-    uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
-    aux32 = q4 & 0x0f0f0f0f;
-    uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
-    uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
-    val1 = v1 | (v2 << 16);
-    aux32 = (q4 >> 4) & 0x0f0f0f0f;
-    v1 = values[q8[0]] | (values[q8[1]] << 8);
-    v2 = values[q8[2]] | (values[q8[3]] << 8);
-    val2 = v1 | (v2 << 16);
-}
-#endif
-
-static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
-    const int32_t  * q8 = (const int32_t  *)bq8_1->qs + iqs;
-
-    const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
-
-    int v1, v2;
-    int sumi1 = 0, sumi2 = 0;
-    for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
-        const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
-        get_int_from_table_16(aux, values, v1, v2);
-        sumi1 = __dp4a(v1, q8[l+0], sumi1);
-        sumi2 = __dp4a(v2, q8[l+4], sumi2);
-    }
-
-#else
-    const uint8_t * q4 = bq->qs + 4*iqs;
-    const int8_t  * q8 = bq8_1->qs + 4*iqs;
-
-    int sumi1 = 0, sumi2 = 0;
-    for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
-        sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
-        sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >>  4];
-    }
-#endif
-    const float d = (float)bq->d * __low2float(bq8_1->ds);
-    return d * (sumi1 + sumi2);
-}
-
-static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#if QK_K == 256
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-
-    const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
-    const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
-
-    //// iqs is 0...7
-    //const int ib64 = iqs/2;
-    //const int il = iqs%2;
-    //const int32_t  * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il;
-    //const int32_t  * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il;
-    //const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il;
-    //const uint32_t * q4_2 = q4_1 + 4;
-    //const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4);
-    //const int8_t ls2 = (bq4->scales_l[ib64] >>  4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4);
-    //const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds);
-    //const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds);
-    //int v1, v2;
-    //int sumi1 = 0, sumi2 = 0;
-    //for (int j = 0; j < 2; ++j) {
-    //    get_int_from_table_16(q4_1[j], values, v1, v2);
-    //    sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1));
-    //    get_int_from_table_16(q4_2[j], values, v1, v2);
-    //    sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2));
-    //}
-    //return d1 * sumi1 + d2 * sumi2;
-
-    // iqs is 0...7
-    const int ib32 = iqs;
-    const int32_t  * q8 = (const int *)bq8_1[ib32].qs;
-    const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
-    const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
-    const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
-    int v1, v2;
-    int sumi1 = 0, sumi2 = 0;
-    for (int j = 0; j < 4; ++j) {
-        get_int_from_table_16(q4[j], values, v1, v2);
-        sumi1 = __dp4a(v1, q8[j+0], sumi1);
-        sumi2 = __dp4a(v2, q8[j+4], sumi2);
-    }
-    return d * (sumi1 + sumi2);
-
-    //// iqs is 0...15
-    //const int ib32 = iqs/2;
-    //const int il = iqs%2;
-    //const int32_t  * q8 = (const int *)bq8_1[ib32].qs + 2*il;
-    //const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
-    //const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
-    //const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
-    //int v1, v2;
-    //int sumi1 = 0, sumi2 = 0;
-    //for (int j = 0; j < 2; ++j) {
-    //    get_int_from_table_16(q4[j], values, v1, v2);
-    //    sumi1 = __dp4a(v1, q8[j+0], sumi1);
-    //    sumi2 = __dp4a(v2, q8[j+4], sumi2);
-    //}
-    //return d * (sumi1 + sumi2);
-#else
-    assert(false);
-    return 0.f;
-#endif
-#else
-    return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
-#endif
-}
-
-template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
-              allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
-static __device__ __forceinline__ void mul_mat_q(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-    const block_q_t  * x = (const block_q_t  *) vx;
-    const block_q8_1 * y = (const block_q8_1 *) vy;
-
-    const int blocks_per_row_x = ncols_x / qk;
-    const int blocks_per_col_y = nrows_y / QK8_1;
-    const int blocks_per_warp = WARP_SIZE / qi;
-
-    const int & ncols_dst = ncols_y;
-
-    const int row_dst_0 = blockIdx.x*mmq_y;
-    const int & row_x_0 = row_dst_0;
-
-    const int col_dst_0 = blockIdx.y*mmq_x;
-    const int & col_y_0 = col_dst_0;
-
-    int   * tile_x_ql = nullptr;
-    half2 * tile_x_dm = nullptr;
-    int   * tile_x_qh = nullptr;
-    int   * tile_x_sc = nullptr;
-
-    allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
-
-    __shared__ int    tile_y_qs[mmq_x * WARP_SIZE];
-    __shared__ half2  tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
-
-    float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
-
-    for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
-
-        load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
-                   threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
-
-#pragma unroll
-        for (int ir = 0; ir < qr; ++ir) {
-            const int kqs = ir*WARP_SIZE + threadIdx.x;
-            const int kbxd = kqs / QI8_1;
-
-#pragma unroll
-            for (int i = 0; i < mmq_x; i += nwarps) {
-                const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
-
-                const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
-
-                const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
-                tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
-            }
-
-#pragma unroll
-            for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
-                const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
-                const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
-                const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
-
-                // if the sum is not needed it's faster to transform the scale to f32 ahead of time
-                const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
-                half2       * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
-                if (need_sum) {
-                    *dsi_dst = *dsi_src;
-                } else {
-                    float * dfi_dst = (float *) dsi_dst;
-                    *dfi_dst = __low2float(*dsi_src);
-                }
-            }
-
-            __syncthreads();
-
-// #pragma unroll // unrolling this loop causes too much register pressure
-            for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
-#pragma unroll
-                for (int j = 0; j < mmq_x; j += nwarps) {
-#pragma unroll
-                    for (int i = 0; i < mmq_y; i += WARP_SIZE) {
-                        sum[i/WARP_SIZE][j/nwarps] += vec_dot(
-                            tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
-                            threadIdx.x + i, threadIdx.y + j, k);
-                    }
-                }
-            }
-
-            __syncthreads();
-        }
-    }
-
-#pragma unroll
-    for (int j = 0; j < mmq_x; j += nwarps) {
-        const int col_dst = col_dst_0 + j + threadIdx.y;
-
-        if (col_dst >= ncols_dst) {
-            return;
-        }
-
-#pragma unroll
-        for (int i = 0; i < mmq_y; i += WARP_SIZE) {
-            const int row_dst = row_dst_0 + threadIdx.x + i;
-
-            if (row_dst >= nrows_dst) {
-                continue;
-            }
-
-            dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
-        }
-    }
-}
-
-#define  MMQ_X_Q4_0_RDNA2  64
-#define  MMQ_Y_Q4_0_RDNA2  128
-#define NWARPS_Q4_0_RDNA2  8
-#define  MMQ_X_Q4_0_RDNA1  64
-#define  MMQ_Y_Q4_0_RDNA1  64
-#define NWARPS_Q4_0_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q4_0_AMPERE 4
-#define  MMQ_Y_Q4_0_AMPERE 32
-#define NWARPS_Q4_0_AMPERE 4
-#else
-#define  MMQ_X_Q4_0_AMPERE 64
-#define  MMQ_Y_Q4_0_AMPERE 128
-#define NWARPS_Q4_0_AMPERE 4
-#endif
-#define  MMQ_X_Q4_0_PASCAL 64
-#define  MMQ_Y_Q4_0_PASCAL 64
-#define NWARPS_Q4_0_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    mul_mat_q4_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q4_0_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q4_0_RDNA2;
-    const int nwarps = NWARPS_Q4_0_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q4_0_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q4_0_RDNA1;
-    const int nwarps = NWARPS_Q4_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
-        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
-    const int nwarps = NWARPS_Q4_0_AMPERE;
-
-    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
-        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_0_PASCAL;
-    const int nwarps = NWARPS_Q4_0_PASCAL;
-
-    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
-        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_0_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q4_1_RDNA2  64
-#define  MMQ_Y_Q4_1_RDNA2  128
-#define NWARPS_Q4_1_RDNA2  8
-#define  MMQ_X_Q4_1_RDNA1  64
-#define  MMQ_Y_Q4_1_RDNA1  64
-#define NWARPS_Q4_1_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q4_1_AMPERE 4
-#define  MMQ_Y_Q4_1_AMPERE 32
-#define NWARPS_Q4_1_AMPERE 4
-#else
-#define  MMQ_X_Q4_1_AMPERE 64
-#define  MMQ_Y_Q4_1_AMPERE 128
-#define NWARPS_Q4_1_AMPERE 4
-#endif
-#define  MMQ_X_Q4_1_PASCAL 64
-#define  MMQ_Y_Q4_1_PASCAL 64
-#define NWARPS_Q4_1_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
-    mul_mat_q4_1(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q4_1_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q4_1_RDNA2;
-    const int nwarps = NWARPS_Q4_1_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q4_1_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q4_1_RDNA1;
-    const int nwarps = NWARPS_Q4_1_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
-        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
-    const int nwarps = NWARPS_Q4_1_AMPERE;
-
-    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
-        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_1_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_1_PASCAL;
-    const int nwarps = NWARPS_Q4_1_PASCAL;
-
-    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
-        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_1_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q5_0_RDNA2  64
-#define  MMQ_Y_Q5_0_RDNA2  128
-#define NWARPS_Q5_0_RDNA2  8
-#define  MMQ_X_Q5_0_RDNA1  64
-#define  MMQ_Y_Q5_0_RDNA1  64
-#define NWARPS_Q5_0_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q5_0_AMPERE 4
-#define  MMQ_Y_Q5_0_AMPERE 32
-#define NWARPS_Q5_0_AMPERE 4
-#else
-#define  MMQ_X_Q5_0_AMPERE 128
-#define  MMQ_Y_Q5_0_AMPERE 64
-#define NWARPS_Q5_0_AMPERE 4
-#endif
-#define  MMQ_X_Q5_0_PASCAL 64
-#define  MMQ_Y_Q5_0_PASCAL 64
-#define NWARPS_Q5_0_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    mul_mat_q5_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q5_0_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q5_0_RDNA2;
-    const int nwarps = NWARPS_Q5_0_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q5_0_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q5_0_RDNA1;
-    const int nwarps = NWARPS_Q5_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
-        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
-    const int nwarps = NWARPS_Q5_0_AMPERE;
-
-    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
-        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_0_PASCAL;
-    const int nwarps = NWARPS_Q5_0_PASCAL;
-
-    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
-        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_0_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q5_1_RDNA2  64
-#define  MMQ_Y_Q5_1_RDNA2  128
-#define NWARPS_Q5_1_RDNA2  8
-#define  MMQ_X_Q5_1_RDNA1  64
-#define  MMQ_Y_Q5_1_RDNA1  64
-#define NWARPS_Q5_1_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q5_1_AMPERE 4
-#define  MMQ_Y_Q5_1_AMPERE 32
-#define NWARPS_Q5_1_AMPERE 4
-#else
-#define  MMQ_X_Q5_1_AMPERE 128
-#define  MMQ_Y_Q5_1_AMPERE 64
-#define NWARPS_Q5_1_AMPERE 4
-#endif
-#define  MMQ_X_Q5_1_PASCAL 64
-#define  MMQ_Y_Q5_1_PASCAL 64
-#define NWARPS_Q5_1_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q5_1(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q5_1_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q5_1_RDNA2;
-    const int nwarps = NWARPS_Q5_1_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q5_1_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q5_1_RDNA1;
-    const int nwarps = NWARPS_Q5_1_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
-        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
-    const int nwarps = NWARPS_Q5_1_AMPERE;
-
-    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
-        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_1_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_1_PASCAL;
-    const int nwarps = NWARPS_Q5_1_PASCAL;
-
-    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
-        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_1_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q8_0_RDNA2  64
-#define  MMQ_Y_Q8_0_RDNA2  128
-#define NWARPS_Q8_0_RDNA2  8
-#define  MMQ_X_Q8_0_RDNA1  64
-#define  MMQ_Y_Q8_0_RDNA1  64
-#define NWARPS_Q8_0_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q8_0_AMPERE 4
-#define  MMQ_Y_Q8_0_AMPERE 32
-#define NWARPS_Q8_0_AMPERE 4
-#else
-#define  MMQ_X_Q8_0_AMPERE 128
-#define  MMQ_Y_Q8_0_AMPERE 64
-#define NWARPS_Q8_0_AMPERE 4
-#endif
-#define  MMQ_X_Q8_0_PASCAL 64
-#define  MMQ_Y_Q8_0_PASCAL 64
-#define NWARPS_Q8_0_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    mul_mat_q8_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q8_0_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q8_0_RDNA2;
-    const int nwarps = NWARPS_Q8_0_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q8_0_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q8_0_RDNA1;
-    const int nwarps = NWARPS_Q8_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
-        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
-    const int nwarps = NWARPS_Q8_0_AMPERE;
-
-    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
-        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q8_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q8_0_PASCAL;
-    const int nwarps = NWARPS_Q8_0_PASCAL;
-
-    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
-        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q8_0_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q2_K_RDNA2  64
-#define  MMQ_Y_Q2_K_RDNA2  128
-#define NWARPS_Q2_K_RDNA2  8
-#define  MMQ_X_Q2_K_RDNA1  128
-#define  MMQ_Y_Q2_K_RDNA1  32
-#define NWARPS_Q2_K_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q2_K_AMPERE 4
-#define  MMQ_Y_Q2_K_AMPERE 32
-#define NWARPS_Q2_K_AMPERE 4
-#else
-#define  MMQ_X_Q2_K_AMPERE 64
-#define  MMQ_Y_Q2_K_AMPERE 128
-#define NWARPS_Q2_K_AMPERE 4
-#endif
-#define  MMQ_X_Q2_K_PASCAL 64
-#define  MMQ_Y_Q2_K_PASCAL 64
-#define NWARPS_Q2_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q2_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q2_K_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q2_K_RDNA2;
-    const int nwarps = NWARPS_Q2_K_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q2_K_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q2_K_RDNA1;
-    const int nwarps = NWARPS_Q2_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
-        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
-    const int nwarps = NWARPS_Q2_K_AMPERE;
-
-    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
-        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q2_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q2_K_PASCAL;
-    const int nwarps = NWARPS_Q2_K_PASCAL;
-
-    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
-        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q2_K_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q3_K_RDNA2  128
-#define  MMQ_Y_Q3_K_RDNA2  64
-#define NWARPS_Q3_K_RDNA2  8
-#define  MMQ_X_Q3_K_RDNA1  32
-#define  MMQ_Y_Q3_K_RDNA1  128
-#define NWARPS_Q3_K_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q3_K_AMPERE 4
-#define  MMQ_Y_Q3_K_AMPERE 32
-#define NWARPS_Q3_K_AMPERE 4
-#else
-#define  MMQ_X_Q3_K_AMPERE 128
-#define  MMQ_Y_Q3_K_AMPERE 128
-#define NWARPS_Q3_K_AMPERE 4
-#endif
-#define  MMQ_X_Q3_K_PASCAL 64
-#define  MMQ_Y_Q3_K_PASCAL 64
-#define NWARPS_Q3_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
-    __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
-    mul_mat_q3_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q3_K_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q3_K_RDNA2;
-    const int nwarps = NWARPS_Q3_K_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q3_K_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q3_K_RDNA1;
-    const int nwarps = NWARPS_Q3_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
-        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
-    const int nwarps = NWARPS_Q3_K_AMPERE;
-
-    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
-        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q3_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q3_K_PASCAL;
-    const int nwarps = NWARPS_Q3_K_PASCAL;
-
-    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
-        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q3_K_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q4_K_RDNA2  64
-#define  MMQ_Y_Q4_K_RDNA2  128
-#define NWARPS_Q4_K_RDNA2  8
-#define  MMQ_X_Q4_K_RDNA1  32
-#define  MMQ_Y_Q4_K_RDNA1  64
-#define NWARPS_Q4_K_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q4_K_AMPERE 4
-#define  MMQ_Y_Q4_K_AMPERE 32
-#define NWARPS_Q4_K_AMPERE 4
-#else
-#define  MMQ_X_Q4_K_AMPERE 64
-#define  MMQ_Y_Q4_K_AMPERE 128
-#define NWARPS_Q4_K_AMPERE 4
-#endif
-#define  MMQ_X_Q4_K_PASCAL 64
-#define  MMQ_Y_Q4_K_PASCAL 64
-#define NWARPS_Q4_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
-    mul_mat_q4_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q4_K_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q4_K_RDNA2;
-    const int nwarps = NWARPS_Q4_K_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q4_K_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q4_K_RDNA1;
-    const int nwarps = NWARPS_Q4_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
-        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
-    const int nwarps = NWARPS_Q4_K_AMPERE;
-
-    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
-        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_K_PASCAL;
-    const int nwarps = NWARPS_Q4_K_PASCAL;
-
-    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
-        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_K_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q5_K_RDNA2  64
-#define  MMQ_Y_Q5_K_RDNA2  128
-#define NWARPS_Q5_K_RDNA2  8
-#define  MMQ_X_Q5_K_RDNA1  32
-#define  MMQ_Y_Q5_K_RDNA1  64
-#define NWARPS_Q5_K_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q5_K_AMPERE 4
-#define  MMQ_Y_Q5_K_AMPERE 32
-#define NWARPS_Q5_K_AMPERE 4
-#else
-#define  MMQ_X_Q5_K_AMPERE 64
-#define  MMQ_Y_Q5_K_AMPERE 128
-#define NWARPS_Q5_K_AMPERE 4
-#endif
-#define  MMQ_X_Q5_K_PASCAL 64
-#define  MMQ_Y_Q5_K_PASCAL 64
-#define NWARPS_Q5_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q5_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q5_K_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q5_K_RDNA2;
-    const int nwarps = NWARPS_Q5_K_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q5_K_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q5_K_RDNA1;
-    const int nwarps = NWARPS_Q5_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
-        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
-    const int nwarps = NWARPS_Q5_K_AMPERE;
-
-    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
-        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_K_PASCAL;
-    const int nwarps = NWARPS_Q5_K_PASCAL;
-
-    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
-        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_K_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-#define  MMQ_X_Q6_K_RDNA2  64
-#define  MMQ_Y_Q6_K_RDNA2  128
-#define NWARPS_Q6_K_RDNA2  8
-#define  MMQ_X_Q6_K_RDNA1  32
-#define  MMQ_Y_Q6_K_RDNA1  64
-#define NWARPS_Q6_K_RDNA1  8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define  MMQ_X_Q6_K_AMPERE 4
-#define  MMQ_Y_Q6_K_AMPERE 32
-#define NWARPS_Q6_K_AMPERE 4
-#else
-#define  MMQ_X_Q6_K_AMPERE 64
-#define  MMQ_Y_Q6_K_AMPERE 64
-#define NWARPS_Q6_K_AMPERE 4
-#endif
-#define  MMQ_X_Q6_K_PASCAL 64
-#define  MMQ_Y_Q6_K_PASCAL 64
-#define NWARPS_Q6_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
-    __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
-    mul_mat_q6_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
-    const int mmq_x  =  MMQ_X_Q6_K_RDNA2;
-    const int mmq_y  =  MMQ_Y_Q6_K_RDNA2;
-    const int nwarps = NWARPS_Q6_K_RDNA2;
-#else
-    const int mmq_x  =  MMQ_X_Q6_K_RDNA1;
-    const int mmq_y  =  MMQ_Y_Q6_K_RDNA1;
-    const int nwarps = NWARPS_Q6_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
-    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
-        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
-    const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
-    const int nwarps = NWARPS_Q6_K_AMPERE;
-
-    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
-        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q6_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q6_K_PASCAL;
-    const int nwarps = NWARPS_Q6_K_PASCAL;
-
-    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
-        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q6_K_q8_1_mul_mat;
-    NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
-
-template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-// tell the compiler to use as many registers as it wants, see nwarps definition below
-__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void mul_mat_vec_q(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
-    constexpr int nwarps              = 1;
-    constexpr int rows_per_cuda_block = 1;
-#else
-    constexpr int nwarps              = ncols_y <= 4 ? 4 : 2;
-    constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
-
-    const     int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
-    const     int row0 = rows_per_cuda_block*blockIdx.x;
-    const     int blocks_per_row_x = ncols_x / qk;
-    const     int blocks_per_col_y = nrows_y / QK8_1;
-    constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
-
-// partial sum for each thread
-    float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
-
-    const block_q_t  * x = (const block_q_t  *) vx;
-    const block_q8_1 * y = (const block_q8_1 *) vy;
-
-    for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
-        const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
-
-        // x block quant index when casting the quants to int
-        const int kqs = vdr * (tid % (qi/vdr));
-
-#pragma unroll
-        for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
-            for (int i = 0; i < rows_per_cuda_block; ++i) {
-                tmp[j][i] += vec_dot_q_cuda(
-                    &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
-            }
-        }
-    }
-
-    __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
-    if (threadIdx.y > 0) {
-#pragma unroll
-        for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
-            for (int i = 0; i < rows_per_cuda_block; ++i) {
-                tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
-            }
-        }
-    }
-    __syncthreads();
-    if (threadIdx.y > 0) {
-        return;
-    }
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
-        for (int i = 0; i < rows_per_cuda_block; ++i) {
-#pragma unroll
-            for (int l = 0; l < nwarps-1; ++l) {
-                tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
-            }
-            tmp[j][i] = warp_reduce_sum(tmp[j][i]);
-        }
-
-        if (threadIdx.x < rows_per_cuda_block) {
-            dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
-        }
-    }
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
-static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
-    // qk = quantized weights per x block
-    // qr = number of quantized weights per data value in x block
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-
-    if (row >= nrows) {
-        return;
-    }
-
-    const int tid = threadIdx.x;
-
-    const int iter_stride = 2*GGML_CUDA_DMMV_X;
-    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
-    const int y_offset = qr == 1 ? 1 : qk/2;
-
-// partial sum for each thread
-#ifdef GGML_CUDA_F16
-    half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
-#else
-    float tmp = 0.0f;
-#endif // GGML_CUDA_F16
-
-    for (int i = 0; i < ncols; i += iter_stride) {
-        const int col = i + vals_per_iter*tid;
-        const int ib = (row*ncols + col)/qk; // x block index
-        const int iqs = (col%qk)/qr; // x quant index
-        const int iybs = col - col%qk; // y block start index
-
-// processing >2 values per i iter is faster for fast GPUs
-#pragma unroll
-        for (int j = 0; j < vals_per_iter; j += 2) {
-            // process 2 vals per j iter
-
-            // dequantize
-            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
-            dfloat2 v;
-            dequantize_kernel(vx, ib, iqs + j/qr, v);
-
-            // matrix multiplication
-            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
-#ifdef GGML_CUDA_F16
-            tmp += __hmul2(v, {
-                y[iybs + iqs + j/qr + 0],
-                y[iybs + iqs + j/qr + y_offset]
-            });
-#else
-            tmp += v.x * y[iybs + iqs + j/qr + 0];
-            tmp += v.y * y[iybs + iqs + j/qr + y_offset];
-#endif // GGML_CUDA_F16
-        }
-    }
-
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
-
-    if (tid == 0) {
-#ifdef GGML_CUDA_F16
-        dst[row] = tmp.x + tmp.y;
-#else
-        dst[row] = tmp;
-#endif // GGML_CUDA_F16
-    }
-}
-
-static __global__ void mul_mat_p021_f16_f32(
-    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
-
-    const half * x = (const half *) vx;
-
-    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
-    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
-    const int channel_x = channel / (nchannels_y / nchannels_x);
-
-    const int nrows_y = ncols_x;
-    const int nrows_dst = nrows_x;
-    const int row_dst = row_x;
-
-    float tmp = 0.0f;
-
-    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
-        const int col_x = col_x0 + threadIdx.x;
-
-        if (col_x >= ncols_x) {
-            break;
-        }
-
-        // x is transposed and permuted
-        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
-        const float xi = __half2float(x[ix]);
-
-        const int row_y = col_x;
-
-        // y is not transposed but permuted
-        const int iy = channel*nrows_y + row_y;
-
-        tmp += xi * y[iy];
-    }
-
-    // dst is not transposed and not permuted
-    const int idst = channel*nrows_dst + row_dst;
-
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
-
-    if (threadIdx.x == 0) {
-        dst[idst] = tmp;
-    }
-}
-
-static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
-    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
-    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
-
-    const half * x = (const half *) vx;
-
-    const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
-    const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
-    const int channel_x = channel / channel_x_divisor;
-
-    const int nrows_y   = ncols_x;
-    const int nrows_dst = nrows_x;
-    const int row_dst   = row_x;
-
-    const int idst = channel*nrows_dst + row_dst;
-
-    float tmp = 0.0f;
-
-    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
-        const int col_x = col_x0 + threadIdx.x;
-
-        if (col_x >= ncols_x) {
-            break;
-        }
-
-        const int row_y = col_x;
-
-        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
-        const int iy = channel*nrows_y + row_y;
-
-        const float xi = __half2float(x[ix]);
-
-        tmp += xi * y[iy];
-    }
-
-    // sum up partial sums and write back result
-    tmp = warp_reduce_sum(tmp);
-
-    if (threadIdx.x == 0) {
-        dst[idst] = tmp;
-    }
-}
-
-static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    float * dsti = (float *) cdsti;
-
-    *dsti = *xi;
-}
-
-static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    half * dsti = (half *) cdsti;
-
-    *dsti = __float2half(*xi);
-}
-
-static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
-    const half * xi = (const half *) cxi;
-    half * dsti = (half *) cdsti;
-
-    *dsti = *xi;
-}
-
-static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
-    const half * xi = (const half *) cxi;
-    float * dsti = (float *) cdsti;
-
-    *dsti = *xi;
-}
-
-template <cpy_kernel_t cpy_1>
-static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
-                                   const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-                                   const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
-                                   const int nb12, const int nb13) {
-    const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= ne) {
-        return;
-    }
-
-    // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
-    // then combine those indices with the corresponding byte offsets to get the total offsets
-    const int64_t i03 = i/(ne00 * ne01 * ne02);
-    const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
-    const int64_t i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
-    const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
-    const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
-    const int64_t i13 = i/(ne10 * ne11 * ne12);
-    const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
-    const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
-    const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
-    const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
-
-    cpy_1(cx + x_offset, cdst + dst_offset);
-}
-
-static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    block_q8_0 * dsti = (block_q8_0 *) cdsti;
-
-    float amax = 0.0f; // absolute max
-
-    for (int j = 0; j < QK8_0; j++) {
-        const float v = xi[j];
-        amax = fmaxf(amax, fabsf(v));
-    }
-
-    const float d = amax / ((1 << 7) - 1);
-    const float id = d ? 1.0f/d : 0.0f;
-
-    dsti->d = d;
-
-    for (int j = 0; j < QK8_0; ++j) {
-        const float x0 = xi[j]*id;
-
-        dsti->qs[j] = roundf(x0);
-    }
-}
-
-static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    block_q4_0 * dsti = (block_q4_0 *) cdsti;
-
-    float amax = 0.0f;
-    float vmax = 0.0f;
-
-    for (int j = 0; j < QK4_0; ++j) {
-        const float v = xi[j];
-        if (amax < fabsf(v)) {
-            amax = fabsf(v);
-            vmax = v;
-        }
-    }
-
-    const float d  = vmax / -8;
-    const float id = d ? 1.0f/d : 0.0f;
-
-    dsti->d = d;
-
-    for (int j = 0; j < QK4_0/2; ++j) {
-        const float x0 = xi[0       + j]*id;
-        const float x1 = xi[QK4_0/2 + j]*id;
-
-        const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
-        const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
-
-        dsti->qs[j]  = xi0;
-        dsti->qs[j] |= xi1 << 4;
-    }
-}
-
-static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    block_q4_1 * dsti = (block_q4_1 *) cdsti;
-
-    float vmin = FLT_MAX;
-    float vmax = -FLT_MAX;
-
-    for (int j = 0; j < QK4_1; ++j) {
-        const float v = xi[j];
-
-        if (v < vmin) vmin = v;
-        if (v > vmax) vmax = v;
-    }
-
-    const float d  = (vmax - vmin) / ((1 << 4) - 1);
-    const float id = d ? 1.0f/d : 0.0f;
-
-    dsti->dm.x = d;
-    dsti->dm.y = vmin;
-
-    for (int j = 0; j < QK4_1/2; ++j) {
-        const float x0 = (xi[0       + j] - vmin)*id;
-        const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
-
-        const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
-        const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
-
-        dsti->qs[j]  = xi0;
-        dsti->qs[j] |= xi1 << 4;
-    }
-}
-
-template <cpy_kernel_t cpy_blck, int qk>
-static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
-                                 const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-                                 const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
-                                 const int nb12, const int nb13) {
-    const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
-
-    if (i >= ne) {
-        return;
-    }
-
-    const int i03 = i/(ne00 * ne01 * ne02);
-    const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
-    const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
-    const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
-    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
-    const int i13 = i/(ne10 * ne11 * ne12);
-    const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
-    const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
-    const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
-    const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
-
-    cpy_blck(cx + x_offset, cdst + dst_offset);
-}
-
-static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
-    const float y = (i0 / 2 - low) / max(0.001f, high - low);
-    return 1.0f - min(1.0f, max(0.0f, y));
-}
-
-struct rope_corr_dims {
-    float v[4];
-};
-
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static __device__ void rope_yarn(
-    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
-    float * cos_theta, float * sin_theta
-) {
-    // Get n-d rotational scaling corrected for extrapolation
-    float theta_interp = freq_scale * theta_extrap;
-    float theta = theta_interp;
-    if (ext_factor != 0.0f) {
-        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
-        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
-
-        // Get n-d magnitude scaling corrected for interpolation
-        mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
-    }
-    *cos_theta = cosf(theta) * mscale;
-    *sin_theta = sinf(theta) * mscale;
-}
-
-// rope == RoPE == rotary positional embedding
-template<typename T, bool has_pos>
-static __global__ void rope(
-    const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
-    float ext_factor, float attn_factor, rope_corr_dims corr_dims
-) {
-    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int row = blockDim.x*blockIdx.x + threadIdx.x;
-    const int i = row*ncols + col;
-    const int i2 = row/p_delta_rows;
-
-    const int p = has_pos ? pos[i2] : 0;
-    const float theta_base = p*powf(freq_base, -float(col)/ncols);
-
-    float cos_theta, sin_theta;
-    rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
-    const float x0 = x[i + 0];
-    const float x1 = x[i + 1];
-
-    dst[i + 0] = x0*cos_theta - x1*sin_theta;
-    dst[i + 1] = x0*sin_theta + x1*cos_theta;
-}
-
-template<typename T, bool has_pos>
-static __global__ void rope_neox(
-    const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
-    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
-) {
-    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int row = blockDim.x*blockIdx.x + threadIdx.x;
-    const int ib = col / n_dims;
-    const int ic = col % n_dims;
-
-    if (ib > 0) {
-        const int i = row*ncols + ib*n_dims + ic;
-
-        dst[i + 0] = x[i + 0];
-        dst[i + 1] = x[i + 1];
-
-        return;
-    }
-
-    const int i  = row*ncols + ib*n_dims + ic/2;
-    const int i2 = row/p_delta_rows;
-
-    float cur_rot = inv_ndims * ic - ib;
-
-    const int p = has_pos ? pos[i2] : 0;
-    const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
-
-    float cos_theta, sin_theta;
-    rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
-    const float x0 = x[i + 0];
-    const float x1 = x[i + n_dims/2];
-
-    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
-    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
-}
-
-static __global__ void rope_glm_f32(
-    const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
-    int n_ctx
-) {
-    const int col = blockDim.x*blockIdx.x + threadIdx.x;
-    const int half_n_dims = ncols/4;
-
-    if (col >= half_n_dims) {
-        return;
-    }
-
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i = row*ncols + col;
-    const int i2 = row/p_delta_rows;
-
-    const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
-     // FIXME: this is likely wrong
-    const int p = pos != nullptr ? pos[i2] : 0;
-
-    const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
-    const float sin_theta = sinf(theta);
-    const float cos_theta = cosf(theta);
-
-    const float x0 = x[i + 0];
-    const float x1 = x[i + half_n_dims];
-
-    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
-    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
-
-    const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
-    const float sin_block_theta = sinf(block_theta);
-    const float cos_block_theta = cosf(block_theta);
-
-    const float x2 = x[i + half_n_dims * 2];
-    const float x3 = x[i + half_n_dims * 3];
-
-    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
-    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
-}
-
-static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
-                                 const int n_heads_log2_floor, const float m0, const float m1) {
-    const int col = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i = row*ncols + col;
-
-    const int k = row/k_rows;
-
-    float m_k;
-    if (k < n_heads_log2_floor) {
-        m_k = powf(m0, k + 1);
-    } else {
-        m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
-    }
-
-    dst[i] = col * m_k + x[i];
-}
-
-static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
-    const int row = blockIdx.x;
-    const int col = threadIdx.x;
-
-    float sum = 0.0f;
-    for (int i = col; i < ncols; i += blockDim.x) {
-        sum += x[row * ncols + i];
-    }
-
-    sum = warp_reduce_sum(sum);
-
-    if (col == 0) {
-        dst[row] = sum;
-    }
-}
-
-template<typename T>
-static inline __device__ void swap(T & a, T & b) {
-    T tmp = a;
-    a = b;
-    b = tmp;
-}
-
-template<ggml_sort_order order>
-static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
-    // bitonic sort
-    int col = threadIdx.x;
-    int row = blockIdx.y;
-
-    if (col >= ncols) return;
-
-    const float * x_row = x + row * ncols;
-    int * dst_row = dst + row * ncols;
-
-    // initialize indices
-    if (col < ncols) {
-        dst_row[col] = col;
-    }
-    __syncthreads();
-
-    for (int k = 2; k <= ncols; k *= 2) {
-        for (int j = k / 2; j > 0; j /= 2) {
-            int ixj = col ^ j;
-            if (ixj > col) {
-                if ((col & k) == 0) {
-                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
-                        swap(dst_row[col], dst_row[ixj]);
-                    }
-                } else {
-                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
-                        swap(dst_row[col], dst_row[ixj]);
-                    }
-                }
-            }
-            __syncthreads();
-        }
-    }
-}
-
-static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
-    const int col = blockDim.y*blockIdx.y + threadIdx.y;
-    const int row = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int i = row*ncols + col;
-    //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
-    //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
-    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
-}
-
-template <bool vals_smem, int ncols_template, int block_size_template>
-static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
-    const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
-
-    const int tid  = threadIdx.x;
-    const int rowx = blockIdx.x;
-    const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
-
-    const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
-
-    const int warp_id = threadIdx.x / WARP_SIZE;
-    const int lane_id = threadIdx.x % WARP_SIZE;
-
-    float slope = 0.0f;
-
-    // ALiBi
-    if (max_bias > 0.0f) {
-        const int h = rowx/nrows_y; // head index
-
-        const float base = h < n_head_log2 ? m0 : m1;
-        const int   exp  = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
-        slope = powf(base, exp);
-    }
-
-    extern __shared__ float data_soft_max_f32[];
-    float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
-    // shared memory buffer to cache values between iterations:
-    float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
-
-    float max_val = -INFINITY;
-
-#pragma unroll
-    for (int col0 = 0; col0 < ncols; col0 += block_size) {
-        const int col = col0 + tid;
-
-        if (ncols_template == 0 && col >= ncols) {
-            break;
-        }
-
-        const int ix = rowx*ncols + col;
-        const int iy = rowy*ncols + col;
-
-        const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
-
-        vals[col] = val;
-        max_val = max(max_val, val);
-    }
-
-    // find the max value in the block
-    max_val = warp_reduce_max(max_val);
-    if (block_size > WARP_SIZE) {
-        if (warp_id == 0) {
-            buf_iw[lane_id] = -INFINITY;
-        }
-        __syncthreads();
-
-        if (lane_id == 0) {
-            buf_iw[warp_id] = max_val;
-        }
-        __syncthreads();
-
-        max_val = buf_iw[lane_id];
-        max_val = warp_reduce_max(max_val);
-    }
-
-    float tmp = 0.0f; // partial sum
-
-#pragma unroll
-    for (int col0 = 0; col0 < ncols; col0 += block_size) {
-        const int col = col0 + tid;
-
-        if (ncols_template == 0 && col >= ncols) {
-            break;
-        }
-
-        const float val = expf(vals[col] - max_val);
-        tmp += val;
-        vals[col] = val;
-    }
-
-    // find the sum of exps in the block
-    tmp = warp_reduce_sum(tmp);
-    if (block_size > WARP_SIZE) {
-        __syncthreads();
-        if (warp_id == 0) {
-            buf_iw[lane_id] = 0.0f;
-        }
-        __syncthreads();
-
-        if (lane_id == 0) {
-            buf_iw[warp_id] = tmp;
-        }
-        __syncthreads();
-
-        tmp = buf_iw[lane_id];
-        tmp = warp_reduce_sum(tmp);
-    }
-
-    const float inv_sum = 1.0f / tmp;
-
-#pragma unroll
-    for (int col0 = 0; col0 < ncols; col0 += block_size) {
-        const int col = col0 + tid;
-
-        if (ncols_template == 0 && col >= ncols) {
-            return;
-        }
-
-        const int idst = rowx*ncols + col;
-        dst[idst] = vals[col] * inv_sum;
-    }
-}
-
-static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-
-    dst[i] = scale * x[i];
-}
-
-static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-
-    dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
-}
-
-template <typename T>
-static  __global__ void im2col_kernel(
-        const float * x, T * dst, int64_t batch_offset,
-        int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
-        int s0, int s1, int p0, int p1, int d0, int d1) {
-    const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
-    if (i >= pelements) {
-        return;
-    }
-
-    const int64_t  ksize = OW * (KH > 1 ? KW : 1);
-    const int64_t  kx = i / ksize;
-    const int64_t  kd = kx * ksize;
-    const int64_t  ky = (i - kd) / OW;
-    const int64_t  ix = i % OW;
-
-    const int64_t  oh = blockIdx.y;
-    const int64_t  batch = blockIdx.z / IC;
-    const int64_t  ic = blockIdx.z % IC;
-
-    const int64_t iiw = ix * s0 + kx * d0 - p0;
-    const int64_t iih = oh * s1 + ky * d1 - p1;
-
-    const int64_t offset_dst =
-        ((batch * OH + oh) * OW + ix) * CHW +
-        (ic * (KW * KH) + ky * KW + kx);
-
-    if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
-        dst[offset_dst] = 0.0f;
-    } else {
-        const int64_t offset_src = ic * offset_delta + batch * batch_offset;
-        dst[offset_dst] = x[offset_src + iih * IW + iiw];
-    }
-}
-
-template <typename Ti, typename To>
-static  __global__ void pool2d_nchw_kernel(
-        const int ih, const int iw, const int oh, const int ow,
-        const int kh, const int kw, const int sh, const int sw,
-        const int ph, const int pw, const int parallel_elements,
-        const Ti* src, To* dst, const enum ggml_op_pool op) {
-        int idx = threadIdx.x + blockIdx.x * blockDim.x;
-        if (idx >= parallel_elements) {
-            return;
-        }
-
-        const int I_HW = ih * iw;
-        const int O_HW = oh * ow;
-        const int nc = idx / O_HW;
-        const int cur_oh = idx % O_HW / ow;
-        const int cur_ow = idx % O_HW % ow;
-        const Ti* i_ptr = src + nc * I_HW;
-        To* o_ptr = dst + nc * O_HW;
-        const int start_h = cur_oh * sh - ph;
-        const int bh = max(0, start_h);
-        const int eh = min(ih, start_h + kh);
-        const int start_w = cur_ow * sw - pw;
-        const int bw = max(0, start_w);
-        const int ew = min(iw, start_w + kw);
-        const To scale = 1. / (kh * kw);
-        To res = 0;
-
-        switch (op) {
-            case GGML_OP_POOL_AVG: res = 0; break;
-            case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
-        }
-
-        for (int i = bh; i < eh; i += 1) {
-            for (int j = bw; j < ew; j += 1) {
-    #if __CUDA_ARCH__ >= 350
-                Ti cur = __ldg(i_ptr + i * iw + j);
-    #else
-                Ti cur = i_ptr[i * iw + j];
-    #endif
-                switch (op) {
-                    case GGML_OP_POOL_AVG: res += cur * scale; break;
-                    case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
-                }
-            }
-        }
-        o_ptr[cur_oh * ow + cur_ow] = res;
-}
-
-template<int qk, int qr, dequantize_kernel_t dq>
-static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-                            const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
-
-    GGML_TENSOR_BINARY_OP_LOCALS
-
-    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
-    const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
-    const dim3 block_nums(block_num_x, ne10, ne11*ne12);
-
-    // strides in elements
-    //const size_t s0 = nb0 / ggml_element_size(dst);
-    const size_t s1 = nb1 / ggml_element_size(dst);
-    const size_t s2 = nb2 / ggml_element_size(dst);
-    const size_t s3 = nb3 / ggml_element_size(dst);
-
-    const size_t s10 = nb10 / ggml_element_size(src1);
-    const size_t s11 = nb11 / ggml_element_size(src1);
-    const size_t s12 = nb12 / ggml_element_size(src1);
-    //const size_t s13 = nb13 / ggml_element_size(src1);
-
-    GGML_ASSERT(ne00 % 2 == 0);
-
-    k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
-            src0_dd, src1_dd, dst_dd,
-            ne00, /*ne01, ne02, ne03,*/
-            /*ne10, ne11,*/ ne12, /*ne13,*/
-            /* s0,*/ s1, s2, s3,
-            /* nb00,*/ nb01, nb02, nb03,
-            s10, s11, s12/*, s13*/);
-
-    (void) dst;
-}
-
-template<typename src0_t>
-static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-                                const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
-
-    GGML_TENSOR_BINARY_OP_LOCALS
-
-    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
-    const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
-    const dim3 block_nums(block_num_x, ne10, ne11*ne12);
-
-    // strides in elements
-    //const size_t s0 = nb0 / ggml_element_size(dst);
-    const size_t s1 = nb1 / ggml_element_size(dst);
-    const size_t s2 = nb2 / ggml_element_size(dst);
-    const size_t s3 = nb3 / ggml_element_size(dst);
-
-    const size_t s10 = nb10 / ggml_element_size(src1);
-    const size_t s11 = nb11 / ggml_element_size(src1);
-    const size_t s12 = nb12 / ggml_element_size(src1);
-    //const size_t s13 = nb13 / ggml_element_size(src1);
-
-    k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
-            src0_dd, src1_dd, dst_dd,
-            ne00, /*ne01, ne02, ne03,*/
-            /*ne10, ne11,*/ ne12, /*ne13,*/
-            /* s0,*/ s1, s2, s3,
-            /* nb00,*/ nb01, nb02, nb03,
-            s10, s11, s12/*, s13*/);
-
-    (void) dst;
-}
-
-template<float (*bin_op)(const float, const float)>
-struct bin_bcast_cuda {
-    template<typename src0_t, typename src1_t, typename dst_t>
-    void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
-            const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
-            cudaStream_t stream) {
-
-        GGML_TENSOR_BINARY_OP_LOCALS
-
-        int nr0 = ne10/ne0;
-        int nr1 = ne11/ne1;
-        int nr2 = ne12/ne2;
-        int nr3 = ne13/ne3;
-
-        int nr[4] = { nr0, nr1, nr2, nr3 };
-
-        // collapse dimensions until first broadcast dimension
-        int64_t cne0[] = {ne0, ne1, ne2, ne3};
-        int64_t cne1[] = {ne10, ne11, ne12, ne13};
-        size_t cnb0[] = {nb0, nb1, nb2, nb3};
-        size_t cnb1[] = {nb10, nb11, nb12, nb13};
-        auto collapse = [](int64_t cne[]) {
-            cne[0] *= cne[1];
-            cne[1] = cne[2];
-            cne[2] = cne[3];
-            cne[3] = 1;
-        };
-
-        auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
-            cnb[1] *= cne[1];
-            cnb[2] *= cne[2];
-            cnb[3] *= cne[3];
-        };
-
-        for (int i = 0; i < 4; i++) {
-            if (nr[i] != 1) {
-                break;
-            }
-            if (i > 0) {
-                collapse_nb(cnb0, cne0);
-                collapse_nb(cnb1, cne1);
-                collapse(cne0);
-                collapse(cne1);
-            }
-        }
-        {
-            int64_t ne0 = cne0[0];
-            int64_t ne1 = cne0[1];
-            int64_t ne2 = cne0[2];
-            int64_t ne3 = cne0[3];
-
-            int64_t ne10 = cne1[0];
-            int64_t ne11 = cne1[1];
-            int64_t ne12 = cne1[2];
-            int64_t ne13 = cne1[3];
-
-            size_t nb0 = cnb0[0];
-            size_t nb1 = cnb0[1];
-            size_t nb2 = cnb0[2];
-            size_t nb3 = cnb0[3];
-
-            size_t nb10 = cnb1[0];
-            size_t nb11 = cnb1[1];
-            size_t nb12 = cnb1[2];
-            size_t nb13 = cnb1[3];
-
-            size_t s0 = nb0 / sizeof(dst_t);
-            size_t s1 = nb1 / sizeof(dst_t);
-            size_t s2 = nb2 / sizeof(dst_t);
-            size_t s3 = nb3 / sizeof(dst_t);
-
-            size_t s10 = nb10 / sizeof(src1_t);
-            size_t s11 = nb11 / sizeof(src1_t);
-            size_t s12 = nb12 / sizeof(src1_t);
-            size_t s13 = nb13 / sizeof(src1_t);
-
-            GGML_ASSERT(s0 == 1);
-            GGML_ASSERT(s10 == 1);
-
-            const int block_size = 128;
-
-            int64_t hne0 = std::max(ne0/2LL, 1LL);
-
-            dim3 block_dims;
-            block_dims.x = std::min<unsigned int>(hne0, block_size);
-            block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
-            block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
-
-            dim3 block_nums(
-                (hne0 + block_dims.x - 1) / block_dims.x,
-                (ne1 + block_dims.y - 1) / block_dims.y,
-                (ne2*ne3 + block_dims.z - 1) / block_dims.z
-            );
-
-            if (block_nums.z > 65535) {
-                // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
-                int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
-                k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
-                    src0_dd, src1_dd, dst_dd,
-                    ne0, ne1, ne2, ne3,
-                    ne10, ne11, ne12, ne13,
-                    /* s0, */ s1, s2, s3,
-                    /* s10, */ s11, s12, s13);
-            } else {
-                k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
-                    src0_dd, src1_dd, dst_dd,
-                    ne0, ne1, ne2, ne3,
-                    ne10, ne11, ne12, ne13,
-                    /* s0, */ s1, s2, s3,
-                    /* s10, */ s11, s12, s13);
-            }
-        }
-    }
-};
-
-static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
-    const int ne10, const int ne11, const int ne12,
-    const int nb1, const int nb2, const int offset, cudaStream_t stream) {
-    int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
-    acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
-}
-
-static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
-    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
-    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
-    gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
-    tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
-    relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
-    hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
-    hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
-    leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
-}
-
-static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
-    sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
-    GGML_ASSERT(ncols % WARP_SIZE == 0);
-    if (ncols < 1024) {
-        const dim3 block_dims(WARP_SIZE, 1, 1);
-        norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
-    } else {
-        const dim3 block_dims(1024, 1, 1);
-        norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
-    }
-}
-
-static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
-    static const float eps = 1e-6f;
-    if (group_size < 1024) {
-        const dim3 block_dims(WARP_SIZE, 1, 1);
-        group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
-    } else {
-        const dim3 block_dims(1024, 1, 1);
-        group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
-    }
-}
-
-static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
-    int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
-    dim3 gridDim(num_blocks, ne1, ne2);
-    concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
-}
-
-static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
-                             const int scale_factor, cudaStream_t stream) {
-    int ne0 = (ne00 * scale_factor);
-    int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
-    dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
-    upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
-}
-
-static void pad_f32_cuda(const float * x, float * dst,
-    const int ne00, const int ne01, const int ne02, const int ne03,
-    const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
-    int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
-    dim3 gridDim(num_blocks, ne1, ne2*ne3);
-    pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
-}
-
-static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
-    int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
-    arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start,  step);
-}
-
-static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
-                                        const int dim, const int max_period, cudaStream_t stream) {
-    int half_ceil = (dim + 1) / 2;
-    int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
-    dim3 gridDim(num_blocks, ne00, 1);
-    timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
-}
-
-static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
-    GGML_ASSERT(ncols % WARP_SIZE == 0);
-    if (ncols < 1024) {
-        const dim3 block_dims(WARP_SIZE, 1, 1);
-        rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
-    } else {
-        const dim3 block_dims(1024, 1, 1);
-        rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
-    }
-}
-
-static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
-    const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
-    const dim3 num_blocks(block_num_x, ky, 1);
-    const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
-    quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
-    dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
-    if (k % CUDA_Q8_0_NE_ALIGN == 0) {
-        const bool need_check = false;
-        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
-    } else {
-        const bool need_check = true;
-        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
-    }
-}
-
-template<typename dst_t>
-static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-template<typename dst_t>
-static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-template<typename dst_t>
-static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb32 = k / 32;
-    const int nb = (k + 255) / 256;
-    dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
-}
-
-template<typename dst_t>
-static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb32 = k / 32;
-    const int nb = (k + 255) / 256;
-    dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
-}
-
-template<typename dst_t>
-static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-template<typename dst_t>
-static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-template<typename dst_t>
-static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = (k + QK_K - 1) / QK_K;
-    dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-template<typename dst_t>
-static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
-    const int nb = (k + QK_K - 1) / QK_K;
-#if QK_K == 64
-    dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
-#else
-    dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-template <typename src_t, typename dst_t>
-static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
-    int id;
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            return dequantize_row_q4_0_cuda;
-        case GGML_TYPE_Q4_1:
-            return dequantize_row_q4_1_cuda;
-        case GGML_TYPE_Q5_0:
-            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
-        case GGML_TYPE_Q5_1:
-            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
-        case GGML_TYPE_Q8_0:
-            CUDA_CHECK(cudaGetDevice(&id));
-            if (g_device_caps[id].cc >= CC_PASCAL) {
-                return dequantize_block_q8_0_f16_cuda;
-            }
-            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
-        case GGML_TYPE_Q2_K:
-            return dequantize_row_q2_K_cuda;
-        case GGML_TYPE_Q3_K:
-            return dequantize_row_q3_K_cuda;
-        case GGML_TYPE_Q4_K:
-            return dequantize_row_q4_K_cuda;
-        case GGML_TYPE_Q5_K:
-            return dequantize_row_q5_K_cuda;
-        case GGML_TYPE_Q6_K:
-            return dequantize_row_q6_K_cuda;
-        case GGML_TYPE_IQ2_XXS:
-            return dequantize_row_iq2_xxs_cuda;
-        case GGML_TYPE_IQ2_XS:
-            return dequantize_row_iq2_xs_cuda;
-        case GGML_TYPE_IQ2_S:
-            return dequantize_row_iq2_s_cuda;
-        case GGML_TYPE_IQ3_XXS:
-            return dequantize_row_iq3_xxs_cuda;
-        case GGML_TYPE_IQ1_S:
-            return dequantize_row_iq1_s_cuda;
-        case GGML_TYPE_IQ4_NL:
-            return dequantize_row_iq4_nl_cuda;
-        case GGML_TYPE_IQ4_XS:
-            return dequantize_row_iq4_xs_cuda;
-        case GGML_TYPE_IQ3_S:
-            return dequantize_row_iq3_s_cuda;
-        case GGML_TYPE_F32:
-            return convert_unary_cuda<float>;
-        default:
-            return nullptr;
-    }
-}
-
-static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            return dequantize_row_q4_0_cuda;
-        case GGML_TYPE_Q4_1:
-            return dequantize_row_q4_1_cuda;
-        case GGML_TYPE_Q5_0:
-            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
-        case GGML_TYPE_Q5_1:
-            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
-        case GGML_TYPE_Q8_0:
-            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
-        case GGML_TYPE_Q2_K:
-            return dequantize_row_q2_K_cuda;
-        case GGML_TYPE_Q3_K:
-            return dequantize_row_q3_K_cuda;
-        case GGML_TYPE_Q4_K:
-            return dequantize_row_q4_K_cuda;
-        case GGML_TYPE_Q5_K:
-            return dequantize_row_q5_K_cuda;
-        case GGML_TYPE_Q6_K:
-            return dequantize_row_q6_K_cuda;
-        case GGML_TYPE_IQ2_XXS:
-            return dequantize_row_iq2_xxs_cuda;
-        case GGML_TYPE_IQ2_XS:
-            return dequantize_row_iq2_xs_cuda;
-        case GGML_TYPE_IQ2_S:
-            return dequantize_row_iq2_s_cuda;
-        case GGML_TYPE_IQ3_XXS:
-            return dequantize_row_iq3_xxs_cuda;
-        case GGML_TYPE_IQ1_S:
-            return dequantize_row_iq1_s_cuda;
-        case GGML_TYPE_IQ4_NL:
-            return dequantize_row_iq4_nl_cuda;
-        case GGML_TYPE_IQ4_XS:
-            return dequantize_row_iq4_xs_cuda;
-        case GGML_TYPE_IQ3_S:
-            return dequantize_row_iq3_s_cuda;
-        case GGML_TYPE_F16:
-            return convert_unary_cuda<half>;
-        default:
-            return nullptr;
-    }
-}
-
-static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const dim3 block_dims(32, 1, 1);
-    dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
-}
-
-static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(block_num_y, 1, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<1, 1, convert_f16>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
-static void mul_mat_vec_q_cuda(
-    const void * vx, const void * vy, float * dst,
-    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
-    GGML_ASSERT(ncols_x % qk == 0);
-    GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    int64_t nwarps = 1;
-    int64_t rows_per_cuda_block = 1;
-
-    if (g_device_caps[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
-        switch(ncols_y) {
-            case 1:
-                nwarps = 4;
-                rows_per_cuda_block = 1;
-                break;
-            case 2:
-            case 3:
-            case 4:
-                nwarps = 4;
-                rows_per_cuda_block = 2;
-                break;
-            case 5:
-            case 6:
-            case 7:
-            case 8:
-                nwarps = 2;
-                rows_per_cuda_block = 2;
-                break;
-            default:
-                GGML_ASSERT(false);
-                break;
-        }
-    }
-    const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
-    const dim3 block_nums(nblocks, 1, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    switch (ncols_y) {
-        case 1:
-            mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 2:
-            mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 3:
-            mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 4:
-            mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 5:
-            mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 6:
-            mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 7:
-            mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        case 8:
-            mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
-                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
-            break;
-        default:
-            GGML_ASSERT(false);
-            break;
-    }
-}
-
-static void ggml_mul_mat_q4_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q4_0_RDNA2;
-        mmq_y  =  MMQ_Y_Q4_0_RDNA2;
-        nwarps = NWARPS_Q4_0_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q4_0_RDNA1;
-        mmq_y  =  MMQ_Y_Q4_0_RDNA1;
-        nwarps = NWARPS_Q4_0_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q4_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_0_AMPERE;
-        nwarps = NWARPS_Q4_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_0_PASCAL;
-        nwarps = NWARPS_Q4_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q4_1_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q4_1_RDNA2;
-        mmq_y  =  MMQ_Y_Q4_1_RDNA2;
-        nwarps = NWARPS_Q4_1_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q4_1_RDNA1;
-        mmq_y  =  MMQ_Y_Q4_1_RDNA1;
-        nwarps = NWARPS_Q4_1_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q4_1_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_1_AMPERE;
-        nwarps = NWARPS_Q4_1_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_1_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_1_PASCAL;
-        nwarps = NWARPS_Q4_1_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q5_0_RDNA2;
-        mmq_y  =  MMQ_Y_Q5_0_RDNA2;
-        nwarps = NWARPS_Q5_0_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q5_0_RDNA1;
-        mmq_y  =  MMQ_Y_Q5_0_RDNA1;
-        nwarps = NWARPS_Q5_0_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q5_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_0_AMPERE;
-        nwarps = NWARPS_Q5_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_0_PASCAL;
-        nwarps = NWARPS_Q5_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_1_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q5_1_RDNA2;
-        mmq_y  =  MMQ_Y_Q5_1_RDNA2;
-        nwarps = NWARPS_Q5_1_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q5_1_RDNA1;
-        mmq_y  =  MMQ_Y_Q5_1_RDNA1;
-        nwarps = NWARPS_Q5_1_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q5_1_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_1_AMPERE;
-        nwarps = NWARPS_Q5_1_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_1_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_1_PASCAL;
-        nwarps = NWARPS_Q5_1_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q8_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q8_0_RDNA2;
-        mmq_y  =  MMQ_Y_Q8_0_RDNA2;
-        nwarps = NWARPS_Q8_0_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q8_0_RDNA1;
-        mmq_y  =  MMQ_Y_Q8_0_RDNA1;
-        nwarps = NWARPS_Q8_0_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q8_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q8_0_AMPERE;
-        nwarps = NWARPS_Q8_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q8_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q8_0_PASCAL;
-        nwarps = NWARPS_Q8_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q2_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q2_K_RDNA2;
-        mmq_y  =  MMQ_Y_Q2_K_RDNA2;
-        nwarps = NWARPS_Q2_K_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q2_K_RDNA1;
-        mmq_y  =  MMQ_Y_Q2_K_RDNA1;
-        nwarps = NWARPS_Q2_K_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q2_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q2_K_AMPERE;
-        nwarps = NWARPS_Q2_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q2_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q2_K_PASCAL;
-        nwarps = NWARPS_Q2_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q3_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-#if QK_K == 256
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q3_K_RDNA2;
-        mmq_y  =  MMQ_Y_Q3_K_RDNA2;
-        nwarps = NWARPS_Q3_K_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q3_K_RDNA1;
-        mmq_y  =  MMQ_Y_Q3_K_RDNA1;
-        nwarps = NWARPS_Q3_K_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q3_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q3_K_AMPERE;
-        nwarps = NWARPS_Q3_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q3_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q3_K_PASCAL;
-        nwarps = NWARPS_Q3_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-#endif
-}
-
-static void ggml_mul_mat_q4_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q4_K_RDNA2;
-        mmq_y  =  MMQ_Y_Q4_K_RDNA2;
-        nwarps = NWARPS_Q4_K_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q4_K_RDNA1;
-        mmq_y  =  MMQ_Y_Q4_K_RDNA1;
-        nwarps = NWARPS_Q4_K_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q4_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_K_AMPERE;
-        nwarps = NWARPS_Q4_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_K_PASCAL;
-        nwarps = NWARPS_Q4_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q5_K_RDNA2;
-        mmq_y  =  MMQ_Y_Q5_K_RDNA2;
-        nwarps = NWARPS_Q5_K_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q5_K_RDNA1;
-        mmq_y  =  MMQ_Y_Q5_K_RDNA1;
-        nwarps = NWARPS_Q5_K_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q5_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_K_AMPERE;
-        nwarps = NWARPS_Q5_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_K_PASCAL;
-        nwarps = NWARPS_Q5_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q6_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_device_caps[id].cc;
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_RDNA2) {
-        mmq_x  =  MMQ_X_Q6_K_RDNA2;
-        mmq_y  =  MMQ_Y_Q6_K_RDNA2;
-        nwarps = NWARPS_Q6_K_RDNA2;
-    } else if (compute_capability >= CC_OFFSET_AMD) {
-        mmq_x  =  MMQ_X_Q6_K_RDNA1;
-        mmq_y  =  MMQ_Y_Q6_K_RDNA1;
-        nwarps = NWARPS_Q6_K_RDNA1;
-    } else if (compute_capability >= CC_VOLTA) {
-        mmq_x  =  MMQ_X_Q6_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q6_K_AMPERE;
-        nwarps = NWARPS_Q6_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q6_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q6_K_PASCAL;
-        nwarps = NWARPS_Q6_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_p021_f16_f32_cuda(
-    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
-    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
-
-    const dim3 block_nums(1, nrows_x, nchannels_y);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
-}
-
-static void ggml_mul_mat_vec_nc_f16_f32_cuda(
-    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
-    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
-
-    const dim3 block_nums(1, nrows_x, nchannels_y);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
-        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
-}
-
-
-static void ggml_cpy_f16_f32_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f32_f32_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f32_f16_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f32_q8_0_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    GGML_ASSERT(ne % QK8_0 == 0);
-    const int num_blocks = ne / QK8_0;
-    cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f32_q4_0_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    GGML_ASSERT(ne % QK4_0 == 0);
-    const int num_blocks = ne / QK4_0;
-    cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f32_q4_1_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    GGML_ASSERT(ne % QK4_1 == 0);
-    const int num_blocks = ne / QK4_1;
-    cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-static void ggml_cpy_f16_f16_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
-    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
-
-
-
-static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
-    scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
-}
-
-static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
-    clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
-}
-
-template<typename T>
-static void rope_cuda(
-    const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
-    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
-) {
-    GGML_ASSERT(ncols % 2 == 0);
-    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
-    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
-    const dim3 block_nums(nrows, num_blocks_x, 1);
-    if (pos == nullptr) {
-        rope<T, false><<<block_nums, block_dims, 0, stream>>>(
-            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
-        );
-    } else {
-        rope<T, true><<<block_nums, block_dims, 0, stream>>>(
-            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
-        );
-    }
-}
-
-template<typename T>
-static void rope_neox_cuda(
-    const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
-    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
-) {
-    GGML_ASSERT(ncols % 2 == 0);
-    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
-    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
-    const dim3 block_nums(nrows, num_blocks_x, 1);
-
-    const float theta_scale = powf(freq_base, -2.0f/n_dims);
-    const float inv_ndims = -1.0f / n_dims;
-
-    if (pos == nullptr) {
-        rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
-            x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
-            theta_scale, inv_ndims
-        );
-    } else {
-        rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
-            x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
-            theta_scale, inv_ndims
-        );
-    }
-}
-
-static void rope_glm_f32_cuda(
-    const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
-    float freq_base, int n_ctx, cudaStream_t stream
-) {
-    GGML_ASSERT(ncols % 4 == 0);
-    const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
-    const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
-    const dim3 block_nums(num_blocks_x, nrows, 1);
-    rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
-}
-
-static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
-                           const int k_rows, const int n_heads_log2_floor, const float m0,
-                           const float m1, cudaStream_t stream) {
-    const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
-    const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
-    const dim3 block_nums(num_blocks_x, nrows, 1);
-    alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
-}
-
-static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    const dim3 block_nums(nrows, 1, 1);
-    k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
-}
-
-static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
-    // bitonic sort requires ncols to be power of 2
-    GGML_ASSERT((ncols & (ncols - 1)) == 0);
-
-    const dim3 block_dims(ncols, 1, 1);
-    const dim3 block_nums(1, nrows, 1);
-    if (order == GGML_SORT_ORDER_ASC) {
-        k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
-    } else if (order == GGML_SORT_ORDER_DESC) {
-        k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
-    } else {
-        GGML_ASSERT(false);
-    }
-}
-
-static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
-    const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
-    const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
-    const dim3 block_nums(nrows_x, block_num_x, 1);
-    diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
-}
-
-static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
-    int nth = WARP_SIZE;
-    while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
-    const dim3 block_dims(nth,     1, 1);
-    const dim3 block_nums(nrows_x, 1, 1);
-    const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
-    static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
-
-    const uint32_t n_head_kv   = nrows_x/nrows_y;
-    const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
-
-    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
-    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
-    if (shmem < g_device_caps[g_main_device].smpb) {
-        switch (ncols_x) {
-            case 32:
-                soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 64:
-                soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 128:
-                soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 256:
-                soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 512:
-                soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 1024:
-                soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 2048:
-                soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            case 4096:
-                soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-            default:
-                soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-                break;
-        }
-    } else {
-        const size_t shmem_low = WARP_SIZE*sizeof(float);
-        soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
-    }
-}
-
-template <typename T>
-static void im2col_cuda(const float* x, T* dst,
-    int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
-    int64_t batch, int64_t batch_offset, int64_t offset_delta,
-    int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
-    const int parallel_elements = OW * KW * KH;
-    const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
-    dim3 block_nums(num_blocks, OH, batch * IC);
-    im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
-}
-
-// buffer pool for cuda
-#define MAX_CUDA_BUFFERS 256
-
-struct scoped_spin_lock {
-    std::atomic_flag& lock;
-    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
-        while (lock.test_and_set(std::memory_order_acquire)) {
-            ; // spin
-        }
-    }
-    ~scoped_spin_lock() {
-        lock.clear(std::memory_order_release);
-    }
-    scoped_spin_lock(const scoped_spin_lock&) = delete;
-    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
-};
-
-static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
-
-// #define DEBUG_CUDA_MALLOC
-struct ggml_cuda_buffer {
-    void * ptr = nullptr;
-    size_t size = 0;
-};
-
-static ggml_cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
-static size_t g_cuda_pool_size[GGML_CUDA_MAX_DEVICES] = {0};
-
-static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual_size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-#ifdef DEBUG_CUDA_MALLOC
-    int nnz = 0;
-    size_t max_size = 0;
-#endif
-    size_t best_diff = 1ull << 36;
-    int ibest = -1;
-    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
-        ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
-        if (b.ptr != nullptr) {
-#ifdef DEBUG_CUDA_MALLOC
-            ++nnz;
-            if (b.size > max_size) max_size = b.size;
-#endif
-            if (b.size >= size) {
-                size_t diff = b.size - size;
-                if (diff < best_diff) {
-                    best_diff = diff;
-                    ibest = i;
-                    if (!best_diff) {
-                        void * ptr = b.ptr;
-                        *actual_size = b.size;
-                        b.ptr = nullptr;
-                        b.size = 0;
-                        return ptr;
-                    }
-                }
-            }
-        }
-    }
-    if (ibest >= 0) {
-        ggml_cuda_buffer& b = g_cuda_buffer_pool[device][ibest];
-        void * ptr = b.ptr;
-        *actual_size = b.size;
-        b.ptr = nullptr;
-        b.size = 0;
-        return ptr;
-    }
-    void * ptr;
-    size_t look_ahead_size = (size_t) (1.05 * size);
-    look_ahead_size = 256 * ((look_ahead_size + 255)/256);
-    ggml_cuda_set_device(device);
-    CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
-    *actual_size = look_ahead_size;
-    g_cuda_pool_size[device] += look_ahead_size;
-#ifdef DEBUG_CUDA_MALLOC
-    fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
-            (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[device]/1024/1024), (uint32_t)(size/1024/1024));
-#endif
-    return ptr;
-}
-
-static void ggml_cuda_pool_free_leg(int device, void * ptr, size_t size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-
-    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
-        ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
-        if (b.ptr == nullptr) {
-            b.ptr = ptr;
-            b.size = size;
-            return;
-        }
-    }
-    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
-    ggml_cuda_set_device(device);
-    CUDA_CHECK(cudaFree(ptr));
-    g_cuda_pool_size[device] -= size;
-}
-
-#if !defined(GGML_USE_HIPBLAS)
-// pool with virtual memory
-static CUdeviceptr g_cuda_pool_addr[GGML_CUDA_MAX_DEVICES] = {0};
-static size_t g_cuda_pool_used[GGML_CUDA_MAX_DEVICES] = {0};
-static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
-
-static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual_size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-
-    // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
-    const size_t alignment = 128;
-    size = alignment * ((size + alignment - 1) / alignment);
-
-    size_t avail = g_cuda_pool_size[device] - g_cuda_pool_used[device];
-
-    if (size > avail) {
-        // round up to the next multiple of the granularity
-        size_t reserve_size = size - avail;
-        const size_t granularity = g_device_caps[device].vmm_granularity;
-        reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
-
-        GGML_ASSERT(g_cuda_pool_size[device] + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
-
-        // allocate more physical memory
-        CUmemAllocationProp prop = {};
-        prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
-        prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
-        prop.location.id = device;
-        CUmemGenericAllocationHandle handle;
-        CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
-
-        // reserve virtual address space (if not already reserved)
-        if (g_cuda_pool_addr[device] == 0) {
-            CU_CHECK(cuMemAddressReserve(&g_cuda_pool_addr[device], CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
-        }
-
-        // map at the end of the pool
-        CU_CHECK(cuMemMap(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, 0, handle, 0));
-
-        // the memory allocation handle is no longer needed after mapping
-        CU_CHECK(cuMemRelease(handle));
-
-        // set access
-        CUmemAccessDesc access = {};
-        access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
-        access.location.id = device;
-        access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
-        CU_CHECK(cuMemSetAccess(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, &access, 1));
-
-        // add to the pool
-        g_cuda_pool_size[device] += reserve_size;
-
-        //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
-        //       id, (unsigned long long) (g_cuda_pool_size[id]/1024/1024),
-        //       (unsigned long long) (reserve_size/1024/1024));
-    }
-
-    GGML_ASSERT(g_cuda_pool_addr[device] != 0);
-
-    void * ptr = (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]);
-    *actual_size = size;
-    g_cuda_pool_used[device] += size;
-
-#ifdef DEBUG_CUDA_MALLOC
-    printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
-#endif
-
-    return ptr;
-}
-
-static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-
-#ifdef DEBUG_CUDA_MALLOC
-    printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
-#endif
-
-    g_cuda_pool_used[device] -= size;
-
-    // all deallocations must be in reverse order of the allocations
-    GGML_ASSERT(ptr == (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]));
-}
-
-static void * ggml_cuda_pool_malloc(int device, size_t size, size_t * actual_size) {
-    if (g_device_caps[device].vmm) {
-        return ggml_cuda_pool_malloc_vmm(device, size, actual_size);
-    } else {
-        return ggml_cuda_pool_malloc_leg(device, size, actual_size);
-    }
-}
-
-static void ggml_cuda_pool_free(int device, void * ptr, size_t size) {
-    if (g_device_caps[device].vmm) {
-        ggml_cuda_pool_free_vmm(device, ptr, size);
-    } else {
-        ggml_cuda_pool_free_leg(device, ptr, size);
-    }
-}
-#else
-#define ggml_cuda_pool_malloc ggml_cuda_pool_malloc_leg
-#define ggml_cuda_pool_free ggml_cuda_pool_free_leg
-#endif // !defined(GGML_USE_HIPBLAS)
-
-template<typename T>
-struct cuda_pool_alloc {
-    int device = -1;
-    T * ptr = nullptr;
-    size_t actual_size = 0;
-
-    // size is in number of elements
-    T * alloc(size_t size) {
-        GGML_ASSERT(ptr == nullptr);
-        CUDA_CHECK(cudaGetDevice(&device));
-        ptr = (T *) ggml_cuda_pool_malloc(device, size * sizeof(T), &this->actual_size);
-        return ptr;
-    }
-
-    cuda_pool_alloc(size_t size) {
-        alloc(size);
-    }
-
-    ~cuda_pool_alloc() {
-        if (ptr != nullptr) {
-            ggml_cuda_pool_free(device, ptr, actual_size);
-        }
-    }
-
-    T * get() {
-        return ptr;
-    }
-
-    cuda_pool_alloc() = default;
-    cuda_pool_alloc(const cuda_pool_alloc &) = delete;
-    cuda_pool_alloc(cuda_pool_alloc &&) = delete;
-    cuda_pool_alloc& operator=(const cuda_pool_alloc &) = delete;
-    cuda_pool_alloc& operator=(cuda_pool_alloc &&) = delete;
-};
-
-static bool g_cublas_loaded = false;
-
-GGML_CALL bool ggml_cublas_loaded(void) {
-    return g_cublas_loaded;
-}
-
-GGML_CALL void ggml_init_cublas() {
-    static bool initialized = false;
-
-    if (!initialized) {
-
-#ifdef __HIP_PLATFORM_AMD__
-        // Workaround for a rocBLAS bug when using multiple graphics cards:
-        // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
-        rocblas_initialize();
-        CUDA_CHECK(cudaDeviceSynchronize());
-#endif
-
-        if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
-            initialized = true;
-            g_cublas_loaded = false;
-            fprintf(stderr, "%s: no " GGML_CUDA_NAME " devices found, " GGML_CUDA_NAME " will be disabled\n", __func__);
-            return;
-        }
-
-        GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
-        int64_t total_vram = 0;
-#if defined(GGML_CUDA_FORCE_MMQ)
-        fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   yes\n", __func__);
-#else
-        fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   no\n", __func__);
-#endif
-#if defined(CUDA_USE_TENSOR_CORES)
-        fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
-#else
-        fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
-#endif
-        fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
-        for (int id = 0; id < g_device_count; ++id) {
-            int device_vmm = 0;
-
-#if !defined(GGML_USE_HIPBLAS)
-            CUdevice device;
-            CU_CHECK(cuDeviceGet(&device, id));
-            CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
-
-            if (device_vmm) {
-                CUmemAllocationProp alloc_prop = {};
-                alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
-                alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
-                alloc_prop.location.id = id;
-                CU_CHECK(cuMemGetAllocationGranularity(&g_device_caps[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
-            }
-#endif // !defined(GGML_USE_HIPBLAS)
-            g_device_caps[id].vmm = !!device_vmm;
-
-            cudaDeviceProp prop;
-            CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
-            fprintf(stderr, "  Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
-
-            g_default_tensor_split[id] = total_vram;
-            total_vram += prop.totalGlobalMem;
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-            g_device_caps[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
-#else
-            g_device_caps[id].cc = 100*prop.major + 10*prop.minor;
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-            g_device_caps[id].smpb = prop.sharedMemPerBlock;
-        }
-        for (int id = 0; id < g_device_count; ++id) {
-            g_default_tensor_split[id] /= total_vram;
-        }
-
-        for (int id = 0; id < g_device_count; ++id) {
-            ggml_cuda_set_device(id);
-
-            // create cuda streams
-            for (int is = 0; is < MAX_STREAMS; ++is) {
-                CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking));
-            }
-
-            // create cublas handle
-            CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
-            CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
-        }
-
-        // configure logging to stdout
-        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
-
-        initialized = true;
-        g_cublas_loaded = true;
-    }
-}
-
-GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
-    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
-        return nullptr;
-    }
-
-    void * ptr = nullptr;
-    cudaError_t err = cudaMallocHost((void **) &ptr, size);
-    if (err != cudaSuccess) {
-        // clear the error
-        cudaGetLastError();
-        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
-            size/1024.0/1024.0, cudaGetErrorString(err));
-        return nullptr;
-    }
-
-    return ptr;
-}
-
-GGML_CALL void ggml_cuda_host_free(void * ptr) {
-    CUDA_CHECK(cudaFreeHost(ptr));
-}
-
-static cudaError_t ggml_cuda_cpy_tensor_2d(
-    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
-
-    cudaMemcpyKind kind;
-    char * src_ptr;
-    if (src->backend == GGML_BACKEND_TYPE_CPU) {
-        kind = cudaMemcpyHostToDevice;
-        src_ptr = (char *) src->data;
-    } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
-        GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
-        kind = cudaMemcpyDeviceToDevice;
-        ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
-        int id;
-        CUDA_CHECK(cudaGetDevice(&id));
-        src_ptr = (char *) extra->data_device[id];
-    } else {
-        GGML_ASSERT(false);
-    }
-    char * dst_ptr = (char *) dst;
-
-    const int64_t ne0 = src->ne[0];
-    const int64_t nb0 = src->nb[0];
-    const int64_t nb1 = src->nb[1];
-    const int64_t nb2 = src->nb[2];
-    const int64_t nb3 = src->nb[3];
-    const enum ggml_type type = src->type;
-    const int64_t ts = ggml_type_size(type);
-    const int64_t bs = ggml_blck_size(type);
-    int64_t i1_diff = i1_high - i1_low;
-
-    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
-    if (nb0 == ts && nb1 == ts*ne0/bs) {
-        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
-    } else if (nb0 == ts) {
-        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
-    } else {
-        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
-            const void * rx = (const void *) ((const char *) x + i1*nb1);
-            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
-            // pretend the row is a matrix with cols=1
-            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
-            if (r != cudaSuccess) return r;
-        }
-        return cudaSuccess;
-    }
-}
-
-static void ggml_cuda_op_get_rows(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t stream) {
-
-    GGML_ASSERT(src1->type == GGML_TYPE_I32);
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
-    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
-    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
-    GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
-
-    const int32_t * src1_i32 = (const int32_t *) src1_d;
-
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_F32:
-            get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_Q4_0:
-            get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_Q4_1:
-            get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_Q5_0:
-            get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_Q5_1:
-            get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        case GGML_TYPE_Q8_0:
-            get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
-            break;
-        default:
-            // TODO: k-quants
-            fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
-            GGML_ASSERT(false);
-            break;
-    }
-}
-
-template<class op>
-static void ggml_cuda_op_bin_bcast(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
-        op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
-    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
-        op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
-    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
-        op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
-    } else {
-        fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
-            ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
-        GGML_ASSERT(false);
-    }
-}
-
-static void ggml_cuda_op_repeat(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t main_stream) {
-
-    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
-
-    (void) src1;
-    (void) src1_d;
-}
-
-static void ggml_cuda_op_add(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
-}
-
-static void ggml_cuda_op_acc(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
-
-    int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
-    int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
-    // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
-    int offset = dst->op_params[3] / 4; // offset in bytes
-
-    acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
-
-    (void) dst;
-}
-
-static void ggml_cuda_op_mul(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
-}
-
-static void ggml_cuda_op_div(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
-}
-
-static void ggml_cuda_op_gelu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_silu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_gelu_quick(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_tanh(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_relu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_hardsigmoid(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_hardswish(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_leaky_relu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    float negative_slope;
-    memcpy(&negative_slope, dst->op_params, sizeof(float));
-
-    leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_sqr(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_norm(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t nrows = ggml_nrows(src0);
-
-    float eps;
-    memcpy(&eps, dst->op_params, sizeof(float));
-
-    norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_group_norm(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int num_groups = dst->op_params[0];
-    int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
-    group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_concat(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
-    for (int i3 = 0; i3 < dst->ne[3]; i3++) {
-        concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
-    }
-
-    (void) src1;
-    (void) dst;
-}
-
-static void ggml_cuda_op_upscale(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
-
-    const int scale_factor = dst->op_params[0];
-
-    upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_pad(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
-
-    pad_f32_cuda(src0_dd, dst_dd,
-        src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
-        dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_arange(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
-    float start;
-    float stop;
-    float step;
-    memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
-    memcpy(&stop,  (float *)dst->op_params + 1, sizeof(float));
-    memcpy(&step,  (float *)dst->op_params + 2, sizeof(float));
-
-    int64_t steps = (int64_t)ceil((stop - start) / step);
-    GGML_ASSERT(ggml_nelements(dst) == steps);
-
-    arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
-
-    (void) src0;
-    (void) src1;
-    (void) src0_dd;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_timestep_embedding(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
-    const int dim = dst->op_params[0];
-    const int max_period = dst->op_params[1];
-
-    timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_rms_norm(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t nrows = ggml_nrows(src0);
-
-    float eps;
-    memcpy(&eps, dst->op_params, sizeof(float));
-
-    rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_mul_mat_q(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
-    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
-    const int64_t src1_padded_row_size, cudaStream_t stream) {
-
-    const int64_t ne00 = src0->ne[0];
-
-    const int64_t ne10 = src1->ne[0];
-    GGML_ASSERT(ne10 % QK8_1 == 0);
-
-    const int64_t ne0 = dst->ne[0];
-
-    const int64_t row_diff = row_high - row_low;
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    // the main device has a larger memory buffer to hold the results from all GPUs
-    // nrows_dst == nrows of the matrix that the kernel writes into
-    const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
-
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-            ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q4_1:
-            ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_0:
-            ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_1:
-            ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q8_0:
-            ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q2_K:
-            ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q3_K:
-            ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q4_K:
-            ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_K:
-            ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q6_K:
-            ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
-            break;
-        default:
-            GGML_ASSERT(false);
-            break;
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src1_ddf_i;
-}
-
-static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
-    int64_t min_compute_capability = INT_MAX;
-    int64_t max_compute_capability = INT_MIN;
-    for (int id = 0; id < g_device_count; ++id) {
-        if (tensor_split[id] < (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
-            if (min_compute_capability > g_device_caps[id].cc) {
-                min_compute_capability = g_device_caps[id].cc;
-            }
-            if (max_compute_capability < g_device_caps[id].cc) {
-                max_compute_capability = g_device_caps[id].cc;
-            }
-        }
-    }
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-    switch(type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
-        case GGML_TYPE_F16:
-        case GGML_TYPE_F32:
-            return 1;
-        case GGML_TYPE_Q2_K:
-            return max_compute_capability >= CC_RDNA2 ? 128 : 32;
-        case GGML_TYPE_Q3_K:
-            return min_compute_capability < CC_RDNA2 ? 128 : 64;
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-        case GGML_TYPE_IQ2_XXS:
-        case GGML_TYPE_IQ2_XS:
-        case GGML_TYPE_IQ2_S:
-        case GGML_TYPE_IQ3_XXS:
-        case GGML_TYPE_IQ1_S:
-        case GGML_TYPE_IQ4_NL:
-        case GGML_TYPE_IQ4_XS:
-        case GGML_TYPE_IQ3_S:
-            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
-        default:
-            GGML_ASSERT(false);
-    }
-#else
-    switch(type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-            return max_compute_capability >= CC_VOLTA ? 128 : 64;
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-            return 64;
-        case GGML_TYPE_F16:
-        case GGML_TYPE_F32:
-            return 1;
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_IQ2_XXS:
-        case GGML_TYPE_IQ2_XS:
-        case GGML_TYPE_IQ2_S:
-        case GGML_TYPE_IQ3_XXS:
-        case GGML_TYPE_IQ1_S:
-        case GGML_TYPE_IQ4_NL:
-        case GGML_TYPE_IQ4_XS:
-        case GGML_TYPE_IQ3_S:
-            return max_compute_capability >= CC_VOLTA ? 128 : 64;
-        case GGML_TYPE_Q6_K:
-            return 64;
-        default:
-            GGML_ASSERT(false);
-    }
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-}
-
-static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
-    const int64_t nrows = ggml_nrows(tensor);
-    const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
-
-    *row_low = id == 0 ? 0 : nrows*tensor_split[id];
-    *row_low -= *row_low % rounding;
-
-    if (id == g_device_count - 1) {
-        *row_high = nrows;
-    } else {
-        *row_high = nrows*tensor_split[id + 1];
-        *row_high -= *row_high % rounding;
-    }
-}
-
-static void ggml_cuda_op_mul_mat_vec_q(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
-    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
-    const int64_t src1_padded_row_size, cudaStream_t stream) {
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t row_diff = row_high - row_low;
-
-    const int64_t ne10 = src1->ne[0];
-    GGML_ASSERT(ne10 % QK8_1 == 0);
-
-    const int64_t ne0 = dst->ne[0];
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    // the main device has a larger memory buffer to hold the results from all GPUs
-    // nrows_dst == nrows of the matrix that the kernel writes into
-    const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
-
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-            mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q4_1:
-            mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_0:
-            mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_1:
-            mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q8_0:
-            mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q2_K:
-            mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q3_K:
-            mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q4_K:
-            mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q5_K:
-            mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_Q6_K:
-            mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ2_XXS:
-            mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ2_XS:
-            mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ2_S:
-            mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ3_XXS:
-            mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ1_S:
-            mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ4_NL:
-            mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ4_XS:
-            mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        case GGML_TYPE_IQ3_S:
-            mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
-                (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
-            break;
-        default:
-            GGML_ASSERT(false);
-            break;
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src1_ddf_i;
-    (void) src1_ncols;
-    (void) src1_padded_row_size;
-}
-
-static void ggml_cuda_op_dequantize_mul_mat_vec(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
-    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
-    const int64_t src1_padded_row_size, cudaStream_t stream) {
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t row_diff = row_high - row_low;
-
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
-#ifdef GGML_CUDA_F16
-    cuda_pool_alloc<half> src1_dfloat_a;
-    half * src1_dfloat = nullptr; // dfloat == half
-
-    bool src1_convert_f16 =
-        src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
-        src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
-        src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
-
-    if (src1_convert_f16) {
-        src1_dfloat = src1_dfloat_a.alloc(ne00);
-        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
-        GGML_ASSERT(to_fp16_cuda != nullptr);
-        to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
-    }
-#else
-    const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
-#endif // GGML_CUDA_F16
-
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-            dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q4_1:
-            dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q5_0:
-            dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q5_1:
-            dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q8_0:
-            dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q2_K:
-            dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q3_K:
-            dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q4_K:
-            dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q5_K:
-            dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_Q6_K:
-            dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
-            break;
-        case GGML_TYPE_F16:
-            convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
-            break;
-        default:
-            GGML_ASSERT(false);
-            break;
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src1_ddq_i;
-    (void) src1_ncols;
-    (void) src1_padded_row_size;
-}
-
-static void ggml_cuda_op_mul_mat_cublas(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
-    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
-    const int64_t src1_padded_row_size, cudaStream_t stream) {
-
-    GGML_ASSERT(src0_dd_i  != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_dd_i   != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne10 = src1->ne[0];
-
-    const int64_t ne0 = dst->ne[0];
-
-    const int64_t row_diff = row_high - row_low;
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    // the main device has a larger memory buffer to hold the results from all GPUs
-    // ldc == nrows of the matrix that cuBLAS writes into
-    int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
-
-    const int compute_capability = g_device_caps[id].cc;
-
-    if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
-        //printf("this branch\n");
-        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
-        cuda_pool_alloc<half> src0_as_f16;
-        if (src0->type != GGML_TYPE_F16) {
-            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
-            GGML_ASSERT(to_fp16_cuda != nullptr);
-            size_t ne = row_diff*ne00;
-            src0_as_f16.alloc(ne);
-            to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
-        }
-        const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
-
-        cuda_pool_alloc<half> src1_as_f16;
-        if (src1->type != GGML_TYPE_F16) {
-            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
-            GGML_ASSERT(to_fp16_cuda != nullptr);
-            size_t ne = src1_ncols*ne10;
-            src1_as_f16.alloc(ne);
-            to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
-        }
-        const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
-        cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);
-
-        const half alpha_f16 = 1.0f;
-        const half beta_f16 = 0.0f;
-
-        CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
-        CUBLAS_CHECK(
-            cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
-                    row_diff, src1_ncols, ne10,
-                    &alpha_f16, src0_ptr,       CUDA_R_16F, ne00,
-                                src1_ptr,       CUDA_R_16F, ne10,
-                    &beta_f16,   dst_f16.get(), CUDA_R_16F, ldc,
-                    CUBLAS_COMPUTE_16F,
-                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));
-
-        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
-        to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
-    } else {
-        cuda_pool_alloc<float> src0_ddq_as_f32;
-        cuda_pool_alloc<float> src1_ddq_as_f32;
-
-        if (src0->type != GGML_TYPE_F32) {
-            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
-            GGML_ASSERT(to_fp32_cuda != nullptr);
-            src0_ddq_as_f32.alloc(row_diff*ne00);
-            to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
-        }
-        if (src1->type != GGML_TYPE_F32) {
-            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
-            GGML_ASSERT(to_fp32_cuda != nullptr);
-            src1_ddq_as_f32.alloc(src1_ncols*ne10);
-            to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
-        }
-
-        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
-        const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
-
-        const float alpha = 1.0f;
-        const float beta = 0.0f;
-
-        CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
-        CUBLAS_CHECK(
-            cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
-                    row_diff, src1_ncols, ne10,
-                    &alpha, src0_ddf_i,  ne00,
-                            src1_ddf1_i, ne10,
-                    &beta,  dst_dd_i,    ldc));
-    }
-
-    (void) dst;
-    (void) src1_ddq_i;
-    (void) src1_padded_row_size;
-}
-
-static void ggml_cuda_op_rope(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
-    GGML_ASSERT(src0->type == dst->type);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne2 = dst->ne[2];
-    const int64_t nrows = ggml_nrows(src0);
-
-    //const int n_past      = ((int32_t *) dst->op_params)[0];
-    const int n_dims      = ((int32_t *) dst->op_params)[1];
-    const int mode        = ((int32_t *) dst->op_params)[2];
-    const int n_ctx       = ((int32_t *) dst->op_params)[3];
-    const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
-
-    // RoPE alteration for extended context
-    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
-    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
-    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
-    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
-    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
-    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
-    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
-
-    const int32_t * pos = nullptr;
-    if ((mode & 1) == 0) {
-        GGML_ASSERT(src1->type == GGML_TYPE_I32);
-        GGML_ASSERT(src1->ne[0] == ne2);
-        pos = (const int32_t *) src1_dd;
-    }
-
-    const bool is_neox = mode & 2;
-    const bool is_glm  = mode & 4;
-
-    rope_corr_dims corr_dims;
-    ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
-
-    // compute
-    if (is_glm) {
-        GGML_ASSERT(false);
-        rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
-    } else if (is_neox) {
-        if (src0->type == GGML_TYPE_F32) {
-            rope_neox_cuda(
-                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
-                attn_factor, corr_dims, main_stream
-            );
-        } else if (src0->type == GGML_TYPE_F16) {
-            rope_neox_cuda(
-                (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
-                attn_factor, corr_dims, main_stream
-            );
-        } else {
-            GGML_ASSERT(false);
-        }
-    } else {
-        if (src0->type == GGML_TYPE_F32) {
-            rope_cuda(
-                (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
-                attn_factor, corr_dims, main_stream
-            );
-        } else if (src0->type == GGML_TYPE_F16) {
-            rope_cuda(
-                (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
-                attn_factor, corr_dims, main_stream
-            );
-        } else {
-            GGML_ASSERT(false);
-        }
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_alibi(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t nrows = ggml_nrows(src0);
-
-    //const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_head = ((int32_t *) dst->op_params)[1];
-    float max_bias;
-    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-
-    //GGML_ASSERT(ne01 + n_past == ne00);
-    GGML_ASSERT(n_head == ne02);
-
-    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
-
-    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
-    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
-
-    alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
-
-    (void) src1;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_pool2d(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int32_t * opts = (const int32_t *)dst->op_params;
-    enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
-    const int k0 = opts[1];
-    const int k1 = opts[2];
-    const int s0 = opts[3];
-    const int s1 = opts[4];
-    const int p0 = opts[5];
-    const int p1 = opts[6];
-
-    const int64_t IH = src0->ne[1];
-    const int64_t IW = src0->ne[0];
-
-    const int64_t N = dst->ne[3];
-    const int64_t OC = dst->ne[2];
-    const int64_t OH = dst->ne[1];
-    const int64_t OW = dst->ne[0];
-
-    const int parallel_elements = N * OC * OH * OW;
-    const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
-    dim3 block_nums(num_blocks);
-    pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
-
-    (void) src1;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_im2col(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
-
-    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-    const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
-    const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
-    const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
-    const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
-    const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
-
-    const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
-
-    const int64_t IC = src1->ne[is_2D ? 2 : 1];
-    const int64_t IH = is_2D ? src1->ne[1] : 1;
-    const int64_t IW =         src1->ne[0];
-
-    const int64_t KH = is_2D ? src0->ne[1] : 1;
-    const int64_t KW =         src0->ne[0];
-
-    const int64_t OH = is_2D ? dst->ne[2] : 1;
-    const int64_t OW =         dst->ne[1];
-
-    const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
-    const int64_t batch = src1->ne[3];
-    const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
-
-    if(dst->type == GGML_TYPE_F16) {
-        im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
-    } else {
-        im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
-    }
-
-    (void) src0;
-    (void) src0_dd;
-}
-
-static void ggml_cuda_op_sum_rows(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int64_t ncols = src0->ne[0];
-    const int64_t nrows = ggml_nrows(src0);
-
-    sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_argsort(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_I32);
-
-    const int64_t ncols = src0->ne[0];
-    const int64_t nrows = ggml_nrows(src0);
-
-    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
-
-    argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_diag_mask_inf(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int nrows0 = ggml_nrows(src0);
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-
-    diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_soft_max(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
-
-    const int64_t ne00    = src0->ne[0];
-    const int64_t nrows_x = ggml_nrows(src0);
-    const int64_t nrows_y = src0->ne[1];
-
-    float scale    = 1.0f;
-    float max_bias = 0.0f;
-
-    memcpy(&scale,    (float *) dst->op_params + 0, sizeof(float));
-    memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
-
-    // positions tensor
-    float * src2_dd = nullptr;
-    cuda_pool_alloc<float> src2_f;
-
-    ggml_tensor * src2 = dst->src[2];
-    const bool use_src2 = src2 != nullptr;
-
-    if (use_src2) {
-        const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
-
-        if (src2_on_device) {
-            ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
-            src2_dd = (float *) src2_extra->data_device[g_main_device];
-        } else {
-            src2_dd = src2_f.alloc(ggml_nelements(src2));
-            CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
-        }
-    }
-
-    soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
-}
-
-static void ggml_cuda_op_scale(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    float scale;
-    memcpy(&scale, dst->op_params, sizeof(float));
-
-    scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
-    CUDA_CHECK(cudaGetLastError());
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_clamp(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-    const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    float min;
-    float max;
-    memcpy(&min, dst->op_params, sizeof(float));
-    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
-    clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
-    CUDA_CHECK(cudaGetLastError());
-
-    (void) src1;
-    (void) dst;
-    (void) src1_dd;
-}
-
-static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
-    const int64_t nrows0 = ggml_nrows(src0);
-
-    const bool use_src1 = src1 != nullptr;
-    const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
-
-    GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(              dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-
-    ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
-    ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
-    ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *)  dst->extra;
-
-    const bool src0_on_device =             src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
-    const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
-    const bool  dst_on_device =              dst->backend == GGML_BACKEND_TYPE_GPU;
-
-    // dd = data device
-    float * src0_ddf = nullptr;
-    float * src1_ddf = nullptr;
-    float *  dst_ddf = nullptr;
-
-    cuda_pool_alloc<float> src0_f;
-    cuda_pool_alloc<float> src1_f;
-    cuda_pool_alloc<float>  dst_f;
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    if (src0_on_device) {
-        src0_ddf = (float *) src0_extra->data_device[g_main_device];
-    } else {
-        src0_ddf = src0_f.alloc(ggml_nelements(src0));
-        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
-    }
-
-    if (use_src1) {
-        if (src1_on_device) {
-            src1_ddf = (float *) src1_extra->data_device[g_main_device];
-        } else {
-            src1_ddf = src1_f.alloc(ggml_nelements(src1));
-            CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
-        }
-    }
-    if (dst_on_device) {
-        dst_ddf = (float *) dst_extra->data_device[g_main_device];
-    } else {
-        dst_ddf = dst_f.alloc(ggml_nelements(dst));
-    }
-
-    // do the computation
-    op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
-    CUDA_CHECK(cudaGetLastError());
-
-    // copy dst to host if necessary
-    if (!dst_on_device) {
-        CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
-    }
-
-    if (dst->backend == GGML_BACKEND_TYPE_CPU) {
-        CUDA_CHECK(cudaDeviceSynchronize());
-    }
-}
-
-static void ggml_cuda_set_peer_access(const int n_tokens) {
-    static bool peer_access_enabled = false;
-
-    const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
-
-    if (peer_access_enabled == enable_peer_access) {
-        return;
-    }
-
-#ifdef NDEBUG
-    for (int id = 0; id < g_device_count; ++id) {
-        ggml_cuda_set_device(id);
-        CUDA_CHECK(cudaDeviceSynchronize());
-    }
-
-    for (int id = 0; id < g_device_count; ++id) {
-        ggml_cuda_set_device(id);
-
-        for (int id_other = 0; id_other < g_device_count; ++id_other) {
-            if (id == id_other) {
-                continue;
-            }
-            if (id != g_main_device && id_other != g_main_device) {
-                continue;
-            }
-
-            int can_access_peer;
-            CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
-            if (can_access_peer) {
-                if (enable_peer_access) {
-                    cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
-                    if (err != cudaErrorPeerAccessAlreadyEnabled) {
-                        CUDA_CHECK(err);
-                    }
-                } else {
-                    cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
-                    if (err != cudaErrorPeerAccessNotEnabled) {
-                        CUDA_CHECK(err);
-                    }
-                }
-            }
-        }
-    }
-#endif // NDEBUG
-
-    peer_access_enabled = enable_peer_access;
-}
-
-// FIXME: move this somewhere else
-struct ggml_backend_cuda_split_buffer_type_context {
-    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
-};
-
-static void ggml_cuda_op_mul_mat(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
-    const bool convert_src1_to_q8_1) {
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    const int64_t ne12 = src1->ne[2];
-    const int64_t ne13 = src1->ne[3];
-    const int64_t nrows1 = ggml_nrows(src1);
-
-    GGML_ASSERT(ne03 == ne13);
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    const int nb2 = dst->nb[2];
-    const int nb3 = dst->nb[3];
-
-    GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
-
-    GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
-
-    const int64_t i02_divisor = ne12 / ne02;
-
-    const size_t src0_ts = ggml_type_size(src0->type);
-    const size_t src0_bs = ggml_blck_size(src0->type);
-    const size_t q8_1_ts = sizeof(block_q8_1);
-    const size_t q8_1_bs = QK8_1;
-
-    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    ggml_tensor_extra_gpu *  dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
-
-    const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
-    const bool src0_is_contiguous = ggml_is_contiguous(src0);
-    const bool src1_is_contiguous = ggml_is_contiguous(src1);
-
-    const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
-
-    const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
-    GGML_ASSERT(!(split && ne02 > 1));
-    GGML_ASSERT(!(split && ne03 > 1));
-    GGML_ASSERT(!(split && ne02 < ne12));
-
-    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
-    if (split) {
-        // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
-        // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
-        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
-        tensor_split = buft_ctx->tensor_split;
-    }
-
-    struct dev_data {
-        cuda_pool_alloc<char>  src0_dd_alloc;
-        cuda_pool_alloc<float> src1_ddf_alloc;
-        cuda_pool_alloc<char>  src1_ddq_alloc;
-        cuda_pool_alloc<float>   dst_dd_alloc;
-
-        char  *  src0_dd = nullptr;
-        float * src1_ddf = nullptr; // float
-        char  * src1_ddq = nullptr; // q8_1
-        float *   dst_dd = nullptr;
-
-        int64_t  row_low;
-        int64_t row_high;
-    };
-
-    dev_data dev[GGML_CUDA_MAX_DEVICES];
-
-    int used_devices = 0;
-
-    for (int id = 0; id < g_device_count; ++id) {
-        // by default, use all rows
-        dev[id].row_low  = 0;
-        dev[id].row_high = ne01;
-
-        // for multi GPU, get the row boundaries from tensor split
-        // and round to mul_mat_q tile sizes
-        if (split) {
-            const int64_t rounding = get_row_rounding(src0->type, tensor_split);
-
-            if (id != 0) {
-                dev[id].row_low  = ne01*tensor_split[id];
-                if (dev[id].row_low < ne01) {
-                    dev[id].row_low -= dev[id].row_low % rounding;
-                }
-            }
-
-            if (id != g_device_count - 1) {
-                dev[id].row_high  = ne01*tensor_split[id + 1];
-                if (dev[id].row_high < ne01) {
-                    dev[id].row_high -= dev[id].row_high % rounding;
-                }
-            }
-        }
-    }
-
-    for (int id = 0; id < g_device_count; ++id) {
-        if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
-            continue;
-        }
-
-        used_devices++;
-
-        const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
-        const bool  dst_on_device =  dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
-
-        ggml_cuda_set_device(id);
-        cudaStream_t stream = g_cudaStreams[id][0];
-
-        if (src0_on_device && src0_is_contiguous) {
-            dev[id].src0_dd = (char *) src0_extra->data_device[id];
-        } else {
-            dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
-        }
-
-        if (src1_on_device && src1_is_contiguous) {
-            dev[id].src1_ddf = (float *) src1_extra->data_device[id];
-        } else {
-            dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ggml_nelements(src1));
-        }
-
-        if (convert_src1_to_q8_1) {
-            dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
-
-            if (src1_on_device && src1_is_contiguous) {
-                quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
-                CUDA_CHECK(cudaGetLastError());
-            }
-        }
-
-        if (dst_on_device) {
-            dev[id].dst_dd = (float *) dst_extra->data_device[id];
-        } else {
-            const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
-            dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(size_dst_ddf);
-        }
-    }
-
-    // if multiple devices are used they need to wait for the main device
-    // here an event is recorded that signals that the main device has finished calculating the input data
-    if (split && used_devices > 1) {
-        ggml_cuda_set_device(g_main_device);
-        CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
-    }
-
-    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
-    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
-        const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
-        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
-
-        for (int id = 0; id < g_device_count; ++id) {
-            if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
-                continue;
-            }
-
-            const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
-            const bool  dst_on_device =  dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
-            const int64_t row_diff = dev[id].row_high - dev[id].row_low;
-
-            ggml_cuda_set_device(id);
-            cudaStream_t stream = g_cudaStreams[id][is];
-
-            // wait for main GPU data if necessary
-            if (split && (id != g_main_device || is != 0)) {
-                CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0));
-            }
-
-            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
-                const int64_t i03 = i0 / ne12;
-                const int64_t i02 = i0 % ne12;
-
-                const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
-
-                // for split tensors the data begins at i0 == i0_offset_low
-                char  *  src0_dd_i =  dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
-                float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
-                char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
-                float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
-
-                // the main device memory buffer can be on VRAM scratch, with space for all partial results
-                // in that case an offset on dst_ddf_i is needed
-                if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
-                    dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
-                }
-
-                // copy src0, src1 to device if necessary
-                if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
-                    if (id != g_main_device) {
-                        if (convert_src1_to_q8_1) {
-                            char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
-                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, g_main_device,
-                                                            src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
-                        } else {
-                            float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
-                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
-                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, g_main_device,
-                                                            src1_ncols*ne10*sizeof(float), stream));
-                        }
-                    }
-                } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
-                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
-                                src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
-                } else {
-                    GGML_ASSERT(false);
-                }
-
-                if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
-                    quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
-                    CUDA_CHECK(cudaGetLastError());
-                }
-
-                if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
-                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
-                }
-
-                // do the computation
-                op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
-                    dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
-                CUDA_CHECK(cudaGetLastError());
-
-                // copy dst to host or other device if necessary
-                if (!dst_on_device) {
-                    void * dst_off_device;
-                    cudaMemcpyKind kind;
-                    if (dst->backend == GGML_BACKEND_TYPE_CPU) {
-                        dst_off_device = dst->data;
-                        kind = cudaMemcpyDeviceToHost;
-                    } else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
-                        dst_off_device = dst_extra->data_device[g_main_device];
-                        kind = cudaMemcpyDeviceToDevice;
-                    } else {
-                        GGML_ASSERT(false);
-                    }
-                    if (split) {
-                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
-                        // dst is NOT transposed.
-                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
-                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
-                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
-                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
-                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
-                        dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
-#if !defined(GGML_USE_HIPBLAS)
-                        if (kind == cudaMemcpyDeviceToDevice) {
-                            // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
-                            cudaMemcpy3DPeerParms p = {};
-                            p.dstDevice = g_main_device;
-                            p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
-                            p.srcDevice = id;
-                            p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
-                            p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
-                            CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
-                        } else
-#endif
-                        {
-                            CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
-                                                            dst_dd_i, row_diff*sizeof(float),
-                                                            row_diff*sizeof(float), src1_ncols,
-                                                            kind, stream));
-                        }
-                    } else {
-                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
-                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
-                        dhf_dst_i += src1_col_0*ne0;
-                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
-                    }
-                }
-
-                // add event for the main device to wait on until other device is done
-                if (split && (id != g_main_device || is != 0)) {
-                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
-                }
-            }
-        }
-    }
-
-    // main device waits for all other devices to be finished
-    if (split && g_device_count > 1) {
-        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
-        is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
-
-        ggml_cuda_set_device(g_main_device);
-        for (int id = 0; id < g_device_count; ++id) {
-            if (dev[id].row_low == dev[id].row_high) {
-                continue;
-            }
-            for (int64_t is = 0; is < is_max; ++is) {
-                CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
-            }
-        }
-    }
-
-    if (dst->backend == GGML_BACKEND_TYPE_CPU) {
-        ggml_cuda_set_device(g_main_device);
-        CUDA_CHECK(cudaDeviceSynchronize());
-    }
-}
-
-static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat);
-}
-
-static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows);
-}
-
-static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
-}
-
-static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
-}
-
-static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
-}
-
-static void ggml_cuda_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_div);
-}
-
-static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
-}
-
-static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
-}
-
-static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
-}
-
-static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
-}
-
-static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
-}
-
-static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
-}
-
-static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
-}
-static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
-}
-
-static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
-}
-
-static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
-}
-
-static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
-}
-
-static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
-}
-
-static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
-}
-
-static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
-}
-
-static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
-
-    const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
-
-    // dd = data device
-    float * src0_ddf = nullptr;
-    float * src1_ddf = nullptr;
-    float *  dst_ddf = nullptr;
-
-    cuda_pool_alloc<float>  dst_f;
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    if (dst_on_device) {
-        dst_ddf = (float *) dst_extra->data_device[g_main_device];
-    } else {
-        dst_ddf = dst_f.alloc(ggml_nelements(dst));
-    }
-
-    // do the computation
-    ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
-    CUDA_CHECK(cudaGetLastError());
-
-    // copy dst to host if necessary
-    if (!dst_on_device) {
-        CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
-    }
-
-    if (dst->backend == GGML_BACKEND_TYPE_CPU) {
-        CUDA_CHECK(cudaDeviceSynchronize());
-    }
-}
-
-static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_timestep_embedding);
-}
-
-static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
-}
-
-GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
-    if (!g_cublas_loaded) return false;
-
-    const int64_t ne10 = src1->ne[0];
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    // TODO: find the optimal values for these
-    return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
-            src1->type == GGML_TYPE_F32 &&
-             dst->type == GGML_TYPE_F32 &&
-            (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
-}
-
-static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
-    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
-    GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
-    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-
-    const int64_t ne12 = src1->ne[2];
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    void * src0_ddq = src0_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
-}
-
-static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
-    GGML_ASSERT(!ggml_is_transposed(src0));
-    GGML_ASSERT(!ggml_is_transposed(src1));
-    GGML_ASSERT(!ggml_is_permuted(src0));
-    GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-
-    const int64_t nb01 = src0->nb[1];
-    const int64_t nb02 = src0->nb[2];
-
-    const int64_t ne12 = src1->ne[2];
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    void * src0_ddq = src0_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    const int64_t row_stride_x = nb01 / sizeof(half);
-    const int64_t channel_stride_x = nb02 / sizeof(half);
-
-    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
-}
-
-static __global__ void k_compute_batched_ptrs(
-        const half * src0_as_f16, const half * src1_as_f16, char * dst,
-        const void ** ptrs_src, void ** ptrs_dst,
-        int64_t ne12, int64_t ne13,
-        int64_t ne23,
-        size_t  nb02, size_t  nb03,
-        size_t  nb12, size_t  nb13,
-        size_t  nbd2, size_t  nbd3,
-        int64_t r2,   int64_t r3) {
-    int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
-    int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
-
-    if (i13 >= ne13 || i12 >= ne12) {
-        return;
-    }
-
-    int64_t i03 = i13 / r3;
-    int64_t i02 = i12 / r2;
-
-    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
-    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
-    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
-}
-
-static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(!ggml_is_transposed(src0));
-    GGML_ASSERT(!ggml_is_transposed(src1));
-
-    GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-
-    GGML_TENSOR_BINARY_OP_LOCALS
-
-    const int64_t ne_dst = ggml_nelements(dst);
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
-
-    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    void * src0_ddq = src0_extra->data_device[g_main_device];
-    half * src0_f16 = (half *) src0_ddq;
-
-    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    // convert src1 to fp16
-    cuda_pool_alloc<half> src1_f16_alloc;
-    if (src1->type != GGML_TYPE_F16) {
-        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
-        const int64_t ne_src1 = ggml_nelements(src1);
-        src1_f16_alloc.alloc(ne_src1);
-        GGML_ASSERT(to_fp16_cuda != nullptr);
-        to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
-    }
-    half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
-
-    cuda_pool_alloc<half> dst_f16;
-    char * dst_t;
-
-    cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
-    cudaDataType_t      cu_data_type    = CUDA_R_16F;
-
-    // dst strides
-    size_t nbd2 = dst->nb[2];
-    size_t nbd3 = dst->nb[3];
-
-    const half  alpha_f16 = 1.0f;
-    const half  beta_f16  = 0.0f;
-
-    const float alpha_f32 = 1.0f;
-    const float beta_f32  = 0.0f;
-
-    const void * alpha = &alpha_f16;
-    const void * beta  = &beta_f16;
-
-    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
-        dst_t = (char *) dst_f16.alloc(ne_dst);
-
-        nbd2 /= sizeof(float) / sizeof(half);
-        nbd3 /= sizeof(float) / sizeof(half);
-    } else {
-        dst_t = (char *) dst_ddf;
-
-        cu_compute_type = CUBLAS_COMPUTE_32F;
-        cu_data_type    = CUDA_R_32F;
-
-        alpha = &alpha_f32;
-        beta  = &beta_f32;
-    }
-
-    GGML_ASSERT(ne12 % ne02 == 0);
-    GGML_ASSERT(ne13 % ne03 == 0);
-
-    // broadcast factors
-    const int64_t r2 = ne12/ne02;
-    const int64_t r3 = ne13/ne03;
-
-#if 0
-    // use cublasGemmEx
-    {
-        for (int i13 = 0; i13 < ne13; ++i13) {
-            for (int i12 = 0; i12 < ne12; ++i12) {
-                int i03 = i13 / r3;
-                int i02 = i12 / r2;
-
-                CUBLAS_CHECK(
-                        cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
-                            ne01, ne11, ne10,
-                            alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
-                                   (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
-                            beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
-                            cu_compute_type,
-                            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
-            }
-        }
-    }
-#else
-    if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
-        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
-        // use cublasGemmStridedBatchedEx
-        CUBLAS_CHECK(
-        cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
-                ne01, ne11, ne10,
-                alpha, (const char *) src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00,  // strideA
-                       (const char *) src1_f16, CUDA_R_16F,   nb11/nb10, nb12/nb10,  // strideB
-                beta,  (      char *)    dst_t, cu_data_type, ne01,       nb2/nb0,   // strideC
-                ne12*ne13,
-                cu_compute_type,
-                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
-    } else {
-        // use cublasGemmBatchedEx
-        const int ne23 = ne12*ne13;
-
-        cuda_pool_alloc<const void *> ptrs_src(2*ne23);
-        cuda_pool_alloc<      void *> ptrs_dst(1*ne23);
-
-        dim3 block_dims(ne13, ne12);
-        k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
-                src0_f16, src1_f16, dst_t,
-                ptrs_src.get(), ptrs_dst.get(),
-                ne12, ne13,
-                ne23,
-                nb02, nb03,
-                src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
-                src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
-                nbd2, nbd3,
-                r2, r3);
-        CUDA_CHECK(cudaGetLastError());
-
-        CUBLAS_CHECK(
-        cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
-                ne01, ne11, ne10,
-                alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
-                       (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   nb11/nb10,
-                beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
-                ne23,
-                cu_compute_type,
-                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
-    }
-#endif
-
-    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
-        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
-        to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
-    }
-}
-
-static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    const bool all_on_device =
-        (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
-        (src1->backend == GGML_BACKEND_TYPE_GPU) &&
-        ( dst->backend == GGML_BACKEND_TYPE_GPU);
-
-    const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
-
-    int64_t min_compute_capability = INT_MAX;
-
-    bool any_pascal_with_slow_fp16 = false;
-    if (split) {
-        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
-        auto & tensor_split = buft_ctx->tensor_split;
-        for (int id = 0; id < g_device_count; ++id) {
-            // skip devices that are not going to do any work:
-            if (tensor_split[id] >= (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
-                continue;
-            }
-
-            if (min_compute_capability > g_device_caps[id].cc) {
-                min_compute_capability = g_device_caps[id].cc;
-            }
-            if (g_device_caps[id].cc == 610) {
-                any_pascal_with_slow_fp16 = true;
-            }
-        }
-    } else {
-        min_compute_capability    = g_device_caps[g_main_device].cc;
-        any_pascal_with_slow_fp16 = g_device_caps[g_main_device].cc == 610;
-    }
-
-    // check data types and tensor shapes for custom matrix multiplication kernels:
-    bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
-        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
-        && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
-
-    bool          use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
-        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
-        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
-
-    bool              use_mul_mat_q =  ggml_cuda_supports_mmq(src0->type)
-        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-
-    const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
-
-#ifdef CUDA_USE_TENSOR_CORES
-    use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
-#endif // CUDA_USE_TENSOR_CORES
-
-#else
-
-    // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
-    const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
-
-    // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
-    use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
-    use_mul_mat_q     = use_mul_mat_q     && min_compute_capability >= MIN_CC_DP4A;
-
-#ifdef CUDA_USE_TENSOR_CORES
-    // when tensor cores are available, use them for large batch size
-    // ref: https://github.com/ggerganov/llama.cpp/pull/3776
-    use_mul_mat_q     = use_mul_mat_q     && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
-#endif // CUDA_USE_TENSOR_CORES
-
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-
-    // if mmvq is available it's a better choice than dmmv:
-#ifndef GGML_CUDA_FORCE_DMMV
-    use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
-#endif // GGML_CUDA_FORCE_DMMV
-
-    // debug helpers
-    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
-    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
-    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
-    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
-    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
-    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
-
-    if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
-        // KQ single-batch
-        ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
-    } else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
-        // KQV single-batch
-        ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
-    } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
-        // KQ + KQV multi-batch
-        ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
-    } else if (use_dequantize_mul_mat_vec) {
-        ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
-    } else if (use_mul_mat_vec_q) {
-        ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
-    } else if (use_mul_mat_q) {
-        ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
-    } else {
-        ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
-    }
-}
-
-#if 0
-template<typename ... Srcs>
-static __global__ void k_compute_batched_ptrs_id(
-        const void ** ptrs_src, void ** ptrs_dst,
-        int ne12, int ne13,
-        int ne23,
-        int nb02, int nb03,
-        int nb12, int nb13,
-        int nb2, int nb3,
-        int r2, int r3,
-        ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
-        const half * src1_f16, half * dst_f16,
-        const int32_t * ids, const int id,
-        Srcs... src0s) {
-
-    int i = ids[id];
-
-    half * src0_f16;
-    const void * srcs_ar[] = { (const half *) src0s... };
-    if (src0_type == GGML_TYPE_F16) {
-        src0_f16 = (half *) srcs_ar[i];
-    } else {
-        src0_f16 = src0_as_f16;
-        if (threadIdx.x == 0 && threadIdx.y == 0) {
-            const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
-            to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
-        }
-    }
-
-    int i13 = blockIdx.x * blockDim.x + threadIdx.x;
-    int i12 = blockIdx.y * blockDim.y + threadIdx.y;
-
-    if (i13 >= ne13 || i12 >= ne12) {
-        return;
-    }
-
-    int i03 = i13 / r3;
-    int i02 = i12 / r2;
-
-    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02   + i03*nb03;
-    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
-    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)  dst_f16 + i12* nb2/2 + i13* nb3/2;
-}
-
-static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
-    const struct ggml_tensor * ids = dst->src[0];
-    const struct ggml_tensor * src1 = dst->src[1];
-    const struct ggml_tensor * src00 = dst->src[2];
-
-    const int id = dst->op_params[0];
-
-    GGML_ASSERT(!ggml_is_transposed(src00));
-    GGML_ASSERT(!ggml_is_transposed(src1));
-
-    GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
-    const int64_t ne01 = src00->ne[1];
-    const int64_t ne02 = src00->ne[2];
-    const int64_t ne03 = src00->ne[3];
-
-    //const int64_t nb01 = src00->nb[1];
-    const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
-    const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    const int64_t ne12 = src1->ne[2];
-    const int64_t ne13 = src1->ne[3];
-
-    //const int64_t nb11 = src1->nb[1];
-    const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
-    const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
-
-    const int64_t ne1 = ggml_nelements(src1);
-    const int64_t ne  = ggml_nelements(dst);
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
-
-    //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    //void * src0_ddq = src0_extra->data_device[g_main_device];
-    //half * src0_as_f16 = (half *) src0_ddq;
-
-    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    // convert src1 to fp16
-    const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
-    GGML_ASSERT(to_fp16_cuda != nullptr);
-
-    size_t src1_as = 0;
-    half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
-    to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
-
-    size_t dst_as = 0;
-    half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
-
-    GGML_ASSERT(ne12 % ne02 == 0);
-    GGML_ASSERT(ne13 % ne03 == 0);
-
-    // broadcast factors
-    const int64_t r2 = ne12/ne02;
-    const int64_t r3 = ne13/ne03;
-
-    const half alpha_f16 = 1.0f;
-    const half beta_f16  = 0.0f;
-
-    // use cublasGemmBatchedEx
-    const int ne23 = ne12*ne13;
-
-    const void ** ptrs_src = nullptr;
-          void ** ptrs_dst = nullptr;
-
-    size_t ptrs_src_s = 0;
-    size_t ptrs_dst_s = 0;
-
-    ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
-    ptrs_dst = (      void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
-
-    int64_t src0_ne = ggml_nelements(src00);
-    half * src0_as_f16 = nullptr;
-    size_t src0_as = 0;
-    if (src00->type != GGML_TYPE_F16) {
-        src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
-    }
-
-    static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
-    dim3 block_dims(ne13, ne12);
-    k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
-            ptrs_src, ptrs_dst,
-            ne12, ne13,
-            ne23,
-            ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
-            nb12, nb13,
-            dst->nb[2], dst->nb[3],
-            r2, r3,
-            src00->type, src0_as_f16, src0_ne,
-            src1_as_f16, dst_f16,
-            (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
-            dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
-            dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
-            dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
-            dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
-    );
-    CUDA_CHECK(cudaGetLastError());
-
-    CUBLAS_CHECK(
-    cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
-            ne01, ne11, ne10,
-            &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
-                        (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
-            &beta_f16,  (      void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
-            ne23,
-            CUBLAS_COMPUTE_16F,
-            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
-
-    if (src0_as != 0) {
-        ggml_cuda_pool_free(src0_as_f16, src0_as);
-    }
-    if (ptrs_src_s != 0) {
-        ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
-    }
-    if (ptrs_dst_s != 0) {
-        ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
-    }
-
-    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
-    to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
-
-    ggml_cuda_pool_free(src1_as_f16, src1_as);
-    ggml_cuda_pool_free(dst_f16, dst_as);
-}
-#endif
-
-static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-#if 0
-    ggml_cuda_mul_mat_id_cublas(dst);
-    // TODO: mmq/mmv support
-#endif
-
-    const size_t nb11 = src1->nb[1];
-    const size_t nb1  =  dst->nb[1];
-
-    const struct ggml_tensor * ids = src0;
-    const int32_t id = ((int32_t *) dst->op_params)[0];
-    const int32_t n_as = ((int32_t *) dst->op_params)[1];
-
-    std::vector<char> ids_host(ggml_nbytes(ids));
-
-    cudaStream_t stream = g_cudaStreams[g_main_device][0];
-
-    if (ids->backend == GGML_BACKEND_TYPE_GPU) {
-        const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
-        CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
-        CUDA_CHECK(cudaStreamSynchronize(stream));
-    } else {
-        memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
-    }
-
-    const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
-    const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
-
-    ggml_tensor_extra_gpu src1_row_extra;
-    ggml_tensor_extra_gpu dst_row_extra;
-
-    ggml_tensor src1_row = *src1;
-    ggml_tensor dst_row = *dst;
-
-    src1_row.backend = GGML_BACKEND_TYPE_GPU;
-    dst_row.backend  = GGML_BACKEND_TYPE_GPU;
-
-    src1_row.extra = &src1_row_extra;
-    dst_row.extra = &dst_row_extra;
-
-    char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
-        (char *) src1->data : (char *) src1_extra->data_device[g_main_device];
-    char * dst_original  =  dst->backend == GGML_BACKEND_TYPE_CPU ?
-        (char *)  dst->data : (char *)  dst_extra->data_device[g_main_device];
-
-    if (src1->ne[1] == 1) {
-        GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
-        GGML_ASSERT(dst->backend  == GGML_BACKEND_TYPE_GPU);
-
-        for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
-            //int32_t row_id;
-            //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
-            //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
-
-            const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
-
-            GGML_ASSERT(row_id >= 0 && row_id < n_as);
-
-            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
-
-            src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
-            src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
-
-            dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
-            dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
-
-            ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
-        }
-    } else {
-        cuda_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
-        cuda_pool_alloc<char>  dst_contiguous(sizeof(float)*ggml_nelements(dst));
-
-        src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
-        dst_row_extra.data_device[g_main_device]  =  dst_contiguous.get();
-
-        const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
-            cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
-        const cudaMemcpyKind dst_kind  =  dst->backend == GGML_BACKEND_TYPE_CPU ?
-            cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
-
-        for (int32_t row_id = 0; row_id < n_as; ++row_id) {
-            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
-
-            int64_t num_src1_rows = 0;
-            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
-                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
-
-                if (row_id_i != row_id) {
-                    continue;
-                }
-
-                GGML_ASSERT(row_id >= 0 && row_id < n_as);
-
-                CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
-                                        nb11, src1_kind, stream));
-                num_src1_rows++;
-            }
-
-            if (num_src1_rows == 0) {
-                continue;
-            }
-
-            src1_row.ne[1] = num_src1_rows;
-            dst_row.ne[1] = num_src1_rows;
-
-            src1_row.nb[1] = nb11;
-            src1_row.nb[2] = num_src1_rows*nb11;
-            src1_row.nb[3] = num_src1_rows*nb11;
-
-            dst_row.nb[1] = nb1;
-            dst_row.nb[2] = num_src1_rows*nb1;
-            dst_row.nb[3] = num_src1_rows*nb1;
-
-            ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
-
-            num_src1_rows = 0;
-            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
-                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
-
-                if (row_id_i != row_id) {
-                    continue;
-                }
-
-                GGML_ASSERT(row_id >= 0 && row_id < n_as);
-
-                CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
-                                        nb1, dst_kind, stream));
-                num_src1_rows++;
-            }
-        }
-    }
-
-    if (dst->backend == GGML_BACKEND_TYPE_CPU) {
-        CUDA_CHECK(cudaStreamSynchronize(stream));
-    }
-}
-
-static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
-}
-
-static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
-}
-
-static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    const int64_t ne = ggml_nelements(src0);
-    GGML_ASSERT(ne == ggml_nelements(src1));
-
-    GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
-    GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
-
-    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
-    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-
-    //GGML_ASSERT(src0->ne[3] == 1);
-
-    const int64_t nb00 = src0->nb[0];
-    const int64_t nb01 = src0->nb[1];
-    const int64_t nb02 = src0->nb[2];
-    const int64_t nb03 = src0->nb[3];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    const int64_t ne12 = src1->ne[2];
-
-    //GGML_ASSERT(src1->ne[3] == 1);
-
-    const int64_t nb10 = src1->nb[0];
-    const int64_t nb11 = src1->nb[1];
-    const int64_t nb12 = src1->nb[2];
-    const int64_t nb13 = src1->nb[3];
-
-    ggml_cuda_set_device(g_main_device);
-    cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
-    const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-
-    char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
-    char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
-
-    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
-        ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
-        ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
-        ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
-        ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
-        ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
-        ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
-        ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
-    } else {
-        fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
-                ggml_type_name(src0->type), ggml_type_name(src1->type));
-        GGML_ASSERT(false);
-    }
-
-    (void) dst;
-}
-
-static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    // TODO: why do we pass dst as src1 here?
-    ggml_cuda_cpy(src0, dst, nullptr);
-    (void) src1;
-}
-
-static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
-}
-
-static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
-}
-
-static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
-}
-
-static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
-}
-
-static void ggml_cuda_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pool2d);
-}
-
-static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
-}
-
-static void ggml_cuda_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sum_rows);
-}
-
-static void ggml_cuda_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_argsort);
-}
-
-static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    (void) src0;
-    (void) src1;
-    (void) dst;
-}
-
-static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
-}
-
-GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
-    if (main_device >= g_device_count) {
-        fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
-                main_device, g_device_count, g_main_device);
-        return;
-    }
-
-    if (g_main_device != main_device && g_device_count > 1) {
-        g_main_device = main_device;
-        //cudaDeviceProp prop;
-        //CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
-        //fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
-    }
-}
-
-GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
-    if (!g_cublas_loaded) return false;
-
-    ggml_cuda_func_t func;
-    const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
-        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
-        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
-
-    if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
-        return false;
-    }
-
-    if (tensor->op == GGML_OP_MUL_MAT) {
-        if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
-#ifndef NDEBUG
-            fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
-#endif
-            return false;
-        }
-    }
-
-    switch (tensor->op) {
-        case GGML_OP_REPEAT:
-            func = ggml_cuda_repeat;
-            break;
-        case GGML_OP_GET_ROWS:
-            func = ggml_cuda_get_rows;
-            break;
-        case GGML_OP_DUP:
-            func = ggml_cuda_dup;
-            break;
-        case GGML_OP_ADD:
-            func = ggml_cuda_add;
-            break;
-        case GGML_OP_ACC:
-            func = ggml_cuda_acc;
-            break;
-        case GGML_OP_MUL:
-            func = ggml_cuda_mul;
-            break;
-        case GGML_OP_DIV:
-            func = ggml_cuda_div;
-            break;
-        case GGML_OP_UNARY:
-            switch (ggml_get_unary_op(tensor)) {
-                case GGML_UNARY_OP_GELU:
-                    func = ggml_cuda_gelu;
-                    break;
-                case GGML_UNARY_OP_SILU:
-                    func = ggml_cuda_silu;
-                    break;
-                case GGML_UNARY_OP_GELU_QUICK:
-                    func = ggml_cuda_gelu_quick;
-                    break;
-                case GGML_UNARY_OP_TANH:
-                    func = ggml_cuda_tanh;
-                    break;
-                case GGML_UNARY_OP_RELU:
-                    func = ggml_cuda_relu;
-                    break;
-                case GGML_UNARY_OP_HARDSIGMOID:
-                    func = ggml_cuda_hardsigmoid;
-                    break;
-                case GGML_UNARY_OP_HARDSWISH:
-                    func = ggml_cuda_hardswish;
-                    break;
-                default:
-                    return false;
-            }
-            break;
-        case GGML_OP_NORM:
-            func = ggml_cuda_norm;
-            break;
-        case GGML_OP_GROUP_NORM:
-            func = ggml_cuda_group_norm;
-            break;
-        case GGML_OP_CONCAT:
-            func = ggml_cuda_concat;
-            break;
-        case GGML_OP_UPSCALE:
-            func = ggml_cuda_upscale;
-            break;
-        case GGML_OP_PAD:
-            func = ggml_cuda_pad;
-            break;
-        case GGML_OP_ARANGE:
-            func = ggml_cuda_arange;
-            break;
-        case GGML_OP_TIMESTEP_EMBEDDING:
-            func = ggml_cuda_timestep_embedding;
-            break;
-        case GGML_OP_LEAKY_RELU:
-            func = ggml_cuda_leaky_relu;
-            break;
-        case GGML_OP_RMS_NORM:
-            func = ggml_cuda_rms_norm;
-            break;
-        case GGML_OP_MUL_MAT:
-            if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
-                return false;
-            }
-            func = ggml_cuda_mul_mat;
-            break;
-        case GGML_OP_MUL_MAT_ID:
-            if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
-                return false;
-            }
-            func = ggml_cuda_mul_mat_id;
-            break;
-        case GGML_OP_SCALE:
-            func = ggml_cuda_scale;
-            break;
-        case GGML_OP_SQR:
-            func = ggml_cuda_sqr;
-            break;
-        case GGML_OP_CLAMP:
-            func = ggml_cuda_clamp;
-            break;
-        case GGML_OP_CPY:
-            func = ggml_cuda_cpy;
-            break;
-        case GGML_OP_CONT:
-            func = ggml_cuda_dup;
-            break;
-        case GGML_OP_NONE:
-        case GGML_OP_RESHAPE:
-        case GGML_OP_VIEW:
-        case GGML_OP_PERMUTE:
-        case GGML_OP_TRANSPOSE:
-            func = ggml_cuda_nop;
-            break;
-        case GGML_OP_DIAG_MASK_INF:
-            func = ggml_cuda_diag_mask_inf;
-            break;
-        case GGML_OP_SOFT_MAX:
-            func = ggml_cuda_soft_max;
-            break;
-        case GGML_OP_ROPE:
-            func = ggml_cuda_rope;
-            break;
-        case GGML_OP_ALIBI:
-            func = ggml_cuda_alibi;
-            break;
-        case GGML_OP_IM2COL:
-            func = ggml_cuda_im2col;
-            break;
-        case GGML_OP_POOL_2D:
-            func = ggml_cuda_pool2d;
-            break;
-        case GGML_OP_SUM_ROWS:
-            func = ggml_cuda_sum_rows;
-            break;
-        case GGML_OP_ARGSORT:
-            func = ggml_cuda_argsort;
-            break;
-        default:
-            return false;
-    }
-
-    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
-        ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
-    }
-
-    if (params->ith != 0) {
-        return true;
-    }
-    if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
-        return true;
-    }
-    func(tensor->src[0], tensor->src[1], tensor);
-    return true;
-}
-
-GGML_CALL int ggml_cuda_get_device_count() {
-    int device_count;
-    if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
-        return 0;
-    }
-    return device_count;
-}
-
-GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
-    cudaDeviceProp prop;
-    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
-    snprintf(description, description_size, "%s", prop.name);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-// backend interface
-
-#define UNUSED GGML_UNUSED
-
-struct ggml_backend_cuda_context {
-    explicit ggml_backend_cuda_context(int device) :
-        device(device),
-        name(GGML_CUDA_NAME + std::to_string(device)) {
-    }
-
-    ~ggml_backend_cuda_context() {
-        if (copy_event != nullptr) {
-            CUDA_CHECK(cudaEventDestroy(copy_event));
-        }
-    }
-
-    int device;
-    std::string name;
-    cudaEvent_t copy_event = nullptr;
-};
-
-// cuda buffer
-
-struct ggml_backend_cuda_buffer_context {
-    int device;
-    void * dev_ptr = nullptr;
-    ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
-    size_t temp_tensor_extra_index = 0;
-    std::string name;
-
-    ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
-        device(device), dev_ptr(dev_ptr),
-        name(GGML_CUDA_NAME + std::to_string(device)) {
-    }
-
-    ~ggml_backend_cuda_buffer_context() {
-        delete[] temp_tensor_extras;
-    }
-
-    ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
-        // TODO: remove GGML_CUDA_MAX_NODES, allocate dynamically and reuse in backend_buffer_reset
-        if (temp_tensor_extras == nullptr) {
-            temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
-        }
-
-        size_t alloc_index = temp_tensor_extra_index;
-        temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
-        ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
-        memset(extra, 0, sizeof(*extra));
-
-        return extra;
-    }
-};
-
-GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-    return ctx->name.c_str();
-}
-
-GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
-    return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
-}
-
-GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-    CUDA_CHECK(cudaFree(ctx->dev_ptr));
-    delete ctx;
-}
-
-GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-    return ctx->dev_ptr;
-}
-
-GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-
-    if (tensor->view_src != NULL && tensor->view_offs == 0) {
-        assert(tensor->view_src->buffer->buft == buffer->buft);
-        tensor->backend = tensor->view_src->backend;
-        tensor->extra = tensor->view_src->extra;
-        return;
-    }
-
-    ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra();
-
-    extra->data_device[ctx->device] = tensor->data;
-
-    tensor->backend = GGML_BACKEND_TYPE_GPU;
-    tensor->extra = extra;
-
-    if (ggml_is_quantized(tensor->type)) {
-        // initialize padding to 0 to avoid possible NaN values
-        size_t original_size = ggml_nbytes(tensor);
-        size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
-
-        if (padded_size > original_size && tensor->view_src == nullptr) {
-            CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
-        }
-    }
-}
-
-GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
-    GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
-
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-
-    ggml_cuda_set_device(ctx->device);
-    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
-    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-}
-
-GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
-    GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
-
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-
-    ggml_cuda_set_device(ctx->device);
-    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
-    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-}
-
-GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
-    if (ggml_backend_buffer_is_cuda(src->buffer)) {
-        ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
-        ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
-        if (src_ctx->device == dst_ctx->device) {
-            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
-        } else {
-            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
-        }
-        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-        return true;
-    }
-    return false;
-
-    UNUSED(buffer);
-}
-
-GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
-    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
-
-    ggml_cuda_set_device(ctx->device);
-    CUDA_CHECK(cudaDeviceSynchronize());
-    CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
-    CUDA_CHECK(cudaDeviceSynchronize());
-}
-
-static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
-    /* .get_name        = */ ggml_backend_cuda_buffer_get_name,
-    /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
-    /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
-    /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
-    /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
-    /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
-    /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
-    /* .clear           = */ ggml_backend_cuda_buffer_clear,
-    /* .reset           = */ NULL,
-};
-
-// cuda buffer type
-struct ggml_backend_cuda_buffer_type_context {
-    int device;
-    std::string name;
-};
-
-GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
-    ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
-
-    return ctx->name.c_str();
-}
-
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
-    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
-
-    ggml_cuda_set_device(buft_ctx->device);
-
-    size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
-
-    void * dev_ptr;
-    cudaError_t err = cudaMalloc(&dev_ptr, size);
-    if (err != cudaSuccess) {
-        fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
-        return nullptr;
-    }
-
-    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
-
-    return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
-}
-
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
-    return 128;
-
-    UNUSED(buft);
-}
-
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
-    size_t size = ggml_nbytes(tensor);
-    int64_t ne0 = tensor->ne[0];
-
-    if (ggml_is_quantized(tensor->type)) {
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
-        }
-    }
-
-    return size;
-
-    UNUSED(buft);
-}
-
-GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
-    if (!ggml_backend_is_cuda(backend)) {
-        return false;
-    }
-
-    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
-    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
-
-    return buft_ctx->device == cuda_ctx->device;
-}
-
-static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
-    /* .get_name         = */ ggml_backend_cuda_buffer_type_name,
-    /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
-    /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
-    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
-    /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
-    /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
-    /* .is_host          = */ NULL,
-};
-
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
-    // FIXME: this is not thread safe
-    if (device >= ggml_backend_cuda_get_device_count()) {
-        return nullptr;
-    }
-
-    static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
-
-    static bool ggml_backend_cuda_buffer_type_initialized = false;
-
-    if (!ggml_backend_cuda_buffer_type_initialized) {
-        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
-            ggml_backend_cuda_buffer_types[i] = {
-                /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
-                /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
-            };
-        }
-        ggml_backend_cuda_buffer_type_initialized = true;
-    }
-
-    return &ggml_backend_cuda_buffer_types[device];
-}
-
-// cuda split buffer
-
-struct ggml_backend_cuda_split_buffer_context {
-    ~ggml_backend_cuda_split_buffer_context() {
-        for (ggml_tensor_extra_gpu * extra : tensor_extras) {
-            for (int id = 0; id < g_device_count; ++id) {
-                for (int64_t is = 0; is < MAX_STREAMS; ++is) {
-                    if (extra->events[id][is] != nullptr) {
-                        CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
-                    }
-                }
-                if (extra->data_device[id] != nullptr) {
-                    CUDA_CHECK(cudaFree(extra->data_device[id]));
-                }
-            }
-            delete extra;
-        }
-    }
-
-    std::vector<ggml_tensor_extra_gpu *> tensor_extras;
-};
-
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
-    return GGML_CUDA_NAME "_Split";
-
-    UNUSED(buffer);
-}
-
-static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
-    return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
-    UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
-}
-
-GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
-    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
-    delete ctx;
-}
-
-GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
-    // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
-    return (void *)0x1000;
-
-    UNUSED(buffer);
-}
-
-GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
-    GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
-
-    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
-    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
-
-    const int64_t ne0 = tensor->ne[0];
-
-    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
-
-    ctx->tensor_extras.push_back(extra);
-
-    for (int id = 0; id < g_device_count; ++id) {
-        int64_t row_low, row_high;
-        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
-
-        int64_t nrows_split = row_high - row_low;
-        if (nrows_split == 0) {
-            continue;
-        }
-
-        size_t size = ggml_nbytes_split(tensor, nrows_split);
-        const size_t original_size = size;
-
-        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
-        }
-
-        // FIXME: do not crash if cudaMalloc fails
-        // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
-        ggml_cuda_set_device(id);
-        char * buf;
-        CUDA_CHECK(cudaMalloc(&buf, size));
-
-        // set padding to 0 to avoid possible NaN values
-        if (size > original_size) {
-            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
-        }
-
-        extra->data_device[id] = buf;
-
-        for (int64_t is = 0; is < MAX_STREAMS; ++is) {
-            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
-        }
-    }
-    tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
-    tensor->extra = extra;
-}
-
-GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
-    // split tensors must always be set in their entirety at once
-    GGML_ASSERT(offset == 0);
-    GGML_ASSERT(size == ggml_nbytes(tensor));
-
-    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
-
-    const int64_t ne0 = tensor->ne[0];
-    const size_t nb1 = tensor->nb[1];
-    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
-
-    for (int id = 0; id < g_device_count; ++id) {
-        int64_t row_low, row_high;
-        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
-
-        int64_t nrows_split = row_high - row_low;
-        if (nrows_split == 0) {
-            continue;
-        }
-
-        const size_t offset_split = row_low*nb1;
-        size_t size = ggml_nbytes_split(tensor, nrows_split);
-        const size_t original_size = size;
-
-        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
-        }
-
-        const char * buf_host = (const char *)data + offset_split;
-        CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
-    }
-
-    for (int id = 0; id < g_device_count; ++id) {
-        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-    }
-}
-
-GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
-    // split tensors must always be set in their entirety at once
-    GGML_ASSERT(offset == 0);
-    GGML_ASSERT(size == ggml_nbytes(tensor));
-
-    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
-
-    const int64_t ne0 = tensor->ne[0];
-    const size_t nb1 = tensor->nb[1];
-    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
-
-    for (int id = 0; id < g_device_count; ++id) {
-        int64_t row_low, row_high;
-        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
-
-        int64_t nrows_split = row_high - row_low;
-        if (nrows_split == 0) {
-            continue;
-        }
-
-        const size_t offset_split = row_low*nb1;
-        size_t size = ggml_nbytes_split(tensor, nrows_split);
-        const size_t original_size = size;
-
-        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
-        }
-
-        char * buf_host = (char *)data + offset_split;
-        CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
-    }
-
-    for (int id = 0; id < g_device_count; ++id) {
-        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-    }
-}
-
-GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
-    UNUSED(buffer);
-    UNUSED(value);
-}
-
-static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
-    /* .get_name        = */ ggml_backend_cuda_split_buffer_get_name,
-    /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
-    /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
-    /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
-    /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
-    /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
-    /* .cpy_tensor      = */ NULL,
-    /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
-    /* .reset           = */ NULL,
-};
-
-// cuda split buffer type
-
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
-    return GGML_CUDA_NAME "_Split";
-
-    UNUSED(buft);
-}
-
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
-    // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
-    // instead, we allocate them for each tensor separately in init_tensor
-    // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
-    // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
-    ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
-
-    return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
-}
-
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
-    return 128;
-
-    UNUSED(buft);
-}
-
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
-    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
-
-    size_t total_size = 0;
-
-    const int64_t ne0 = tensor->ne[0];
-
-    for (int id = 0; id < g_device_count; ++id) {
-        int64_t row_low, row_high;
-        get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
-
-        int64_t nrows_split = row_high - row_low;
-        if (nrows_split == 0) {
-            continue;
-        }
-
-        total_size += ggml_nbytes_split(tensor, nrows_split);
-
-        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
-        }
-    }
-
-    return total_size;
-}
-
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
-    return ggml_backend_is_cuda(backend);
-
-    UNUSED(buft);
-}
-
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
-    return false;
-
-    UNUSED(buft);
-}
-
-static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
-    /* .get_name         = */ ggml_backend_cuda_split_buffer_type_name,
-    /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
-    /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
-    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
-    /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
-    /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
-    /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
-};
+            GGML_ASSERT(row_id >= 0 && row_id < n_as);
 
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
-    // FIXME: this is not thread safe
-    static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
+            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 
-    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
+            src1_row.data = src1_original + i01*src1->nb[1];
+            dst_row.data  =  dst_original + i01*dst->nb[1];
 
-    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
-    if (all_zero) {
-        tensor_split_arr = g_default_tensor_split;
-    } else {
-        float split_sum = 0.0f;
-        for (int i = 0; i < g_device_count; ++i) {
-            tensor_split_arr[i] = split_sum;
-            split_sum += tensor_split[i];
-        }
-        for (int i = 0; i < g_device_count; ++i) {
-            tensor_split_arr[i] /= split_sum;
+            ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
         }
-    }
+    } else {
+        ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
+        ggml_cuda_pool_alloc<char>  dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
 
-    auto it = buft_map.find(tensor_split_arr);
-    if (it != buft_map.end()) {
-        return &it->second;
-    }
+        src1_row.data = src1_contiguous.get();
+        dst_row.data  =  dst_contiguous.get();
 
-    struct ggml_backend_buffer_type buft {
-        /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
-        /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
-    };
+        for (int32_t row_id = 0; row_id < n_as; ++row_id) {
+            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 
-    auto result = buft_map.emplace(tensor_split_arr, buft);
-    return &result.first->second;
-}
+            int64_t num_src1_rows = 0;
+            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 
-// host buffer type
+                if (row_id_i != row_id) {
+                    continue;
+                }
 
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
-    return GGML_CUDA_NAME "_Host";
+                GGML_ASSERT(row_id >= 0 && row_id < n_as);
 
-    UNUSED(buft);
-}
+                CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
+                                        nb11, cudaMemcpyDeviceToDevice, stream));
+                num_src1_rows++;
+            }
 
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
-    return GGML_CUDA_NAME "_Host";
+            if (num_src1_rows == 0) {
+                continue;
+            }
 
-    UNUSED(buffer);
-}
+            src1_row.ne[1] = num_src1_rows;
+            dst_row.ne[1] = num_src1_rows;
 
-GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
-    ggml_cuda_host_free(buffer->context);
-}
+            src1_row.nb[1] = nb11;
+            src1_row.nb[2] = num_src1_rows*nb11;
+            src1_row.nb[3] = num_src1_rows*nb11;
 
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
-    void * ptr = ggml_cuda_host_malloc(size);
+            dst_row.nb[1] = nb1;
+            dst_row.nb[2] = num_src1_rows*nb1;
+            dst_row.nb[3] = num_src1_rows*nb1;
 
-    if (ptr == nullptr) {
-        // fallback to cpu buffer
-        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
-    }
+            ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
 
-    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
-    buffer->buft = buft;
-    buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
-    buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
+            num_src1_rows = 0;
+            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 
-    return buffer;
+                if (row_id_i != row_id) {
+                    continue;
+                }
+
+                GGML_ASSERT(row_id >= 0 && row_id < n_as);
+
+                CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
+                                        nb1, cudaMemcpyDeviceToDevice, stream));
+                num_src1_rows++;
+            }
+        }
+    }
 }
 
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
-    static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
-        /* .iface    = */ {
-            /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
-            /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
-            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
-            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
-            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
-            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
-            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
-        },
-        /* .context  = */ nullptr,
-    };
+static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
+    // why is this here instead of mul_mat?
+    if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
+        ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
+    }
 
-    return &ggml_backend_cuda_buffer_type_host;
+    switch (dst->op) {
+        case GGML_OP_REPEAT:
+            ggml_cuda_op_repeat(ctx, dst);
+            break;
+        case GGML_OP_GET_ROWS:
+            ggml_cuda_op_get_rows(ctx, dst);
+            break;
+        case GGML_OP_DUP:
+            ggml_cuda_dup(ctx, dst);
+            break;
+        case GGML_OP_CPY:
+            ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
+            break;
+        case GGML_OP_CONT:
+            ggml_cuda_dup(ctx, dst);
+            break;
+        case GGML_OP_ADD:
+            ggml_cuda_op_add(ctx, dst);
+            break;
+        case GGML_OP_ACC:
+            ggml_cuda_op_acc(ctx, dst);
+            break;
+        case GGML_OP_MUL:
+            ggml_cuda_op_mul(ctx, dst);
+            break;
+        case GGML_OP_DIV:
+            ggml_cuda_op_div(ctx, dst);
+            break;
+        case GGML_OP_UNARY:
+            switch (ggml_get_unary_op(dst)) {
+                case GGML_UNARY_OP_GELU:
+                    ggml_cuda_op_gelu(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_SILU:
+                    ggml_cuda_op_silu(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_GELU_QUICK:
+                    ggml_cuda_op_gelu_quick(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_TANH:
+                    ggml_cuda_op_tanh(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_RELU:
+                    ggml_cuda_op_relu(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_HARDSIGMOID:
+                    ggml_cuda_op_hardsigmoid(ctx, dst);
+                    break;
+                case GGML_UNARY_OP_HARDSWISH:
+                    ggml_cuda_op_hardswish(ctx, dst);
+                    break;
+                default:
+                    return false;
+            }
+            break;
+        case GGML_OP_NORM:
+            ggml_cuda_op_norm(ctx, dst);
+            break;
+        case GGML_OP_GROUP_NORM:
+            ggml_cuda_op_group_norm(ctx, dst);
+            break;
+        case GGML_OP_CONCAT:
+            ggml_cuda_op_concat(ctx, dst);
+            break;
+        case GGML_OP_UPSCALE:
+            ggml_cuda_op_upscale(ctx, dst);
+            break;
+        case GGML_OP_PAD:
+            ggml_cuda_op_pad(ctx, dst);
+            break;
+        case GGML_OP_ARANGE:
+            ggml_cuda_op_arange(ctx, dst);
+            break;
+        case GGML_OP_TIMESTEP_EMBEDDING:
+            ggml_cuda_op_timestep_embedding(ctx, dst);
+            break;
+        case GGML_OP_LEAKY_RELU:
+            ggml_cuda_op_leaky_relu(ctx, dst);
+            break;
+        case GGML_OP_RMS_NORM:
+            ggml_cuda_op_rms_norm(ctx, dst);
+            break;
+        case GGML_OP_MUL_MAT:
+            if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
+                fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
+                return false;
+            } else {
+                ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
+            }
+            break;
+        case GGML_OP_MUL_MAT_ID:
+            ggml_cuda_mul_mat_id(ctx, dst);
+            break;
+        case GGML_OP_SCALE:
+            ggml_cuda_op_scale(ctx, dst);
+            break;
+        case GGML_OP_SQR:
+            ggml_cuda_op_sqr(ctx, dst);
+            break;
+        case GGML_OP_CLAMP:
+            ggml_cuda_op_clamp(ctx, dst);
+            break;
+        case GGML_OP_NONE:
+        case GGML_OP_RESHAPE:
+        case GGML_OP_VIEW:
+        case GGML_OP_PERMUTE:
+        case GGML_OP_TRANSPOSE:
+                break;
+        case GGML_OP_DIAG_MASK_INF:
+            ggml_cuda_op_diag_mask_inf(ctx, dst);
+            break;
+        case GGML_OP_SOFT_MAX:
+            ggml_cuda_op_soft_max(ctx, dst);
+            break;
+        case GGML_OP_ROPE:
+            ggml_cuda_op_rope(ctx, dst);
+            break;
+        case GGML_OP_ALIBI:
+            ggml_cuda_op_alibi(ctx, dst);
+            break;
+        case GGML_OP_IM2COL:
+            ggml_cuda_op_im2col(ctx, dst);
+            break;
+        case GGML_OP_POOL_2D:
+            ggml_cuda_op_pool2d(ctx, dst);
+            break;
+        case GGML_OP_SUM_ROWS:
+            ggml_cuda_op_sum_rows(ctx, dst);
+            break;
+        case GGML_OP_ARGSORT:
+            ggml_cuda_op_argsort(ctx, dst);
+            break;
+        default:
+            return false;
+    }
+
+    cudaError_t err = cudaGetLastError();
+    if (err != cudaSuccess) {
+        fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
+        GGML_ASSERT(false);
+    }
+
+    return true;
 }
 
-//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
-//    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
-//}
+////////////////////////////////////////////////////////////////////////////////
 
 // backend
 
@@ -11271,9 +2423,8 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 
     GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
-    GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
 
-    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
+    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
 }
 
 GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
@@ -11281,9 +2432,8 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 
     GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
-    GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
 
-    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
+    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
 }
 
 GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
@@ -11311,26 +2461,30 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
         GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
         GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
 
-        if (!cuda_ctx_src->copy_event) {
-            ggml_cuda_set_device(cuda_ctx_src->device);
-            CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
-        }
-
         // copy on src stream
         if (cuda_ctx_src->device == cuda_ctx_dst->device) {
-            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
+            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
         } else {
-            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), g_cudaStreams[cuda_ctx_src->device][0]));
+#ifdef GGML_CUDA_NO_PEER_COPY
+            return false;
+#else
+            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
+#endif
         }
 
         // record event on src stream
-        CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, g_cudaStreams[cuda_ctx_src->device][0]));
+        if (!cuda_ctx_src->copy_event) {
+            ggml_cuda_set_device(cuda_ctx_src->device);
+            CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
+        }
+
+        CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
 
         // wait on dst stream for the copy to complete
-        CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx_dst->device][0], cuda_ctx_src->copy_event, 0));
+        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
     } else {
         // src and dst are on the same backend
-        CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
+        CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
     }
     return true;
 }
@@ -11338,41 +2492,33 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
 GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
-    CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
+    CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
 
-    UNUSED(backend);
+    GGML_UNUSED(backend);
 }
 
 GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
-    ggml_cuda_set_main_device(cuda_ctx->device);
+    ggml_cuda_set_device(cuda_ctx->device);
 
-    ggml_compute_params params = {};
-    params.type = GGML_TASK_TYPE_COMPUTE;
-    params.ith = 0;
     for (int i = 0; i < cgraph->n_nodes; i++) {
         ggml_tensor * node = cgraph->nodes[i];
 
-        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
+        if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
             continue;
         }
 
 #ifndef NDEBUG
-        assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
         assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
-        assert(node->extra != nullptr);
-
         for (int j = 0; j < GGML_MAX_SRC; j++) {
             if (node->src[j] != nullptr) {
-                assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
                 assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
-                assert(node->src[j]->extra != nullptr);
             }
         }
 #endif
 
-        bool ok = ggml_cuda_compute_forward(&params, node);
+        bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
         if (!ok) {
             fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
         }
@@ -11416,7 +2562,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
                 ggml_type a_type = a->type;
                 if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
                     a_type == GGML_TYPE_IQ1_S   || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S   ||
-                    a_type == GGML_TYPE_IQ2_S   || a_type == GGML_TYPE_IQ4_XS) {
+                    a_type == GGML_TYPE_IQ1_M   || a_type == GGML_TYPE_IQ2_S  || a_type == GGML_TYPE_IQ4_XS) {
                     if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
                         return false;
                     }
@@ -11457,6 +2603,15 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
                     return true;
                 }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
+                    return true;
+                }
                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
                     return true;
                 }
@@ -11506,10 +2661,21 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
             return false;
     }
 
-    UNUSED(backend);
+    GGML_UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+    const int min_batch_size = 32;
+
+    return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
+
+    GGML_UNUSED(backend);
 }
 
 static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
+#ifdef GGML_CUDA_NO_PEER_COPY
+    return nullptr;
+#else
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
     ggml_cuda_set_device(cuda_ctx->device);
@@ -11521,6 +2687,7 @@ static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend)
         /* .backend = */ backend,
         /* .context = */ event,
     };
+#endif
 }
 
 static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
@@ -11532,22 +2699,25 @@ static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
 static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
 
-    CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, g_cudaStreams[cuda_ctx->device][0]));
+    CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
 }
 
 static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
     if (ggml_backend_is_cuda(event->backend)) {
-        CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx->device][0], (cudaEvent_t)event->context, 0));
+        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
     } else {
+#if 0
         // untested
         auto wait_fn = [](void * user_data) {
             ggml_backend_event_t event = (ggml_backend_event_t)user_data;
             ggml_backend_event_synchronize(event);
         };
 
-        CUDA_CHECK(cudaLaunchHostFunc(g_cudaStreams[cuda_ctx->device][0], wait_fn, event));
+        CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
+#endif
+        GGML_ASSERT(false);
     }
 }
 
@@ -11568,6 +2738,7 @@ static ggml_backend_i ggml_backend_cuda_interface = {
     /* .graph_plan_compute      = */ NULL,
     /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
     /* .supports_op             = */ ggml_backend_cuda_supports_op,
+    /* .offload_op              = */ ggml_backend_cuda_offload_op,
     /* .event_new               = */ ggml_backend_cuda_event_new,
     /* .event_free              = */ ggml_backend_cuda_event_free,
     /* .event_record            = */ ggml_backend_cuda_event_record,
@@ -11581,16 +2752,11 @@ static ggml_guid_t ggml_backend_cuda_guid() {
 }
 
 GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
-    ggml_init_cublas(); // TODO: remove from ggml.c
-
-    if (device < 0 || device >= ggml_cuda_get_device_count()) {
+    if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
         fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
         return nullptr;
     }
 
-    // not strictly necessary, but it may reduce the overhead of the first graph_compute
-    ggml_cuda_set_main_device(device);
-
     ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
     if (ctx == nullptr) {
         fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
@@ -11611,11 +2777,13 @@ GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
 }
 
 GGML_CALL int ggml_backend_cuda_get_device_count() {
-    return ggml_cuda_get_device_count();
+    return ggml_cuda_info().device_count;
 }
 
 GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
-    ggml_cuda_get_device_description(device, description, description_size);
+    cudaDeviceProp prop;
+    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
+    snprintf(description, description_size, "%s", prop.name);
 }
 
 GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
@@ -11624,18 +2792,47 @@ GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, si
     CUDA_CHECK(cudaMemGetInfo(free, total));
 }
 
+GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
+    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+        return false;
+    }
+
+    cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
+    if (err != cudaSuccess) {
+        // clear the error
+        cudaGetLastError();
+
+        fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
+                size/1024.0/1024.0, cudaGetErrorString(err));
+        return false;
+    }
+    return true;
+}
+
+GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
+    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+        return;
+    }
+
+    cudaError_t err = cudaHostUnregister(buffer);
+    if (err != cudaSuccess) {
+        // clear the error
+        cudaGetLastError();
+    }
+}
+
 // backend registry
 GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
     ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
     return cuda_backend;
 
-    UNUSED(params);
+    GGML_UNUSED(params);
 }
 
 extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
 
 GGML_CALL int ggml_backend_cuda_reg_devices() {
-    int device_count = ggml_cuda_get_device_count();
+    int device_count = ggml_backend_cuda_get_device_count();
     //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
     for (int i = 0; i < device_count; i++) {
         char name[128];
index b1ebd61d7fb665c3e659685a0480f7ba1428fb3d..5eb4af40f4d1fef5847c37bed27dfc99d3a07a4a 100644 (file)
@@ -17,29 +17,17 @@ extern "C" {
 
 #define GGML_CUDA_MAX_DEVICES       16
 
-// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
-GGML_API GGML_CALL void   ggml_init_cublas(void);
-
-// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
-GGML_API GGML_CALL bool   ggml_cublas_loaded(void);
-
-GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
-GGML_API GGML_CALL void   ggml_cuda_host_free(void * ptr);
-
-GGML_API GGML_CALL bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-GGML_API GGML_CALL bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
-
-GGML_API GGML_CALL int    ggml_cuda_get_device_count(void);
-GGML_API GGML_CALL void   ggml_cuda_get_device_description(int device, char * description, size_t description_size);
-
 // backend API
 GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
 
 GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
 
+// device buffer
 GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
+
 // split tensor buffer that splits matrices by rows across multiple devices
 GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
+
 // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
 GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
 
@@ -47,6 +35,9 @@ GGML_API GGML_CALL int  ggml_backend_cuda_get_device_count(void);
 GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
 GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
 
+GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
+GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
+
 #ifdef  __cplusplus
 }
 #endif
diff --git a/ggml-cuda/acc.cu b/ggml-cuda/acc.cu
new file mode 100644 (file)
index 0000000..96bfe1c
--- /dev/null
@@ -0,0 +1,47 @@
+#include "acc.cuh"
+
+static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
+    const int ne10, const int ne11, const int ne12,
+    const int nb1, const int nb2, int offset) {
+    const int i = blockDim.x * blockIdx.x + threadIdx.x;
+    if (i >= ne) {
+        return;
+    }
+    int src1_idx = i - offset;
+    int oz = src1_idx / nb2;
+    int oy = (src1_idx - (oz * nb2)) / nb1;
+    int ox = src1_idx % nb1;
+    if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
+        dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
+    } else {
+        dst[i] = x[i];
+    }
+}
+
+static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
+    const int ne10, const int ne11, const int ne12,
+    const int nb1, const int nb2, const int offset, cudaStream_t stream) {
+    int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
+    acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
+}
+
+void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src0_d = (const float *)src0->data;
+    const float * src1_d = (const float *)src1->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
+
+    int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
+    int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
+    // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
+    int offset = dst->op_params[3] / 4; // offset in bytes
+
+    acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
+}
diff --git a/ggml-cuda/acc.cuh b/ggml-cuda/acc.cuh
new file mode 100644 (file)
index 0000000..1168ea1
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_ACC_BLOCK_SIZE 256
+
+void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/alibi.cu b/ggml-cuda/alibi.cu
new file mode 100644 (file)
index 0000000..6c7f1fd
--- /dev/null
@@ -0,0 +1,63 @@
+#include "alibi.cuh"
+
+static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
+                                 const int n_heads_log2_floor, const float m0, const float m1) {
+    const int col = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = blockDim.y*blockIdx.y + threadIdx.y;
+    const int i = row*ncols + col;
+
+    const int k = row/k_rows;
+
+    float m_k;
+    if (k < n_heads_log2_floor) {
+        m_k = powf(m0, k + 1);
+    } else {
+        m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
+    }
+
+    dst[i] = col * m_k + x[i];
+}
+
+static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
+                           const int k_rows, const int n_heads_log2_floor, const float m0,
+                           const float m1, cudaStream_t stream) {
+    const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
+    const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
+    const dim3 block_nums(num_blocks_x, nrows, 1);
+    alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
+}
+
+void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+    const int64_t nrows = ggml_nrows(src0);
+
+    //const int n_past = ((int32_t *) dst->op_params)[0];
+    const int n_head = ((int32_t *) dst->op_params)[1];
+    float max_bias;
+    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
+
+    //GGML_ASSERT(ne01 + n_past == ne00);
+    GGML_ASSERT(n_head == ne02);
+
+    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+
+    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
+
+    alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
+}
diff --git a/ggml-cuda/alibi.cuh b/ggml-cuda/alibi.cuh
new file mode 100644 (file)
index 0000000..630adfc
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_ALIBI_BLOCK_SIZE 32
+
+void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/arange.cu b/ggml-cuda/arange.cu
new file mode 100644 (file)
index 0000000..b5e495a
--- /dev/null
@@ -0,0 +1,34 @@
+#include "arange.cuh"
+
+static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
+    // blockIDx.x: idx of ne0 / BLOCK_SIZE
+    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (nidx >= ne0) {
+        return;
+    }
+    dst[nidx] = start + step * nidx;
+}
+
+static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
+    int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
+    arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start,  step);
+}
+
+void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    float start;
+    float stop;
+    float step;
+    memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
+    memcpy(&stop,  (float *)dst->op_params + 1, sizeof(float));
+    memcpy(&step,  (float *)dst->op_params + 2, sizeof(float));
+
+    int64_t steps = (int64_t)ceil((stop - start) / step);
+    GGML_ASSERT(ggml_nelements(dst) == steps);
+
+    arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
+}
diff --git a/ggml-cuda/arange.cuh b/ggml-cuda/arange.cuh
new file mode 100644 (file)
index 0000000..41e74fd
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_ARANGE_BLOCK_SIZE 256
+
+void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/argsort.cu b/ggml-cuda/argsort.cu
new file mode 100644 (file)
index 0000000..1333287
--- /dev/null
@@ -0,0 +1,77 @@
+#include "argsort.cuh"
+
+template<typename T>
+static inline __device__ void ggml_cuda_swap(T & a, T & b) {
+    T tmp = a;
+    a = b;
+    b = tmp;
+}
+
+template<ggml_sort_order order>
+static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
+    // bitonic sort
+    int col = threadIdx.x;
+    int row = blockIdx.y;
+
+    if (col >= ncols) return;
+
+    const float * x_row = x + row * ncols;
+    int * dst_row = dst + row * ncols;
+
+    // initialize indices
+    if (col < ncols) {
+        dst_row[col] = col;
+    }
+    __syncthreads();
+
+    for (int k = 2; k <= ncols; k *= 2) {
+        for (int j = k / 2; j > 0; j /= 2) {
+            int ixj = col ^ j;
+            if (ixj > col) {
+                if ((col & k) == 0) {
+                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
+                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
+                    }
+                } else {
+                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
+                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
+                    }
+                }
+            }
+            __syncthreads();
+        }
+    }
+}
+
+static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
+    // bitonic sort requires ncols to be power of 2
+    GGML_ASSERT((ncols & (ncols - 1)) == 0);
+
+    const dim3 block_dims(ncols, 1, 1);
+    const dim3 block_nums(1, nrows, 1);
+    if (order == GGML_SORT_ORDER_ASC) {
+        k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+    } else if (order == GGML_SORT_ORDER_DESC) {
+        k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+    } else {
+        GGML_ASSERT(false);
+    }
+}
+
+void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_I32);
+    GGML_ASSERT(ggml_is_contiguous(src0));
+
+    const int64_t ncols = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
+
+    argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
+}
diff --git a/ggml-cuda/argsort.cuh b/ggml-cuda/argsort.cuh
new file mode 100644 (file)
index 0000000..68a0015
--- /dev/null
@@ -0,0 +1,3 @@
+#include "common.cuh"
+
+void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/binbcast.cu b/ggml-cuda/binbcast.cu
new file mode 100644 (file)
index 0000000..959eaed
--- /dev/null
@@ -0,0 +1,236 @@
+#include "binbcast.cuh"
+
+static __device__ __forceinline__ float op_repeat(const float a, const float b) {
+    return b;
+    GGML_UNUSED(a);
+}
+
+static __device__ __forceinline__ float op_add(const float a, const float b) {
+    return a + b;
+}
+
+static __device__ __forceinline__ float op_mul(const float a, const float b) {
+    return a * b;
+}
+
+static __device__ __forceinline__ float op_div(const float a, const float b) {
+    return a / b;
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+        int ne0, int ne1, int ne2, int ne3,
+        int ne10, int ne11, int ne12, int ne13,
+        /*int s0, */ int s1,  int s2,  int s3,
+        /*int s10,*/ int s11, int s12, int s13) {
+    const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
+    const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
+    const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
+    const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
+
+    if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+        return;
+    }
+
+    const int i11 = i1 % ne11;
+    const int i12 = i2 % ne12;
+    const int i13 = i3 % ne13;
+
+    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+    const size_t i_dst  = i_src0;
+
+    const src0_t * src0_row = src0 + i_src0;
+    const src1_t * src1_row = src1 + i_src1;
+    dst_t * dst_row = dst + i_dst;
+
+    for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
+        const int i10 = i0 % ne10;
+        dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+    }
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+        int ne0, int ne1, int ne2, int ne3,
+        int ne10, int ne11, int ne12, int ne13,
+        /*int s0, */ int s1,  int s2,  int s3,
+        /*int s10,*/ int s11, int s12, int s13) {
+
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    const int i3 = i/(ne2*ne1*ne0);
+    const int i2 = (i/(ne1*ne0)) % ne2;
+    const int i1 = (i/ne0) % ne1;
+    const int i0 = i % ne0;
+
+    if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+        return;
+    }
+
+    const int i11 = i1 % ne11;
+    const int i12 = i2 % ne12;
+    const int i13 = i3 % ne13;
+
+    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+    const size_t i_dst  = i_src0;
+
+    const src0_t * src0_row = src0 + i_src0;
+    const src1_t * src1_row = src1 + i_src1;
+    dst_t * dst_row = dst + i_dst;
+
+    const int i10 = i0 % ne10;
+    dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+}
+
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_cuda {
+    template<typename src0_t, typename src1_t, typename dst_t>
+    void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
+            const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
+            cudaStream_t stream) {
+
+        GGML_TENSOR_BINARY_OP_LOCALS
+
+        int nr0 = ne10/ne0;
+        int nr1 = ne11/ne1;
+        int nr2 = ne12/ne2;
+        int nr3 = ne13/ne3;
+
+        int nr[4] = { nr0, nr1, nr2, nr3 };
+
+        // collapse dimensions until first broadcast dimension
+        int64_t cne0[] = {ne0, ne1, ne2, ne3};
+        int64_t cne1[] = {ne10, ne11, ne12, ne13};
+        size_t cnb0[] = {nb0, nb1, nb2, nb3};
+        size_t cnb1[] = {nb10, nb11, nb12, nb13};
+        auto collapse = [](int64_t cne[]) {
+            cne[0] *= cne[1];
+            cne[1] = cne[2];
+            cne[2] = cne[3];
+            cne[3] = 1;
+        };
+
+        auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
+            cnb[1] *= cne[1];
+            cnb[2] *= cne[2];
+            cnb[3] *= cne[3];
+        };
+
+        for (int i = 0; i < 4; i++) {
+            if (nr[i] != 1) {
+                break;
+            }
+            if (i > 0) {
+                collapse_nb(cnb0, cne0);
+                collapse_nb(cnb1, cne1);
+                collapse(cne0);
+                collapse(cne1);
+            }
+        }
+        {
+            int64_t ne0 = cne0[0];
+            int64_t ne1 = cne0[1];
+            int64_t ne2 = cne0[2];
+            int64_t ne3 = cne0[3];
+
+            int64_t ne10 = cne1[0];
+            int64_t ne11 = cne1[1];
+            int64_t ne12 = cne1[2];
+            int64_t ne13 = cne1[3];
+
+            size_t nb0 = cnb0[0];
+            size_t nb1 = cnb0[1];
+            size_t nb2 = cnb0[2];
+            size_t nb3 = cnb0[3];
+
+            size_t nb10 = cnb1[0];
+            size_t nb11 = cnb1[1];
+            size_t nb12 = cnb1[2];
+            size_t nb13 = cnb1[3];
+
+            size_t s0 = nb0 / sizeof(dst_t);
+            size_t s1 = nb1 / sizeof(dst_t);
+            size_t s2 = nb2 / sizeof(dst_t);
+            size_t s3 = nb3 / sizeof(dst_t);
+
+            size_t s10 = nb10 / sizeof(src1_t);
+            size_t s11 = nb11 / sizeof(src1_t);
+            size_t s12 = nb12 / sizeof(src1_t);
+            size_t s13 = nb13 / sizeof(src1_t);
+
+            GGML_ASSERT(s0 == 1);
+            GGML_ASSERT(s10 == 1);
+
+            const int block_size = 128;
+
+            int64_t hne0 = std::max(ne0/2LL, 1LL);
+
+            dim3 block_dims;
+            block_dims.x = std::min<unsigned int>(hne0, block_size);
+            block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
+            block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
+
+            dim3 block_nums(
+                (hne0 + block_dims.x - 1) / block_dims.x,
+                (ne1 + block_dims.y - 1) / block_dims.y,
+                (ne2*ne3 + block_dims.z - 1) / block_dims.z
+            );
+
+            if (block_nums.z > 65535) {
+                // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+                int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+                k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
+                    src0_dd, src1_dd, dst_dd,
+                    ne0, ne1, ne2, ne3,
+                    ne10, ne11, ne12, ne13,
+                    /* s0, */ s1, s2, s3,
+                    /* s10, */ s11, s12, s13);
+            } else {
+                k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
+                    src0_dd, src1_dd, dst_dd,
+                    ne0, ne1, ne2, ne3,
+                    ne10, ne11, ne12, ne13,
+                    /* s0, */ s1, s2, s3,
+                    /* s10, */ s11, s12, s13);
+            }
+        }
+    }
+};
+
+template<class op>
+static void ggml_cuda_op_bin_bcast(
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+    const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
+
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+        op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
+    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+        op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
+    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
+        op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
+    } else {
+        fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
+            ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
+        GGML_ASSERT(false);
+    }
+}
+
+void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
diff --git a/ggml-cuda/binbcast.cuh b/ggml-cuda/binbcast.cuh
new file mode 100644 (file)
index 0000000..4f63d63
--- /dev/null
@@ -0,0 +1,6 @@
+#include "common.cuh"
+
+void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/clamp.cu b/ggml-cuda/clamp.cu
new file mode 100644 (file)
index 0000000..379ded0
--- /dev/null
@@ -0,0 +1,35 @@
+#include "clamp.cuh"
+
+static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+
+    dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
+
+static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
+    clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
+}
+
+
+void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float min;
+    float max;
+    memcpy(&min, dst->op_params, sizeof(float));
+    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+    clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
+    CUDA_CHECK(cudaGetLastError());
+}
diff --git a/ggml-cuda/clamp.cuh b/ggml-cuda/clamp.cuh
new file mode 100644 (file)
index 0000000..7f9559d
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_CLAMP_BLOCK_SIZE 256
+
+void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/common.cuh b/ggml-cuda/common.cuh
new file mode 100644 (file)
index 0000000..79e1d54
--- /dev/null
@@ -0,0 +1,557 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-cuda.h"
+
+#include <memory>
+
+#if defined(GGML_USE_HIPBLAS)
+#define GGML_COMMON_DECL_HIP
+#define GGML_COMMON_IMPL_HIP
+#else
+#define GGML_COMMON_DECL_CUDA
+#define GGML_COMMON_IMPL_CUDA
+#endif
+#include "ggml-common.h"
+
+#include <cstdio>
+#include <array>
+#include <cassert>
+#include <cfloat>
+#include <string>
+
+#if defined(GGML_USE_HIPBLAS)
+#include <hip/hip_runtime.h>
+#include <hipblas/hipblas.h>
+#include <hip/hip_fp16.h>
+#ifdef __HIP_PLATFORM_AMD__
+// for rocblas_initialize()
+#include "rocblas/rocblas.h"
+#endif // __HIP_PLATFORM_AMD__
+#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
+#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
+#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
+#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
+#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
+#define CUBLAS_OP_N HIPBLAS_OP_N
+#define CUBLAS_OP_T HIPBLAS_OP_T
+#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
+#define CUBLAS_TF32_TENSOR_OP_MATH 0
+#define CUDA_R_16F  HIPBLAS_R_16F
+#define CUDA_R_32F  HIPBLAS_R_32F
+#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
+#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
+#define cublasCreate hipblasCreate
+#define cublasDestroy hipblasDestroy
+#define cublasGemmEx hipblasGemmEx
+#define cublasGemmBatchedEx hipblasGemmBatchedEx
+#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
+#define cublasHandle_t hipblasHandle_t
+#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
+#define cublasSetStream hipblasSetStream
+#define cublasSgemm hipblasSgemm
+#define cublasStatus_t hipblasStatus_t
+#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
+#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
+#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
+#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
+#define cudaDeviceProp hipDeviceProp_t
+#define cudaDeviceSynchronize hipDeviceSynchronize
+#define cudaError_t hipError_t
+#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
+#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
+#define cudaEventCreateWithFlags hipEventCreateWithFlags
+#define cudaEventDisableTiming hipEventDisableTiming
+#define cudaEventRecord hipEventRecord
+#define cudaEventSynchronize hipEventSynchronize
+#define cudaEvent_t hipEvent_t
+#define cudaEventDestroy hipEventDestroy
+#define cudaFree hipFree
+#define cudaFreeHost hipHostFree
+#define cudaGetDevice hipGetDevice
+#define cudaGetDeviceCount hipGetDeviceCount
+#define cudaGetDeviceProperties hipGetDeviceProperties
+#define cudaGetErrorString hipGetErrorString
+#define cudaGetLastError hipGetLastError
+#define cudaHostRegister hipHostRegister
+#define cudaHostRegisterPortable hipHostRegisterPortable
+#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
+#define cudaHostUnregister hipHostUnregister
+#define cudaLaunchHostFunc hipLaunchHostFunc
+#ifdef GGML_HIP_UMA
+#define cudaMalloc hipMallocManaged
+#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
+#else
+#define cudaMalloc hipMalloc
+#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
+#endif
+#define cudaMemcpy hipMemcpy
+#define cudaMemcpyAsync hipMemcpyAsync
+#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
+#define cudaMemcpy2DAsync hipMemcpy2DAsync
+#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
+#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
+#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
+#define cudaMemcpyKind hipMemcpyKind
+#define cudaMemset hipMemset
+#define cudaMemsetAsync hipMemsetAsync
+#define cudaMemGetInfo hipMemGetInfo
+#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
+#define cudaSetDevice hipSetDevice
+#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
+#define cudaStreamDestroy hipStreamDestroy
+#define cudaStreamFireAndForget hipStreamFireAndForget
+#define cudaStreamNonBlocking hipStreamNonBlocking
+#define cudaStreamPerThread hipStreamPerThread
+#define cudaStreamSynchronize hipStreamSynchronize
+#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
+#define cudaStream_t hipStream_t
+#define cudaSuccess hipSuccess
+#define __trap abort
+#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
+#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
+#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
+#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
+#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
+#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
+#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
+#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
+#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
+#else
+#include <cuda_runtime.h>
+#include <cuda.h>
+#include <cublas_v2.h>
+#include <cuda_fp16.h>
+
+#if CUDART_VERSION < 11020
+#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
+#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
+#define CUBLAS_COMPUTE_16F CUDA_R_16F
+#define CUBLAS_COMPUTE_32F CUDA_R_32F
+#define cublasComputeType_t cudaDataType_t
+#endif // CUDART_VERSION < 11020
+
+#endif // defined(GGML_USE_HIPBLAS)
+
+#define STRINGIZE_IMPL(...) #__VA_ARGS__
+#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
+
+#define WARP_SIZE 32
+#define CUDART_HMAX     11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
+
+#define CC_PASCAL     600
+#define MIN_CC_DP4A   610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
+#define CC_VOLTA      700
+#define CC_OFFSET_AMD 1000000
+#define CC_RDNA1      (CC_OFFSET_AMD + 1010)
+#define CC_RDNA2      (CC_OFFSET_AMD + 1030)
+#define CC_RDNA3      (CC_OFFSET_AMD + 1100)
+
+// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
+// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
+// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
+// -  7B quantum model: +100-200 MB
+// - 13B quantum model: +200-400 MB
+//
+//#define GGML_CUDA_FORCE_MMQ
+
+// TODO: improve this to be correct for more hardware
+//       for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
+#if !defined(GGML_CUDA_FORCE_MMQ)
+#define CUDA_USE_TENSOR_CORES
+#endif
+
+#define MMVQ_MAX_BATCH_SIZE  8 // max batch size to use MMVQ kernels
+#define  MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
+
+#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+#define GGML_CUDA_MAX_STREAMS 8
+
+[[noreturn]]
+void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
+
+#define CUDA_CHECK_GEN(err, success, error_fn)                                      \
+     do {                                                                           \
+        auto err_ = (err);                                                          \
+        if (err_ != (success)) {                                                    \
+            ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_));    \
+        }                                                                           \
+    } while (0)
+
+#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
+
+#if CUDART_VERSION >= 12000
+    static const char * cublas_get_error_str(const cublasStatus_t err) {
+        return cublasGetStatusString(err);
+    }
+#else
+    static const char * cublas_get_error_str(const cublasStatus_t err) {
+        switch (err) {
+            case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
+            case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
+            case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
+            case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
+            case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
+            case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
+            case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
+            case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
+            case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
+            default: return "unknown error";
+        }
+    }
+#endif // CUDART_VERSION >= 12000
+
+#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
+
+#if !defined(GGML_USE_HIPBLAS)
+static const char * cu_get_error_str(CUresult err) {
+    const char * err_str;
+    cuGetErrorString(err, &err_str);
+    return err_str;
+}
+#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
+#endif
+
+#if CUDART_VERSION >= 11100
+#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
+#else
+#define GGML_CUDA_ASSUME(x)
+#endif // CUDART_VERSION >= 11100
+
+#ifdef GGML_CUDA_F16
+typedef half dfloat; // dequantize float
+typedef half2 dfloat2;
+#else
+typedef float dfloat; // dequantize float
+typedef float2 dfloat2;
+#endif //GGML_CUDA_F16
+
+// dmmv = dequantize_mul_mat_vec
+// TODO: remove this?
+#ifndef GGML_CUDA_DMMV_X
+#define GGML_CUDA_DMMV_X 32
+#endif
+
+[[noreturn]]
+static __device__ void no_device_code(
+    const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
+           file_name, line, function_name, arch);
+    GGML_UNUSED(arch_list);
+#else
+    printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
+           file_name, line, function_name, arch, arch_list);
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    __trap();
+
+    GGML_UNUSED(no_device_code); // suppress unused function warning
+}
+
+#ifdef __CUDA_ARCH__
+#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
+#else
+#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
+#endif // __CUDA_ARCH__
+
+static __device__ __forceinline__ float warp_reduce_sum(float x) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        x += __shfl_xor_sync(0xffffffff, x, mask, 32);
+    }
+    return x;
+}
+
+static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
+        a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
+    }
+    return a;
+}
+
+#ifdef GGML_CUDA_F16
+static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+#pragma unroll
+   for (int mask = 16; mask > 0; mask >>= 1) {
+       a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
+   }
+   return a;
+#else
+   GGML_UNUSED(a);
+   NO_DEVICE_CODE;
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+}
+#endif // GGML_CUDA_F16
+
+static __device__ __forceinline__ float warp_reduce_max(float x) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+    }
+    return x;
+}
+
+//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
+//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//#pragma unroll
+//    for (int mask = 16; mask > 0; mask >>= 1) {
+//        x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+//    }
+//    return x;
+//#else
+//    GGML_UNUSED(x);
+//    NO_DEVICE_CODE;
+//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//}
+
+
+#if defined(GGML_USE_HIPBLAS)
+#define __CUDA_ARCH__ 1300
+
+#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
+    defined(__gfx1150__) || defined(__gfx1151__)
+#define RDNA3
+#endif
+
+#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
+    defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
+#define RDNA2
+#endif
+
+#ifndef __has_builtin
+    #define __has_builtin(x) 0
+#endif
+
+typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
+typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
+static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
+    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+#if __has_builtin(__builtin_elementwise_sub_sat)
+    const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
+    return reinterpret_cast<const int &>(c);
+#else
+    int8x4_t c;
+    int16_t tmp;
+#pragma unroll
+    for (int i = 0; i < 4; i++) {
+        tmp = va[i] - vb[i];
+        if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
+        if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
+        c[i] = tmp;
+    }
+    return reinterpret_cast<int &>(c);
+#endif // __has_builtin(__builtin_elementwise_sub_sat)
+}
+
+static __device__ __forceinline__ int __vsub4(const int a, const int b) {
+    return __vsubss4(a, b);
+}
+
+static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
+    const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
+    const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
+    unsigned int c;
+    uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
+#pragma unroll
+    for (int i = 0; i < 4; ++i) {
+        vc[i] = va[i] == vb[i] ? 0xff : 0x00;
+    }
+    return c;
+}
+
+static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
+#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
+    c = __builtin_amdgcn_sdot4(a, b, c, false);
+#elif defined(RDNA3)
+    c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
+#elif defined(__gfx1010__) || defined(__gfx900__)
+    int tmp1;
+    int tmp2;
+    asm("\n \
+        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
+        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
+        v_add3_u32 %0, %1, %2, %0 \n \
+        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
+        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
+        v_add3_u32 %0, %1, %2, %0 \n \
+        "
+        : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
+        : "v"(a), "v"(b)
+    );
+#else
+    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+    c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
+#endif
+    return c;
+}
+#endif // defined(GGML_USE_HIPBLAS)
+
+// TODO: move to ggml-common.h
+static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
+
+typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
+
+
+//////////////////////
+
+struct ggml_cuda_device_info {
+    int device_count;
+
+    struct cuda_device_info {
+        int     cc;                 // compute capability
+        size_t  smpb;               // max. shared memory per block
+        bool    vmm;                // virtual memory support
+        size_t  vmm_granularity;    // granularity of virtual memory
+        size_t  total_vram;
+    };
+
+    cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
+
+    std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
+};
+
+const ggml_cuda_device_info & ggml_cuda_info();
+
+void ggml_cuda_set_device(int device);
+int ggml_cuda_get_device();
+
+struct ggml_cuda_pool {
+    virtual ~ggml_cuda_pool() = default;
+
+    virtual void * alloc(size_t size, size_t * actual_size) = 0;
+    virtual void free(void * ptr, size_t size) = 0;
+};
+
+template<typename T>
+struct ggml_cuda_pool_alloc {
+    ggml_cuda_pool * pool = nullptr;
+    T * ptr = nullptr;
+    size_t actual_size = 0;
+
+    ggml_cuda_pool_alloc() = default;
+
+    explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
+    }
+
+    ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
+        alloc(size);
+    }
+
+    ~ggml_cuda_pool_alloc() {
+        if (ptr != nullptr) {
+            pool->free(ptr, actual_size);
+        }
+    }
+
+    // size is in number of elements
+    T * alloc(size_t size) {
+        GGML_ASSERT(pool != nullptr);
+        GGML_ASSERT(ptr == nullptr);
+        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
+        return ptr;
+    }
+
+    T * alloc(ggml_cuda_pool & pool, size_t size) {
+        this->pool = &pool;
+        return alloc(size);
+    }
+
+    T * get() {
+        return ptr;
+    }
+
+    ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
+    ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
+    ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
+    ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
+};
+
+
+// backend interface
+
+struct ggml_tensor_extra_gpu {
+    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
+    cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
+};
+
+struct ggml_backend_cuda_context {
+    int device;
+    std::string name;
+    cudaEvent_t copy_event = nullptr;
+
+    cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
+    cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+
+    explicit ggml_backend_cuda_context(int device) :
+        device(device),
+        name(GGML_CUDA_NAME + std::to_string(device)) {
+    }
+
+    ~ggml_backend_cuda_context() {
+        if (copy_event != nullptr) {
+            CUDA_CHECK(cudaEventDestroy(copy_event));
+        }
+        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
+            for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
+                if (streams[i][j] != nullptr) {
+                    CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
+                }
+            }
+            if (cublas_handles[i] != nullptr) {
+                CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
+            }
+        }
+    }
+
+    cudaStream_t stream(int device, int stream) {
+        if (streams[device][stream] == nullptr) {
+            ggml_cuda_set_device(device);
+            CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
+        }
+        return streams[device][stream];
+    }
+
+    cudaStream_t stream() {
+        return stream(device, 0);
+    }
+
+    cublasHandle_t cublas_handle(int device) {
+        if (cublas_handles[device] == nullptr) {
+            ggml_cuda_set_device(device);
+            CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
+            CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
+        }
+        return cublas_handles[device];
+    }
+
+    cublasHandle_t cublas_handle() {
+        return cublas_handle(device);
+    }
+
+    // pool
+    std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
+
+    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
+
+    ggml_cuda_pool & pool(int device) {
+        if (pools[device] == nullptr) {
+            pools[device] = new_pool_for_device(device);
+        }
+        return *pools[device];
+    }
+
+    ggml_cuda_pool & pool() {
+        return pool(device);
+    }
+};
diff --git a/ggml-cuda/concat.cu b/ggml-cuda/concat.cu
new file mode 100644 (file)
index 0000000..2941d2f
--- /dev/null
@@ -0,0 +1,49 @@
+#include "concat.cuh"
+
+static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
+    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (nidx >= ne0) {
+        return;
+    }
+    // operation
+    int offset_dst =
+        nidx +
+        blockIdx.y * ne0 +
+        blockIdx.z * ne0 * gridDim.y;
+    if (blockIdx.z < ne02) { // src0
+        int offset_src =
+            nidx +
+            blockIdx.y * ne0 +
+            blockIdx.z * ne0 * gridDim.y;
+        dst[offset_dst] = x[offset_src];
+    } else {
+        int offset_src =
+            nidx +
+            blockIdx.y * ne0 +
+            (blockIdx.z - ne02) * ne0 *  gridDim.y;
+        dst[offset_dst] = y[offset_src];
+    }
+}
+
+static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
+    int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
+    dim3 gridDim(num_blocks, ne1, ne2);
+    concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
+}
+
+void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src0_d = (const float *)src0->data;
+    const float * src1_d = (const float *)src1->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    for (int i3 = 0; i3 < dst->ne[3]; i3++) {
+        concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
+    }
+}
diff --git a/ggml-cuda/concat.cuh b/ggml-cuda/concat.cuh
new file mode 100644 (file)
index 0000000..aa506a0
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_CONCAT_BLOCK_SIZE 256
+
+void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/convert.cu b/ggml-cuda/convert.cu
new file mode 100644 (file)
index 0000000..18a31ed
--- /dev/null
@@ -0,0 +1,824 @@
+#include "convert.cuh"
+#include "dequantize.cuh"
+
+#define CUDA_Q8_0_NE_ALIGN 2048
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+    const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
+
+    if (i >= k) {
+        return;
+    }
+
+    const int ib = i/qk; // block index
+    const int iqs = (i%qk)/qr; // quant index
+    const int iybs = i - i%qk; // y block start index
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+    // dequantize
+    dfloat2 v;
+    dequantize_kernel(vx, ib, iqs, v);
+
+    y[iybs + iqs + 0]        = v.x;
+    y[iybs + iqs + y_offset] = v.y;
+}
+
+template <bool need_check>
+static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
+#if __CUDA_ARCH__ >= CC_PASCAL
+    constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
+
+    const int   i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
+    const int * x0 = ((int *) vx) + blockIdx.x * nint;
+    half2 * y2 = (half2 *) (y + i0);
+
+    __shared__ int vals[nint];
+
+#pragma unroll
+    for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
+        if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
+            break;
+        }
+
+        const int ix = ix0 + threadIdx.x;
+        vals[ix] = x0[ix];
+    }
+
+#pragma unroll
+    for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
+        if (need_check && i0 + iy + 2*threadIdx.x >= k) {
+            return;
+        }
+
+        const half * b0 = ((const half  *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
+        const half    d = *b0;
+        const char2  qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
+
+        y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
+    }
+#else
+    GGML_UNUSED(vx);
+    GGML_UNUSED(y);
+    GGML_UNUSED(k);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_PASCAL
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+
+    const int i = blockIdx.x;
+
+    // assume 32 threads
+    const int tid = threadIdx.x;
+    const int il  = tid/8;
+    const int ir  = tid%8;
+    const int ib = 8*i + ir;
+    if (ib >= nb32) {
+        return;
+    }
+
+    dst_t * y = yy + 256*i + 32*ir + 4*il;
+
+    const block_q4_0 * x = (const block_q4_0 *)vx + ib;
+    const float d = __half2float(x->d);
+    const float dm = -8*d;
+
+    const uint8_t * q = x->qs + 4*il;
+
+    for (int l = 0; l < 4; ++l) {
+        y[l+ 0] = d * (q[l] & 0xF) + dm;
+        y[l+16] = d * (q[l] >>  4) + dm;
+    }
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+
+    const int i = blockIdx.x;
+
+    // assume 32 threads
+    const int tid = threadIdx.x;
+    const int il  = tid/8;
+    const int ir  = tid%8;
+    const int ib = 8*i + ir;
+    if (ib >= nb32) {
+        return;
+    }
+
+    dst_t * y = yy + 256*i + 32*ir + 4*il;
+
+    const block_q4_1 * x = (const block_q4_1 *)vx + ib;
+    const float2 d = __half22float2(x->dm);
+
+    const uint8_t * q = x->qs + 4*il;
+
+    for (int l = 0; l < 4; ++l) {
+        y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
+        y[l+16] = d.x * (q[l] >>  4) + d.y;
+    }
+}
+
+//================================== k-quants
+
+template<typename dst_t>
+static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_q2_K * x = (const block_q2_K *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int n   = tid/32;
+    const int l   = tid - 32*n;
+    const int is  = 8*n + l/16;
+
+    const uint8_t q = x[i].qs[32*n + l];
+    dst_t * y = yy + i*QK_K + 128*n;
+
+    float dall = __low2half(x[i].dm);
+    float dmin = __high2half(x[i].dm);
+    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
+    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
+    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
+#else
+    const int is = tid/16;  // 0 or 1
+    const int il = tid%16;  // 0...15
+    const uint8_t q = x[i].qs[il] >> (2*is);
+    dst_t * y = yy + i*QK_K + 16*is + il;
+    float dall = __low2half(x[i].dm);
+    float dmin = __high2half(x[i].dm);
+    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i = blockIdx.x;
+    const block_q3_K * x = (const block_q3_K *) vx;
+
+#if QK_K == 256
+    const int r = threadIdx.x/4;
+    const int tid = r/2;
+    const int is0 = r%2;
+    const int l0 = 16*is0 + 4*(threadIdx.x%4);
+    const int n = tid / 4;
+    const int j = tid - 4*n;
+
+    uint8_t m = 1 << (4*n + j);
+    int is = 8*n + 2*j + is0;
+    int shift = 2*j;
+
+    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
+                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
+                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
+                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
+    float d_all = x[i].d;
+    float dl = d_all * (us - 32);
+
+    dst_t * y = yy + i*QK_K + 128*n + 32*j;
+    const uint8_t * q = x[i].qs + 32*n;
+    const uint8_t * hm = x[i].hmask;
+
+    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
+#else
+    const int tid = threadIdx.x;
+    const int is  = tid/16;  // 0 or 1
+    const int il  = tid%16;  // 0...15
+    const int im  = il/8;    // 0...1
+    const int in  = il%8;    // 0...7
+
+    dst_t * y = yy + i*QK_K + 16*is + il;
+
+    const uint8_t q = x[i].qs[il] >> (2*is);
+    const uint8_t h = x[i].hmask[in] >> (2*is + im);
+    const float   d = (float)x[i].d;
+
+    if (is == 0) {
+        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+    } else {
+        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+    }
+#endif
+
+}
+
+#if QK_K == 256
+static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
+    if (j < 4) {
+        d = q[j] & 63; m = q[j + 4] & 63;
+    } else {
+        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
+    }
+}
+#endif
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+    const block_q4_K * x = (const block_q4_K *) vx;
+
+    const int i = blockIdx.x;
+
+#if QK_K == 256
+    // assume 32 threads
+    const int tid = threadIdx.x;
+    const int il  = tid/8;
+    const int ir  = tid%8;
+    const int is  = 2*il;
+    const int n   = 4;
+
+    dst_t * y = yy + i*QK_K + 64*il + n*ir;
+
+    const float dall = __low2half(x[i].dm);
+    const float dmin = __high2half(x[i].dm);
+
+    const uint8_t * q = x[i].qs + 32*il + n*ir;
+
+    uint8_t sc, m;
+    get_scale_min_k4(is + 0, x[i].scales, sc, m);
+    const float d1 = dall * sc; const float m1 = dmin * m;
+    get_scale_min_k4(is + 1, x[i].scales, sc, m);
+    const float d2 = dall * sc; const float m2 = dmin * m;
+    for (int l = 0; l < n; ++l) {
+        y[l + 0] = d1 * (q[l] & 0xF) - m1;
+        y[l +32] = d2 * (q[l] >>  4) - m2;
+    }
+#else
+    const int tid = threadIdx.x;
+    const uint8_t * q = x[i].qs;
+    dst_t * y = yy + i*QK_K;
+    const float d = (float)x[i].dm[0];
+    const float m = (float)x[i].dm[1];
+    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
+    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+    const block_q5_K * x = (const block_q5_K *) vx;
+
+    const int i = blockIdx.x;
+
+#if QK_K == 256
+    // assume 64 threads - this is very slightly better than the one below
+    const int tid = threadIdx.x;
+    const int il  = tid/16;   // il is in 0...3
+    const int ir  = tid%16;   // ir is in 0...15
+    const int is  = 2*il;     // is is in 0...6
+
+    dst_t * y = yy + i*QK_K + 64*il + 2*ir;
+
+    const float dall = __low2half(x[i].dm);
+    const float dmin = __high2half(x[i].dm);
+
+    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
+    const uint8_t * qh = x[i].qh + 2*ir;
+
+    uint8_t sc, m;
+    get_scale_min_k4(is + 0, x[i].scales, sc, m);
+    const float d1 = dall * sc; const float m1 = dmin * m;
+    get_scale_min_k4(is + 1, x[i].scales, sc, m);
+    const float d2 = dall * sc; const float m2 = dmin * m;
+
+    uint8_t   hm  = 1 << (2*il);
+    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
+    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
+    hm <<= 1;
+    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
+    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
+#else
+    const int tid = threadIdx.x;
+    const uint8_t q = x[i].qs[tid];
+    const int im = tid/8;  // 0...3
+    const int in = tid%8;  // 0...7
+    const int is = tid/16; // 0 or 1
+    const uint8_t h = x[i].qh[in] >> im;
+    const float d = x[i].d;
+    dst_t * y = yy + i*QK_K + tid;
+    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
+    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+    const block_q6_K * x = (const block_q6_K *) vx;
+
+    const int i = blockIdx.x;
+#if QK_K == 256
+
+    // assume 64 threads - this is very slightly better than the one below
+    const int tid = threadIdx.x;
+    const int ip  = tid/32;   // ip is 0 or 1
+    const int il  = tid - 32*ip; // 0...32
+    const int is  = 8*ip + il/16;
+
+    dst_t * y = yy + i*QK_K + 128*ip + il;
+
+    const float d = x[i].d;
+
+    const uint8_t * ql = x[i].ql + 64*ip + il;
+    const uint8_t   qh = x[i].qh[32*ip + il];
+    const int8_t  * sc = x[i].scales + is;
+
+    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
+    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
+#else
+
+    // assume 32 threads
+    const int tid = threadIdx.x;
+    const int ip  = tid/16;         // 0 or 1
+    const int il  = tid - 16*ip;    // 0...15
+
+    dst_t * y = yy + i*QK_K + 16*ip + il;
+
+    const float d = x[i].d;
+
+    const uint8_t   ql = x[i].ql[16*ip + il];
+    const uint8_t   qh = x[i].qh[il] >> (2*ip);
+    const int8_t  * sc = x[i].scales;
+
+    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq2_xxs * x = (const block_iq2_xxs  *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint16_t * q2 = x[i].qs + 4*ib;
+    const uint8_t  * aux8 = (const uint8_t *)q2;
+    const uint8_t  * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
+    const uint32_t aux32 = q2[2] | (q2[3] << 16);
+    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
+    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq2_xs * x = (const block_iq2_xs *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint16_t * q2 = x[i].qs + 4*ib;
+    const uint8_t  * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
+    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+    const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
+    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq2_s * x = (const block_iq2_s *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
+    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+    const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
+    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq3_xxs * x = (const block_iq3_xxs  *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint8_t  * q3 = x[i].qs + 8*ib;
+    const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
+    const uint8_t  * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
+    const uint8_t  * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
+    const uint32_t aux32 = gas[0] | (gas[1] << 16);
+    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
+    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+    for (int j = 0; j < 4; ++j) {
+        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+    }
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq3_s * x = (const block_iq3_s *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint8_t * qs = x[i].qs + 8*ib;
+    const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
+    const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
+    const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
+    const uint8_t signs = x[i].signs[4*ib + il];
+    for (int j = 0; j < 4; ++j) {
+        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+    }
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq1_s * x = (const block_iq1_s  *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
+    const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
+    uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
+    grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
+    grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
+    grid32[0] &= 0x0f0f0f0f;
+    for (int j = 0; j < 8; ++j) {
+        y[j] = d * (q[j] + delta);
+    }
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq1_m * x = (const block_iq1_m  *) vx;
+
+    const int tid = threadIdx.x;
+#if QK_K == 256
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+    const uint16_t * sc = (const uint16_t *)x[i].scales;
+    iq1m_scale_t scale;
+    scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+    const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
+    const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
+    const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
+    uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
+    grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
+    grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
+    grid32[0] &= 0x0f0f0f0f;
+    for (int j = 0; j < 8; ++j) {
+        y[j] = d * (q[j] + delta);
+    }
+#else
+    NO_DEVICE_CODE;
+#endif
+
+}
+
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+    const int i   = blockIdx.x;
+    const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
+
+    const int tid = threadIdx.x;
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+    const uint8_t  * q4 = x[ib].qs + 4*il;
+    const float d = (float)x[ib].d;
+    for (int j = 0; j < 4; ++j) {
+        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
+    }
+
+}
+
+#if QK_K != 64
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+    const int i   = blockIdx.x;
+    const block_iq4_xs * x = (const block_iq4_xs *)vx;
+
+    const int tid = threadIdx.x;
+    const int il = tid/8; // 0...3
+    const int ib = tid%8; // 0...7
+    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+    const uint8_t  * q4 = x[i].qs + 16*ib + 4*il;
+    const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
+    for (int j = 0; j < 4; ++j) {
+        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
+    }
+}
+#endif
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
+    dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
+
+static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
+    if (k % CUDA_Q8_0_NE_ALIGN == 0) {
+        const bool need_check = false;
+        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+    } else {
+        const bool need_check = true;
+        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+    }
+}
+
+template<typename dst_t>
+static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb32 = k / 32;
+    const int nb = (k + 255) / 256;
+    dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb32 = k / 32;
+    const int nb = (k + 255) / 256;
+    dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = (k + QK_K - 1) / QK_K;
+    dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = k / QK_K;
+    dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+    const int nb = (k + QK_K - 1) / QK_K;
+#if QK_K == 64
+    dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+#else
+    dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template <typename src_t, typename dst_t>
+static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+
+    const src_t * x = (src_t *) vx;
+
+    y[i] = x[i];
+}
+
+template <typename src_t, typename dst_t>
+static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+    convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
+
+to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
+    int id;
+    switch (type) {
+        case GGML_TYPE_Q4_0:
+            return dequantize_row_q4_0_cuda;
+        case GGML_TYPE_Q4_1:
+            return dequantize_row_q4_1_cuda;
+        case GGML_TYPE_Q5_0:
+            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
+        case GGML_TYPE_Q5_1:
+            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
+        case GGML_TYPE_Q8_0:
+            CUDA_CHECK(cudaGetDevice(&id));
+            if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
+                return dequantize_block_q8_0_f16_cuda;
+            }
+            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+        case GGML_TYPE_Q2_K:
+            return dequantize_row_q2_K_cuda;
+        case GGML_TYPE_Q3_K:
+            return dequantize_row_q3_K_cuda;
+        case GGML_TYPE_Q4_K:
+            return dequantize_row_q4_K_cuda;
+        case GGML_TYPE_Q5_K:
+            return dequantize_row_q5_K_cuda;
+        case GGML_TYPE_Q6_K:
+            return dequantize_row_q6_K_cuda;
+        case GGML_TYPE_IQ2_XXS:
+            return dequantize_row_iq2_xxs_cuda;
+        case GGML_TYPE_IQ2_XS:
+            return dequantize_row_iq2_xs_cuda;
+        case GGML_TYPE_IQ2_S:
+            return dequantize_row_iq2_s_cuda;
+        case GGML_TYPE_IQ3_XXS:
+            return dequantize_row_iq3_xxs_cuda;
+        case GGML_TYPE_IQ1_S:
+            return dequantize_row_iq1_s_cuda;
+        case GGML_TYPE_IQ1_M:
+            return dequantize_row_iq1_m_cuda;
+        case GGML_TYPE_IQ4_NL:
+            return dequantize_row_iq4_nl_cuda;
+        case GGML_TYPE_IQ4_XS:
+            return dequantize_row_iq4_xs_cuda;
+        case GGML_TYPE_IQ3_S:
+            return dequantize_row_iq3_s_cuda;
+        case GGML_TYPE_F32:
+            return convert_unary_cuda<float>;
+        default:
+            return nullptr;
+    }
+}
+
+to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
+    switch (type) {
+        case GGML_TYPE_Q4_0:
+            return dequantize_row_q4_0_cuda;
+        case GGML_TYPE_Q4_1:
+            return dequantize_row_q4_1_cuda;
+        case GGML_TYPE_Q5_0:
+            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
+        case GGML_TYPE_Q5_1:
+            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
+        case GGML_TYPE_Q8_0:
+            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+        case GGML_TYPE_Q2_K:
+            return dequantize_row_q2_K_cuda;
+        case GGML_TYPE_Q3_K:
+            return dequantize_row_q3_K_cuda;
+        case GGML_TYPE_Q4_K:
+            return dequantize_row_q4_K_cuda;
+        case GGML_TYPE_Q5_K:
+            return dequantize_row_q5_K_cuda;
+        case GGML_TYPE_Q6_K:
+            return dequantize_row_q6_K_cuda;
+        case GGML_TYPE_IQ2_XXS:
+            return dequantize_row_iq2_xxs_cuda;
+        case GGML_TYPE_IQ2_XS:
+            return dequantize_row_iq2_xs_cuda;
+        case GGML_TYPE_IQ2_S:
+            return dequantize_row_iq2_s_cuda;
+        case GGML_TYPE_IQ3_XXS:
+            return dequantize_row_iq3_xxs_cuda;
+        case GGML_TYPE_IQ1_S:
+            return dequantize_row_iq1_s_cuda;
+        case GGML_TYPE_IQ1_M:
+            return dequantize_row_iq1_m_cuda;
+        case GGML_TYPE_IQ4_NL:
+            return dequantize_row_iq4_nl_cuda;
+        case GGML_TYPE_IQ4_XS:
+            return dequantize_row_iq4_xs_cuda;
+        case GGML_TYPE_IQ3_S:
+            return dequantize_row_iq3_s_cuda;
+        case GGML_TYPE_F16:
+            return convert_unary_cuda<half>;
+        default:
+            return nullptr;
+    }
+}
diff --git a/ggml-cuda/convert.cuh b/ggml-cuda/convert.cuh
new file mode 100644 (file)
index 0000000..db34c0b
--- /dev/null
@@ -0,0 +1,13 @@
+#include "common.cuh"
+
+#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
+
+template<typename T>
+using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
+
+typedef to_t_cuda_t<float> to_fp32_cuda_t;
+typedef to_t_cuda_t<half> to_fp16_cuda_t;
+
+to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
+
+to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
diff --git a/ggml-cuda/cpy.cu b/ggml-cuda/cpy.cu
new file mode 100644 (file)
index 0000000..16d9c8f
--- /dev/null
@@ -0,0 +1,461 @@
+#include "cpy.cuh"
+
+typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
+
+static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    float * dsti = (float *) cdsti;
+
+    *dsti = *xi;
+}
+
+static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    half * dsti = (half *) cdsti;
+
+    *dsti = __float2half(*xi);
+}
+
+static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+    const half * xi = (const half *) cxi;
+    half * dsti = (half *) cdsti;
+
+    *dsti = *xi;
+}
+
+static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+    const half * xi = (const half *) cxi;
+    float * dsti = (float *) cdsti;
+
+    *dsti = *xi;
+}
+
+template <cpy_kernel_t cpy_1>
+static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+                                   const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+                                   const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+                                   const int nb12, const int nb13) {
+    const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= ne) {
+        return;
+    }
+
+    // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+    // then combine those indices with the corresponding byte offsets to get the total offsets
+    const int64_t i03 = i/(ne00 * ne01 * ne02);
+    const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+    const int64_t i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
+    const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+    const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+    const int64_t i13 = i/(ne10 * ne11 * ne12);
+    const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+    const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+    const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+    const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+    cpy_1(cx + x_offset, cdst + dst_offset);
+}
+
+static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q8_0 * dsti = (block_q8_0 *) cdsti;
+
+    float amax = 0.0f; // absolute max
+
+    for (int j = 0; j < QK8_0; j++) {
+        const float v = xi[j];
+        amax = fmaxf(amax, fabsf(v));
+    }
+
+    const float d = amax / ((1 << 7) - 1);
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->d = d;
+
+    for (int j = 0; j < QK8_0; ++j) {
+        const float x0 = xi[j]*id;
+
+        dsti->qs[j] = roundf(x0);
+    }
+}
+
+static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q4_0 * dsti = (block_q4_0 *) cdsti;
+
+    float amax = 0.0f;
+    float vmax = 0.0f;
+
+    for (int j = 0; j < QK4_0; ++j) {
+        const float v = xi[j];
+        if (amax < fabsf(v)) {
+            amax = fabsf(v);
+            vmax = v;
+        }
+    }
+
+    const float d  = vmax / -8;
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->d = d;
+
+    for (int j = 0; j < QK4_0/2; ++j) {
+        const float x0 = xi[0       + j]*id;
+        const float x1 = xi[QK4_0/2 + j]*id;
+
+        const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
+        const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
+
+        dsti->qs[j]  = xi0;
+        dsti->qs[j] |= xi1 << 4;
+    }
+}
+
+static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q4_1 * dsti = (block_q4_1 *) cdsti;
+
+    float vmin = FLT_MAX;
+    float vmax = -FLT_MAX;
+
+    for (int j = 0; j < QK4_1; ++j) {
+        const float v = xi[j];
+
+        if (v < vmin) vmin = v;
+        if (v > vmax) vmax = v;
+    }
+
+    const float d  = (vmax - vmin) / ((1 << 4) - 1);
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->dm.x = d;
+    dsti->dm.y = vmin;
+
+    for (int j = 0; j < QK4_1/2; ++j) {
+        const float x0 = (xi[0       + j] - vmin)*id;
+        const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
+
+        const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
+        const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
+
+        dsti->qs[j]  = xi0;
+        dsti->qs[j] |= xi1 << 4;
+    }
+}
+
+static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q5_0 * dsti = (block_q5_0 *) cdsti;
+
+    float amax = 0.0f;
+    float vmax = 0.0f;
+
+    for (int j = 0; j < QK5_0; ++j) {
+        const float v = xi[j];
+        if (amax < fabsf(v)) {
+            amax = fabsf(v);
+            vmax = v;
+        }
+    }
+
+    const float d  = vmax / -16;
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->d = d;
+
+    uint32_t qh = 0;
+    for (int j = 0; j < QK5_0/2; ++j) {
+        const float x0 = xi[0       + j]*id;
+        const float x1 = xi[QK5_0/2 + j]*id;
+
+        const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
+        const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
+
+        dsti->qs[j]  = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+        qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+        qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
+    }
+    memcpy(dsti->qh, &qh, sizeof(qh));
+}
+
+static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q5_1 * dsti = (block_q5_1 *) cdsti;
+
+    float min = xi[0];
+    float max = xi[0];
+
+    for (int j = 1; j < QK5_1; ++j) {
+        const float v = xi[j];
+        min = v < min ? v : min;
+        max = v > max ? v : max;
+    }
+
+    const float d  = (max - min) / 31;
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->dm.x = d;
+    dsti->dm.y = min;
+
+    uint32_t qh = 0;
+    for (int j = 0; j < QK5_1/2; ++j) {
+        const float x0 = (xi[0       + j] - min)*id;
+        const float x1 = (xi[QK5_1/2 + j] - min)*id;
+
+        const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
+        const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
+
+        dsti->qs[j]  = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+        qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+        qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
+    }
+    memcpy(dsti->qh, &qh, sizeof(qh));
+}
+
+
+static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
+    if (x <= val[0]) return 0;
+    if (x >= val[n-1]) return n-1;
+    int ml = 0, mu = n-1;
+    while (mu-ml > 1) {
+        int mav = (ml+mu)/2;
+        if (x < val[mav]) mu = mav; else ml = mav;
+    }
+    return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
+}
+
+static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
+
+    float amax = 0.0f;
+    float vmax = 0.0f;
+
+    for (int j = 0; j < QK4_NL; ++j) {
+        const float v = xi[j];
+        if (amax < fabsf(v)) {
+            amax = fabsf(v);
+            vmax = v;
+        }
+    }
+
+    float d = vmax / kvalues_iq4nl[0];
+    const float id = d ? 1.0f/d : 0.0f;
+
+    float sumqx = 0, sumq2 = 0;
+    for (int j = 0; j < QK4_NL/2; ++j) {
+        const float x0 = xi[0        + j]*id;
+        const float x1 = xi[QK4_NL/2 + j]*id;
+        const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
+        const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
+        dsti->qs[j] = xi0 | (xi1 << 4);
+        const float v0 = kvalues_iq4nl[xi0];
+        const float v1 = kvalues_iq4nl[xi1];
+        const float w0 = xi[0        + j]*xi[0        + j];
+        const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
+        sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
+        sumq2 += w0*v0*v0 + w1*v1*v1;
+    }
+
+    dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
+}
+
+template <cpy_kernel_t cpy_blck, int qk>
+static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
+                                 const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+                                 const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+                                 const int nb12, const int nb13) {
+    const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
+
+    if (i >= ne) {
+        return;
+    }
+
+    const int i03 = i/(ne00 * ne01 * ne02);
+    const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+    const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
+    const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+    const int i13 = i/(ne10 * ne11 * ne12);
+    const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+    const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+    const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+    const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+    cpy_blck(cx + x_offset, cdst + dst_offset);
+}
+
+static void ggml_cpy_f16_f32_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+    cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_f32_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_f16_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q8_0_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK8_0 == 0);
+    const int num_blocks = ne / QK8_0;
+    cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q4_0_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK4_0 == 0);
+    const int num_blocks = ne / QK4_0;
+    cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q4_1_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK4_1 == 0);
+    const int num_blocks = ne / QK4_1;
+    cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q5_0_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK5_0 == 0);
+    const int num_blocks = ne / QK5_0;
+    cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q5_1_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK5_1 == 0);
+    const int num_blocks = ne / QK5_1;
+    cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_iq4_nl_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    GGML_ASSERT(ne % QK4_NL == 0);
+    const int num_blocks = ne / QK4_NL;
+    cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f16_f16_cuda(
+    const char * cx, char * cdst, const int ne,
+    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+    cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
+    const int64_t ne = ggml_nelements(src0);
+    GGML_ASSERT(ne == ggml_nelements(src1));
+
+    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
+    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+
+    //GGML_ASSERT(src0->ne[3] == 1);
+
+    const int64_t nb00 = src0->nb[0];
+    const int64_t nb01 = src0->nb[1];
+    const int64_t nb02 = src0->nb[2];
+    const int64_t nb03 = src0->nb[3];
+
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+
+    //GGML_ASSERT(src1->ne[3] == 1);
+
+    const int64_t nb10 = src1->nb[0];
+    const int64_t nb11 = src1->nb[1];
+    const int64_t nb12 = src1->nb[2];
+    const int64_t nb13 = src1->nb[3];
+
+    cudaStream_t main_stream = ctx.stream();
+
+    char * src0_ddc = (char *) src0->data;
+    char * src1_ddc = (char *) src1->data;
+
+    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
+        ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
+        ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
+        ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
+        ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
+        ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
+        ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
+        ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
+        ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+        ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
+        ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else {
+        fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
+                ggml_type_name(src0->type), ggml_type_name(src1->type));
+        GGML_ASSERT(false);
+    }
+}
+
+void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    ggml_cuda_cpy(ctx, src0, dst);
+}
diff --git a/ggml-cuda/cpy.cuh b/ggml-cuda/cpy.cuh
new file mode 100644 (file)
index 0000000..f0b2c45
--- /dev/null
@@ -0,0 +1,7 @@
+#include "common.cuh"
+
+#define CUDA_CPY_BLOCK_SIZE 32
+
+void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
+
+void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/dequantize.cuh b/ggml-cuda/dequantize.cuh
new file mode 100644 (file)
index 0000000..b544006
--- /dev/null
@@ -0,0 +1,103 @@
+#include "common.cuh"
+
+static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const block_q4_0 * x = (const block_q4_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    const int vui = x[ib].qs[iqs];
+
+    v.x = vui & 0xF;
+    v.y = vui >> 4;
+
+#ifdef GGML_CUDA_F16
+    v = __hsub2(v, {8.0f, 8.0f});
+    v = __hmul2(v, {d, d});
+#else
+    v.x = (v.x - 8.0f) * d;
+    v.y = (v.y - 8.0f) * d;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const block_q4_1 * x = (const block_q4_1 *) vx;
+
+    const dfloat d = __low2half(x[ib].dm);
+    const dfloat m = __high2half(x[ib].dm);
+
+    const int vui = x[ib].qs[iqs];
+
+    v.x = vui & 0xF;
+    v.y = vui >> 4;
+
+#ifdef GGML_CUDA_F16
+    v = __hmul2(v, {d, d});
+    v = __hadd2(v, {m, m});
+#else
+    v.x = (v.x * d) + m;
+    v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const block_q5_0 * x = (const block_q5_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    uint32_t qh;
+    memcpy(&qh, x[ib].qh, sizeof(qh));
+
+    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
+    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+
+    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
+
+#ifdef GGML_CUDA_F16
+    v = __hsub2(v, {16.0f, 16.0f});
+    v = __hmul2(v, {d, d});
+#else
+    v.x = (v.x - 16.0f) * d;
+    v.y = (v.y - 16.0f) * d;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const block_q5_1 * x = (const block_q5_1 *) vx;
+
+    const dfloat d = __low2half(x[ib].dm);
+    const dfloat m = __high2half(x[ib].dm);
+
+    uint32_t qh;
+    memcpy(&qh, x[ib].qh, sizeof(qh));
+
+    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
+    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+
+    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
+
+#ifdef GGML_CUDA_F16
+    v = __hmul2(v, {d, d});
+    v = __hadd2(v, {m, m});
+#else
+    v.x = (v.x * d) + m;
+    v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const block_q8_0 * x = (const block_q8_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    v.x = x[ib].qs[iqs + 0];
+    v.y = x[ib].qs[iqs + 1];
+
+#ifdef GGML_CUDA_F16
+    v = __hmul2(v, {d, d});
+#else
+    v.x *= d;
+    v.y *= d;
+#endif // GGML_CUDA_F16
+}
diff --git a/ggml-cuda/diagmask.cu b/ggml-cuda/diagmask.cu
new file mode 100644 (file)
index 0000000..4b713ba
--- /dev/null
@@ -0,0 +1,40 @@
+#include "diagmask.cuh"
+
+static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
+    const int col = blockDim.y*blockIdx.y + threadIdx.y;
+    const int row = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int i = row*ncols + col;
+    //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+    //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
+}
+
+static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
+    const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
+    const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
+    const dim3 block_nums(nrows_x, block_num_x, 1);
+    diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
+}
+
+void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int nrows0 = ggml_nrows(src0);
+
+    const int n_past = ((int32_t *) dst->op_params)[0];
+
+    diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
+}
diff --git a/ggml-cuda/diagmask.cuh b/ggml-cuda/diagmask.cuh
new file mode 100644 (file)
index 0000000..6cdbef1
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
+
+void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/dmmv.cu b/ggml-cuda/dmmv.cu
new file mode 100644 (file)
index 0000000..ea2950f
--- /dev/null
@@ -0,0 +1,817 @@
+#include "dmmv.cuh"
+#include "dequantize.cuh"
+#include "convert.cuh"
+
+#ifndef GGML_CUDA_MMV_Y
+#define GGML_CUDA_MMV_Y 1
+#endif
+
+#ifndef K_QUANTS_PER_ITERATION
+#define K_QUANTS_PER_ITERATION 2
+#else
+static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+#endif
+
+static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q2_K * x = (const block_q2_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
+    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
+
+    const int step = 16/K_QUANTS_PER_ITERATION;
+
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0...15 or 0...7
+
+    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
+    const int q_offset = 32*im + l0;
+    const int s_offset = 8*im;
+    const int y_offset = 128*im + l0;
+
+    uint32_t aux[4];
+    const uint8_t * d = (const uint8_t *)aux;
+    const uint8_t * m = (const uint8_t *)(aux + 2);
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + y_offset;
+        const uint8_t * q = x[i].qs + q_offset;
+
+        const float dall = __low2half(x[i].dm);
+        const float dmin = __high2half(x[i].dm);
+
+        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
+        aux[0] = a[0] & 0x0f0f0f0f;
+        aux[1] = a[1] & 0x0f0f0f0f;
+        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
+        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+
+        float sum1 = 0, sum2 = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
+            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+
+        }
+        tmp += dall * sum1 - dmin * sum2;
+
+    }
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
+    const int offset = tid * K_QUANTS_PER_ITERATION;
+
+    uint32_t uaux[2];
+    const uint8_t * d = (const uint8_t *)uaux;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + offset;
+        const uint8_t * q = x[i].qs + offset;
+        const uint32_t * s = (const uint32_t *)x[i].scales;
+
+        uaux[0] = s[0] & 0x0f0f0f0f;
+        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
+
+        const float2 dall = __half22float2(x[i].dm);
+
+        float sum1 = 0, sum2 = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            const uint8_t ql = q[l];
+            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+                  + y[l+16] * d[1] * ((ql >> 2) & 3)
+                  + y[l+32] * d[2] * ((ql >> 4) & 3)
+                  + y[l+48] * d[3] * ((ql >> 6) & 3);
+            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
+        }
+        tmp += dall.x * sum1 - dall.y * sum2;
+    }
+#endif
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (threadIdx.x == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q3_K * x = (const block_q3_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+
+    const uint16_t kmask1 = 0x0303;
+    const uint16_t kmask2 = 0x0f0f;
+
+    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
+
+    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
+    const int step = 16/K_QUANTS_PER_ITERATION;
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0....15 or 0...7
+
+    const uint8_t m = 1 << (4*im);
+
+    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
+    const int q_offset =  32*im + l0;
+    const int y_offset = 128*im + l0;
+
+    uint16_t utmp[4];
+    const int8_t * s = (const int8_t *)utmp;
+
+    const uint16_t s_shift = 4*im;
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + y_offset;
+        const uint8_t * q = x[i].qs + q_offset;
+        const uint8_t * h = x[i].hmask + l0;
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
+        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
+        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
+        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
+
+        const float d = x[i].d;
+
+        float sum = 0;
+        for (int l = 0; l < n; ++l) {
+            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
+            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
+        }
+        tmp += d * sum;
+
+    }
+#else
+
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
+    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
+    const int in = offset/8;                                 // 0 or 1
+    const int im = offset%8;                                 // 0...7
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + offset;
+        const uint8_t * q = x[i].qs + offset;
+        const uint8_t * s = x[i].scales;
+
+        const float dall = (float)x[i].d;
+
+        float sum = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            const uint8_t hl = x[i].hmask[im+l] >> in;
+            const uint8_t ql = q[l];
+            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
+        }
+        tmp += sum;
+    }
+#endif
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (threadIdx.x == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    if (row > nrows) return;
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q4_K * x = (const block_q4_K *)vx + ib0;
+
+#if QK_K == 256
+    const uint16_t kmask1 = 0x3f3f;
+    const uint16_t kmask2 = 0x0f0f;
+    const uint16_t kmask3 = 0xc0c0;
+
+    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
+
+    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
+
+    const int il  = tid/step;                            // 0...3
+    const int ir  = tid - step*il;                       // 0...7 or 0...3
+    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
+
+    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const int in = il%2;
+
+    const int l0 = n*(2*ir + in);
+    const int q_offset = 32*im + l0;
+    const int y_offset = 64*im + l0;
+
+    uint16_t aux[4];
+    const uint8_t * sc = (const uint8_t *)aux;
+
+#if K_QUANTS_PER_ITERATION == 2
+    uint32_t q32[4];
+    const uint8_t * q4 = (const uint8_t *)q32;
+#else
+    uint16_t q16[4];
+    const uint8_t * q4 = (const uint8_t *)q16;
+#endif
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y1 = yy + i*QK_K + y_offset;
+        const float   * y2 = y1 + 128;
+
+        const float dall = __low2half(x[i].dm);
+        const float dmin = __high2half(x[i].dm);
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux[0] = a[im+0] & kmask1;
+        aux[1] = a[im+2] & kmask1;
+        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+#if K_QUANTS_PER_ITERATION == 2
+        const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
+        const uint32_t * q2 = q1 + 16;
+
+        q32[0] = q1[0] & 0x0f0f0f0f;
+        q32[1] = q1[0] & 0xf0f0f0f0;
+        q32[2] = q2[0] & 0x0f0f0f0f;
+        q32[3] = q2[0] & 0xf0f0f0f0;
+
+        float4 s = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        for (int l = 0; l < 4; ++l) {
+            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
+            s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
+            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+        }
+        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#else
+        const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
+        const uint16_t * q2 = q1 + 32;
+
+        q16[0] = q1[0] & 0x0f0f;
+        q16[1] = q1[0] & 0xf0f0;
+        q16[2] = q2[0] & 0x0f0f;
+        q16[3] = q2[0] & 0xf0f0;
+
+        float4 s = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        for (int l = 0; l < 2; ++l) {
+            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
+            s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
+            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+        }
+        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#endif
+
+    }
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+
+    const int step = tid * K_QUANTS_PER_ITERATION;
+
+    uint16_t aux16[2];
+    const uint8_t * s = (const uint8_t *)aux16;
+
+    float tmp = 0;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+        const uint8_t * q = x[i].qs + step;
+        const float   * y = yy + i*QK_K + step;
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux16[0] = a[0] & 0x0f0f;
+        aux16[1] = (a[0] >> 4) & 0x0f0f;
+        const float d = (float)x[i].dm[0];
+        const float m = (float)x[i].dm[1];
+        float sum = 0.f;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
+                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
+        }
+        tmp += sum;
+    }
+
+#endif
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (tid == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
+
+    const int row = blockIdx.x;
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q5_K * x = (const block_q5_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+    const uint16_t kmask1 = 0x3f3f;
+    const uint16_t kmask2 = 0x0f0f;
+    const uint16_t kmask3 = 0xc0c0;
+
+    const int tid = threadIdx.x/2;  // 0...15
+    const int ix  = threadIdx.x%2;
+
+    const int il  = tid/4;     // 0...3
+    const int ir  = tid - 4*il;// 0...3
+    const int n   = 2;
+
+    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const int in = il%2;
+
+    const int l0 = n*(2*ir + in);
+    const int q_offset = 32*im + l0;
+    const int y_offset = 64*im + l0;
+
+    const uint8_t hm1  = 1 << (2*im);
+    const uint8_t hm2  = hm1 << 4;
+
+    uint16_t aux[4];
+    const uint8_t * sc = (const uint8_t *)aux;
+
+    uint16_t q16[8];
+    const uint8_t * q4 = (const uint8_t *)q16;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2) {
+
+        const uint8_t * ql1 = x[i].qs + q_offset;
+        const uint8_t * qh  = x[i].qh + l0;
+        const float   * y1  = yy + i*QK_K + y_offset;
+        const float   * y2  = y1 + 128;
+
+        const float dall = __low2half(x[i].dm);
+        const float dmin = __high2half(x[i].dm);
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux[0] = a[im+0] & kmask1;
+        aux[1] = a[im+2] & kmask1;
+        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+        float4 sum = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        const uint16_t * q1 = (const uint16_t *)ql1;
+        const uint16_t * q2 = q1 + 32;
+        q16[0] = q1[0] & 0x0f0f;
+        q16[1] = q1[8] & 0x0f0f;
+        q16[2] = (q1[0] >> 4) & 0x0f0f;
+        q16[3] = (q1[8] >> 4) & 0x0f0f;
+        q16[4] = q2[0] & 0x0f0f;
+        q16[5] = q2[8] & 0x0f0f;
+        q16[6] = (q2[0] >> 4) & 0x0f0f;
+        q16[7] = (q2[8] >> 4) & 0x0f0f;
+        for (int l = 0; l < n; ++l) {
+            sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+                   + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
+            sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+                   + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
+            sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+                   + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
+            sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+                   + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
+            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
+        }
+        tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
+    }
+
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+    const int step = tid * K_QUANTS_PER_ITERATION;
+    const int im = step/8;
+    const int in = step%8;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+        const uint8_t * q = x[i].qs + step;
+        const int8_t  * s = x[i].scales;
+        const float   * y = yy + i*QK_K + step;
+        const float     d = x[i].d;
+        float sum = 0.f;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            const uint8_t h = x[i].qh[in+j] >> im;
+            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
+                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
+        }
+        tmp += sum;
+    }
+#endif
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (threadIdx.x == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q6_K * x = (const block_q6_K *)vx + ib0;
+
+#if QK_K == 256
+
+    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+
+    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
+
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0...15 or 0...7
+
+#if K_QUANTS_PER_ITERATION == 1
+    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
+    const int is = 0;
+#else
+    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
+    const int is = in / 4;
+#endif
+    const int ql_offset = 64*im + l0;
+    const int qh_offset = 32*im + l0;
+    const int s_offset  =  8*im + is;
+    const int y_offset = 128*im + l0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + y_offset;
+        const uint8_t * ql = x[i].ql + ql_offset;
+        const uint8_t * qh = x[i].qh + qh_offset;
+        const int8_t  * s  = x[i].scales + s_offset;
+
+        const float d = x[i].d;
+
+#if K_QUANTS_PER_ITERATION == 1
+        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
+        tmp += sum;
+#else
+        float sum = 0;
+        for (int l = 0; l < 4; ++l) {
+            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
+        }
+        tmp += sum;
+#endif
+
+    }
+
+#else
+
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
+
+    const int step = tid * K_QUANTS_PER_ITERATION;
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + step;
+        const uint8_t * ql = x[i].ql + step;
+        const uint8_t * qh = x[i].qh + step;
+        const int8_t  * s  = x[i].scales;
+
+        const float d = x[i+0].d;
+
+        float sum = 0;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
+                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
+        }
+        tmp += sum;
+
+    }
+
+#endif
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (tid == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const half * x = (const half *) vx;
+
+    // automatic half -> float type cast if dfloat == float
+    v.x = x[ib + iqs + 0];
+    v.y = x[ib + iqs + 1];
+}
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
+static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
+    // qk = quantized weights per x block
+    // qr = number of quantized weights per data value in x block
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+
+    if (row >= nrows) {
+        return;
+    }
+
+    const int tid = threadIdx.x;
+
+    const int iter_stride = 2*GGML_CUDA_DMMV_X;
+    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+// partial sum for each thread
+#ifdef GGML_CUDA_F16
+    half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
+#else
+    float tmp = 0.0f;
+#endif // GGML_CUDA_F16
+
+    for (int i = 0; i < ncols; i += iter_stride) {
+        const int col = i + vals_per_iter*tid;
+        const int ib = (row*ncols + col)/qk; // x block index
+        const int iqs = (col%qk)/qr; // x quant index
+        const int iybs = col - col%qk; // y block start index
+
+// processing >2 values per i iter is faster for fast GPUs
+#pragma unroll
+        for (int j = 0; j < vals_per_iter; j += 2) {
+            // process 2 vals per j iter
+
+            // dequantize
+            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
+            dfloat2 v;
+            dequantize_kernel(vx, ib, iqs + j/qr, v);
+
+            // matrix multiplication
+            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
+#ifdef GGML_CUDA_F16
+            tmp += __hmul2(v, {
+                y[iybs + iqs + j/qr + 0],
+                y[iybs + iqs + j/qr + y_offset]
+            });
+#else
+            tmp += v.x * y[iybs + iqs + j/qr + 0];
+            tmp += v.y * y[iybs + iqs + j/qr + y_offset];
+#endif // GGML_CUDA_F16
+        }
+    }
+
+    // sum up partial sums and write back result
+    tmp = warp_reduce_sum(tmp);
+
+    if (tid == 0) {
+#ifdef GGML_CUDA_F16
+        dst[row] = tmp.x + tmp.y;
+#else
+        dst[row] = tmp;
+#endif // GGML_CUDA_F16
+    }
+}
+
+static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(32, ny, 1);
+    dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(32, ny, 1);
+    dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(32, ny, 1);
+    dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const dim3 block_dims(32, 1, 1);
+    dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
+}
+
+static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(32, ny, 1);
+    dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+    const dim3 block_nums(block_num_y, 1, 1);
+    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+    dequantize_mul_mat_vec<1, 1, convert_f16>
+        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+void ggml_cuda_op_dequantize_mul_mat_vec(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream) {
+    GGML_UNUSED(ctx);
+    const int64_t ne00 = src0->ne[0];
+    const int64_t row_diff = row_high - row_low;
+
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
+#ifdef GGML_CUDA_F16
+    ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
+    half * src1_dfloat = nullptr; // dfloat == half
+
+    bool src1_convert_f16 =
+        src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
+        src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
+        src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
+
+    if (src1_convert_f16) {
+        src1_dfloat = src1_dfloat_a.alloc(ne00);
+        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+        GGML_ASSERT(to_fp16_cuda != nullptr);
+        to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
+    }
+#else
+    const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
+#endif // GGML_CUDA_F16
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_F16:
+            convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    GGML_UNUSED(src1);
+    GGML_UNUSED(dst);
+    GGML_UNUSED(src1_ddq_i);
+    GGML_UNUSED(src1_ncols);
+    GGML_UNUSED(src1_padded_row_size);
+}
diff --git a/ggml-cuda/dmmv.cuh b/ggml-cuda/dmmv.cuh
new file mode 100644 (file)
index 0000000..3802678
--- /dev/null
@@ -0,0 +1,7 @@
+#include "common.cuh"
+
+void ggml_cuda_op_dequantize_mul_mat_vec(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream);
diff --git a/ggml-cuda/getrows.cu b/ggml-cuda/getrows.cu
new file mode 100644 (file)
index 0000000..55af195
--- /dev/null
@@ -0,0 +1,178 @@
+#include "getrows.cuh"
+#include "dequantize.cuh"
+
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void k_get_rows(
+            const void * src0, const int32_t * src1, dst_t * dst,
+            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+
+    const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
+    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+
+    if (i00 >= ne00) {
+        return;
+    }
+
+    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+    const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+
+    const int ib = i00/qk; // block index
+    const int iqs = (i00%qk)/qr; // quant index
+    const int iybs = i00 - i00%qk; // dst block start index
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+    // dequantize
+    dfloat2 v;
+    dequantize_kernel(src0_row, ib, iqs, v);
+
+    dst_row[iybs + iqs + 0]        = v.x;
+    dst_row[iybs + iqs + y_offset] = v.y;
+}
+
+template<typename src0_t, typename dst_t>
+static __global__ void k_get_rows_float(
+            const src0_t * src0, const int32_t * src1, dst_t * dst,
+            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+
+    const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
+    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+
+    if (i00 >= ne00) {
+        return;
+    }
+
+    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+    const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+
+    dst_row[i00] = src0_row[i00];
+}
+
+template<int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+                            const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+    const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
+    const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+
+    // strides in elements
+    //const size_t s0 = nb0 / ggml_element_size(dst);
+    const size_t s1 = nb1 / ggml_element_size(dst);
+    const size_t s2 = nb2 / ggml_element_size(dst);
+    const size_t s3 = nb3 / ggml_element_size(dst);
+
+    const size_t s10 = nb10 / ggml_element_size(src1);
+    const size_t s11 = nb11 / ggml_element_size(src1);
+    const size_t s12 = nb12 / ggml_element_size(src1);
+    //const size_t s13 = nb13 / ggml_element_size(src1);
+
+    GGML_ASSERT(ne00 % 2 == 0);
+
+    k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
+            src0_dd, src1_dd, dst_dd,
+            ne00, /*ne01, ne02, ne03,*/
+            /*ne10, ne11,*/ ne12, /*ne13,*/
+            /* s0,*/ s1, s2, s3,
+            /* nb00,*/ nb01, nb02, nb03,
+            s10, s11, s12/*, s13*/);
+
+    GGML_UNUSED(dst);
+}
+
+template<typename src0_t>
+static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+                                const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+    const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
+    const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+
+    // strides in elements
+    //const size_t s0 = nb0 / ggml_element_size(dst);
+    const size_t s1 = nb1 / ggml_element_size(dst);
+    const size_t s2 = nb2 / ggml_element_size(dst);
+    const size_t s3 = nb3 / ggml_element_size(dst);
+
+    const size_t s10 = nb10 / ggml_element_size(src1);
+    const size_t s11 = nb11 / ggml_element_size(src1);
+    const size_t s12 = nb12 / ggml_element_size(src1);
+    //const size_t s13 = nb13 / ggml_element_size(src1);
+
+    k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
+            src0_dd, src1_dd, dst_dd,
+            ne00, /*ne01, ne02, ne03,*/
+            /*ne10, ne11,*/ ne12, /*ne13,*/
+            /* s0,*/ s1, s2, s3,
+            /* nb00,*/ nb01, nb02, nb03,
+            s10, s11, s12/*, s13*/);
+
+    GGML_UNUSED(dst);
+}
+
+void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src0_d = (const float *)src0->data;
+    const float * src1_d = (const float *)src1->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+
+    GGML_ASSERT(src1->type == GGML_TYPE_I32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+    GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
+
+    const int32_t * src1_i32 = (const int32_t *) src1_d;
+
+    switch (src0->type) {
+        case GGML_TYPE_F16:
+            get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_F32:
+            get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q4_0:
+            get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        default:
+            // TODO: k-quants
+            fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
+            GGML_ASSERT(false);
+            break;
+    }
+}
diff --git a/ggml-cuda/getrows.cuh b/ggml-cuda/getrows.cuh
new file mode 100644 (file)
index 0000000..bbf1302
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_GET_ROWS_BLOCK_SIZE 256
+
+void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/im2col.cu b/ggml-cuda/im2col.cu
new file mode 100644 (file)
index 0000000..3d0d8d4
--- /dev/null
@@ -0,0 +1,104 @@
+#include "im2col.cuh"
+
+template <typename T>
+static  __global__ void im2col_kernel(
+        const float * x, T * dst, int64_t batch_offset,
+        int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
+        int s0, int s1, int p0, int p1, int d0, int d1) {
+    const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
+    if (i >= pelements) {
+        return;
+    }
+
+    const int64_t  ksize = OW * (KH > 1 ? KW : 1);
+    const int64_t  kx = i / ksize;
+    const int64_t  kd = kx * ksize;
+    const int64_t  ky = (i - kd) / OW;
+    const int64_t  ix = i % OW;
+
+    const int64_t  oh = blockIdx.y;
+    const int64_t  batch = blockIdx.z / IC;
+    const int64_t  ic = blockIdx.z % IC;
+
+    const int64_t iiw = ix * s0 + kx * d0 - p0;
+    const int64_t iih = oh * s1 + ky * d1 - p1;
+
+    const int64_t offset_dst =
+        ((batch * OH + oh) * OW + ix) * CHW +
+        (ic * (KW * KH) + ky * KW + kx);
+
+    if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+        dst[offset_dst] = 0.0f;
+    } else {
+        const int64_t offset_src = ic * offset_delta + batch * batch_offset;
+        dst[offset_dst] = x[offset_src + iih * IW + iiw];
+    }
+}
+
+template <typename T>
+static void im2col_cuda(const float * x, T* dst,
+    int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+    int64_t batch, int64_t batch_offset, int64_t offset_delta,
+    int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+    const int parallel_elements = OW * KW * KH;
+    const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
+    dim3 block_nums(num_blocks, OH, batch * IC);
+    im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+}
+
+static void im2col_cuda_f16(const float * x, half * dst,
+    int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+    int64_t batch, int64_t batch_offset, int64_t offset_delta,
+    int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+
+    im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
+}
+
+static void im2col_cuda_f32(const float * x, float * dst,
+    int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+    int64_t batch, int64_t batch_offset, int64_t offset_delta,
+    int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+
+    im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
+}
+
+void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src1_d = (const float *)src1->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
+
+    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+    const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+    const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+    const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+    const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+    const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+
+    const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+
+    const int64_t IC = src1->ne[is_2D ? 2 : 1];
+    const int64_t IH = is_2D ? src1->ne[1] : 1;
+    const int64_t IW =         src1->ne[0];
+
+    const int64_t KH = is_2D ? src0->ne[1] : 1;
+    const int64_t KW =         src0->ne[0];
+
+    const int64_t OH = is_2D ? dst->ne[2] : 1;
+    const int64_t OW =         dst->ne[1];
+
+    const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+    const int64_t batch = src1->ne[3];
+    const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
+
+    if(dst->type == GGML_TYPE_F16) {
+        im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
+    } else {
+        im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
+    }
+}
diff --git a/ggml-cuda/im2col.cuh b/ggml-cuda/im2col.cuh
new file mode 100644 (file)
index 0000000..1ce8fae
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_IM2COL_BLOCK_SIZE 256
+
+void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/mmq.cu b/ggml-cuda/mmq.cu
new file mode 100644 (file)
index 0000000..60d6616
--- /dev/null
@@ -0,0 +1,2265 @@
+#include "mmq.cuh"
+#include "vecdotq.cuh"
+
+typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
+typedef void (*load_tiles_cuda_t)(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_cuda_t)(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
+typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh);
+    GGML_UNUSED(x_sc);
+
+    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
+    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
+
+    *x_ql = tile_x_qs;
+    *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_0;
+    const int kqsx = k % QI4_0;
+
+    const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+        // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+        int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const float * x_dmf = (const float *) x_dm;
+
+    int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+    }
+
+    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    __shared__ int   tile_x_qs[mmq_y * (WARP_SIZE) +     + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
+
+    *x_ql = tile_x_qs;
+    *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_1;
+    const int kqsx = k % QI4_1;
+
+    const block_q4_1 * bx0 = (const block_q4_1 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+        int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+    int u[2*VDR_Q4_1_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+    }
+
+    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    __shared__ int  tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
+    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
+
+    *x_ql = tile_x_ql;
+    *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_0;
+    const int kqsx = k % QI5_0;
+
+    const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        const int ql = get_int_from_uint8(bxi->qs, kqsx);
+        const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+        int qs0 = (ql >>  0)   & 0x0F0F0F0F;
+        qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
+        qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
+        qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
+        qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
+        qs0     = __vsubss4(qs0, 0x10101010); // subtract 16
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+        int qs1 = (ql >>  4)   & 0x0F0F0F0F;
+        qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
+        qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
+        qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
+        qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
+        qs1     = __vsubss4(qs1, 0x10101010); // subtract 16
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+        int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    int u[2*VDR_Q5_0_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+    }
+
+    return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset < nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_1;
+    const int kqsx = k % QI5_1;
+
+    const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+        const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+        int qs0 = (ql >>  0) & 0x0F0F0F0F;
+        qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
+        qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
+        qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
+        qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+        int qs1 = (ql >>  4) & 0x0F0F0F0F;
+        qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
+        qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
+        qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
+        qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+        int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+    int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+    }
+
+    return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
+    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
+
+    *x_ql = tile_x_qs;
+    *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI8_0;
+    const int kqsx = k % QI8_0;
+    float * x_dmf = (float *) x_dm;
+
+    const block_q8_0 * bx0 = (const block_q8_0 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+        int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+         y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh);
+
+    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
+    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI2_K;
+    const int kqsx = k % QI2_K;
+
+    const block_q2_K * bx0 = (const block_q2_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+        int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+
+        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh);
+
+    const int kbx = k / QI2_K;
+    const int ky  = (k % QI2_K) * QR2_K;
+    const float * y_df = (const float *) y_ds;
+
+    int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+
+    const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+    const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+
+#pragma unroll
+    for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+        v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+    }
+
+    const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+
+    const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+    return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
+    __shared__ int   tile_x_qh[mmq_y * (WARP_SIZE/2)     + mmq_y/2];
+    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_qh = tile_x_qh;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI3_K;
+    const int kqsx = k % QI3_K;
+
+    const block_q3_K * bx0 = (const block_q3_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+    const int kbxd = k % blocks_per_tile_x_row;
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+        int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+        int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+
+        // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+        x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+
+        const int ksc = k % (QI3_K/4);
+
+        const int ksc_low = ksc % (QI3_K/8);
+        const int shift_low = 4 * (ksc / (QI3_K/8));
+        const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+
+        const int ksc_high = QI3_K/8;
+        const int shift_high = 2 * ksc;
+        const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+
+        const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
+
+        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+    const int kbx  = k / QI3_K;
+    const int ky  = (k % QI3_K) * QR3_K;
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+
+    int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+        const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+        const int shift = 2 * ((ky % 32) / 8);
+        const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+        const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+        const int vlh = (vh << 2) & 0x04040404;
+
+        v[l] = __vsubss4(vll, vlh);
+    }
+
+    const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+    return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh);
+
+    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
+    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI4_K; // == k if QK_K == 256
+
+    const block_q4_K * bx0 = (const block_q4_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+        int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+#else
+        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
+#endif
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+
+        const int * scales = (const int *) bxi->scales;
+
+        const int ksc = k % (WARP_SIZE/8);
+
+        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh);
+
+    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+
+    const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+    return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
+                                      x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh);
+
+    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
+    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI5_K; // == k if QK_K == 256
+
+    const block_q5_K * bx0 = (const block_q5_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+        const int ky = QR5_K*kqsx;
+
+        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+        const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+        const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+        const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
+
+        const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+        const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+
+        x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+        x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+        int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+        x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+#endif
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
+
+        const int * scales = (const int *) bxi->scales;
+
+        const int ksc = k % (WARP_SIZE/8);
+
+        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh);
+
+    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+
+    const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
+    const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
+    return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
+                                      x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+    GGML_UNUSED(x_qh);
+
+    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
+    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
+    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
+    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+    GGML_UNUSED(x_qh);
+
+    GGML_CUDA_ASSUME(i_offset >= 0);
+    GGML_CUDA_ASSUME(i_offset <  nwarps);
+    GGML_CUDA_ASSUME(k >= 0);
+    GGML_CUDA_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI6_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI6_K; // == k if QK_K == 256
+
+    const block_q6_K * bx0 = (const block_q6_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+        const int ky = QR6_K*kqsx;
+
+        const int ql = get_int_from_uint8(bxi->ql, kqsx);
+        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+        const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+        const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+        const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
+
+        const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+        const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+
+        x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
+        x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+        int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+    }
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
+    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+    GGML_UNUSED(x_qh);
+
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+
+    const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
+    const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
+    return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+}
+
+#define  MMQ_X_Q4_0_RDNA2  64
+#define  MMQ_Y_Q4_0_RDNA2  128
+#define NWARPS_Q4_0_RDNA2  8
+#define  MMQ_X_Q4_0_RDNA1  64
+#define  MMQ_Y_Q4_0_RDNA1  64
+#define NWARPS_Q4_0_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q4_0_AMPERE 4
+#define  MMQ_Y_Q4_0_AMPERE 32
+#define NWARPS_Q4_0_AMPERE 4
+#else
+#define  MMQ_X_Q4_0_AMPERE 64
+#define  MMQ_Y_Q4_0_AMPERE 128
+#define NWARPS_Q4_0_AMPERE 4
+#endif
+#define  MMQ_X_Q4_0_PASCAL 64
+#define  MMQ_Y_Q4_0_PASCAL 64
+#define NWARPS_Q4_0_PASCAL 8
+
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
+              allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
+static __device__ __forceinline__ void mul_mat_q(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+    const block_q_t  * x = (const block_q_t  *) vx;
+    const block_q8_1 * y = (const block_q8_1 *) vy;
+
+    const int blocks_per_row_x = ncols_x / qk;
+    const int blocks_per_col_y = nrows_y / QK8_1;
+    const int blocks_per_warp = WARP_SIZE / qi;
+
+    const int & ncols_dst = ncols_y;
+
+    const int row_dst_0 = blockIdx.x*mmq_y;
+    const int & row_x_0 = row_dst_0;
+
+    const int col_dst_0 = blockIdx.y*mmq_x;
+    const int & col_y_0 = col_dst_0;
+
+    int   * tile_x_ql = nullptr;
+    half2 * tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+    allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
+
+    __shared__ int    tile_y_qs[mmq_x * WARP_SIZE];
+    __shared__ half2  tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
+
+    float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+
+    for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+        load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+                   threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
+
+#pragma unroll
+        for (int ir = 0; ir < qr; ++ir) {
+            const int kqs = ir*WARP_SIZE + threadIdx.x;
+            const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+            for (int i = 0; i < mmq_x; i += nwarps) {
+                const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
+
+                const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+                const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
+                tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
+            }
+
+#pragma unroll
+            for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+                const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
+                const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
+                const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
+
+                // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+                const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
+                half2       * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
+                if (need_sum) {
+                    *dsi_dst = *dsi_src;
+                } else {
+                    float * dfi_dst = (float *) dsi_dst;
+                    *dfi_dst = __low2float(*dsi_src);
+                }
+            }
+
+            __syncthreads();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+            for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+                for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+                    for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+                        sum[i/WARP_SIZE][j/nwarps] += vec_dot(
+                            tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
+                            threadIdx.x + i, threadIdx.y + j, k);
+                    }
+                }
+            }
+
+            __syncthreads();
+        }
+    }
+
+#pragma unroll
+    for (int j = 0; j < mmq_x; j += nwarps) {
+        const int col_dst = col_dst_0 + j + threadIdx.y;
+
+        if (col_dst >= ncols_dst) {
+            return;
+        }
+
+#pragma unroll
+        for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+            const int row_dst = row_dst_0 + threadIdx.x + i;
+
+            if (row_dst >= nrows_dst) {
+                continue;
+            }
+
+            dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
+        }
+    }
+}
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    mul_mat_q4_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q4_0_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q4_0_RDNA2;
+    const int nwarps = NWARPS_Q4_0_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q4_0_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q4_0_RDNA1;
+    const int nwarps = NWARPS_Q4_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
+    const int nwarps = NWARPS_Q4_0_AMPERE;
+
+    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q4_0_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q4_0_PASCAL;
+    const int nwarps = NWARPS_Q4_0_PASCAL;
+
+    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q4_1_RDNA2  64
+#define  MMQ_Y_Q4_1_RDNA2  128
+#define NWARPS_Q4_1_RDNA2  8
+#define  MMQ_X_Q4_1_RDNA1  64
+#define  MMQ_Y_Q4_1_RDNA1  64
+#define NWARPS_Q4_1_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q4_1_AMPERE 4
+#define  MMQ_Y_Q4_1_AMPERE 32
+#define NWARPS_Q4_1_AMPERE 4
+#else
+#define  MMQ_X_Q4_1_AMPERE 64
+#define  MMQ_Y_Q4_1_AMPERE 128
+#define NWARPS_Q4_1_AMPERE 4
+#endif
+#define  MMQ_X_Q4_1_PASCAL 64
+#define  MMQ_Y_Q4_1_PASCAL 64
+#define NWARPS_Q4_1_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+    __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+    mul_mat_q4_1(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q4_1_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q4_1_RDNA2;
+    const int nwarps = NWARPS_Q4_1_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q4_1_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q4_1_RDNA1;
+    const int nwarps = NWARPS_Q4_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
+    const int nwarps = NWARPS_Q4_1_AMPERE;
+
+    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q4_1_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q4_1_PASCAL;
+    const int nwarps = NWARPS_Q4_1_PASCAL;
+
+    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q5_0_RDNA2  64
+#define  MMQ_Y_Q5_0_RDNA2  128
+#define NWARPS_Q5_0_RDNA2  8
+#define  MMQ_X_Q5_0_RDNA1  64
+#define  MMQ_Y_Q5_0_RDNA1  64
+#define NWARPS_Q5_0_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q5_0_AMPERE 4
+#define  MMQ_Y_Q5_0_AMPERE 32
+#define NWARPS_Q5_0_AMPERE 4
+#else
+#define  MMQ_X_Q5_0_AMPERE 128
+#define  MMQ_Y_Q5_0_AMPERE 64
+#define NWARPS_Q5_0_AMPERE 4
+#endif
+#define  MMQ_X_Q5_0_PASCAL 64
+#define  MMQ_Y_Q5_0_PASCAL 64
+#define NWARPS_Q5_0_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    mul_mat_q5_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q5_0_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q5_0_RDNA2;
+    const int nwarps = NWARPS_Q5_0_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q5_0_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q5_0_RDNA1;
+    const int nwarps = NWARPS_Q5_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
+    const int nwarps = NWARPS_Q5_0_AMPERE;
+
+    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q5_0_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q5_0_PASCAL;
+    const int nwarps = NWARPS_Q5_0_PASCAL;
+
+    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q5_1_RDNA2  64
+#define  MMQ_Y_Q5_1_RDNA2  128
+#define NWARPS_Q5_1_RDNA2  8
+#define  MMQ_X_Q5_1_RDNA1  64
+#define  MMQ_Y_Q5_1_RDNA1  64
+#define NWARPS_Q5_1_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q5_1_AMPERE 4
+#define  MMQ_Y_Q5_1_AMPERE 32
+#define NWARPS_Q5_1_AMPERE 4
+#else
+#define  MMQ_X_Q5_1_AMPERE 128
+#define  MMQ_Y_Q5_1_AMPERE 64
+#define NWARPS_Q5_1_AMPERE 4
+#endif
+#define  MMQ_X_Q5_1_PASCAL 64
+#define  MMQ_Y_Q5_1_PASCAL 64
+#define NWARPS_Q5_1_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_1(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q5_1_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q5_1_RDNA2;
+    const int nwarps = NWARPS_Q5_1_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q5_1_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q5_1_RDNA1;
+    const int nwarps = NWARPS_Q5_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
+    const int nwarps = NWARPS_Q5_1_AMPERE;
+
+    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q5_1_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q5_1_PASCAL;
+    const int nwarps = NWARPS_Q5_1_PASCAL;
+
+    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q8_0_RDNA2  64
+#define  MMQ_Y_Q8_0_RDNA2  128
+#define NWARPS_Q8_0_RDNA2  8
+#define  MMQ_X_Q8_0_RDNA1  64
+#define  MMQ_Y_Q8_0_RDNA1  64
+#define NWARPS_Q8_0_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q8_0_AMPERE 4
+#define  MMQ_Y_Q8_0_AMPERE 32
+#define NWARPS_Q8_0_AMPERE 4
+#else
+#define  MMQ_X_Q8_0_AMPERE 128
+#define  MMQ_Y_Q8_0_AMPERE 64
+#define NWARPS_Q8_0_AMPERE 4
+#endif
+#define  MMQ_X_Q8_0_PASCAL 64
+#define  MMQ_Y_Q8_0_PASCAL 64
+#define NWARPS_Q8_0_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+    mul_mat_q8_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q8_0_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q8_0_RDNA2;
+    const int nwarps = NWARPS_Q8_0_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q8_0_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q8_0_RDNA1;
+    const int nwarps = NWARPS_Q8_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
+    const int nwarps = NWARPS_Q8_0_AMPERE;
+
+    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q8_0_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q8_0_PASCAL;
+    const int nwarps = NWARPS_Q8_0_PASCAL;
+
+    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q2_K_RDNA2  64
+#define  MMQ_Y_Q2_K_RDNA2  128
+#define NWARPS_Q2_K_RDNA2  8
+#define  MMQ_X_Q2_K_RDNA1  128
+#define  MMQ_Y_Q2_K_RDNA1  32
+#define NWARPS_Q2_K_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q2_K_AMPERE 4
+#define  MMQ_Y_Q2_K_AMPERE 32
+#define NWARPS_Q2_K_AMPERE 4
+#else
+#define  MMQ_X_Q2_K_AMPERE 64
+#define  MMQ_Y_Q2_K_AMPERE 128
+#define NWARPS_Q2_K_AMPERE 4
+#endif
+#define  MMQ_X_Q2_K_PASCAL 64
+#define  MMQ_Y_Q2_K_PASCAL 64
+#define NWARPS_Q2_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q2_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q2_K_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q2_K_RDNA2;
+    const int nwarps = NWARPS_Q2_K_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q2_K_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q2_K_RDNA1;
+    const int nwarps = NWARPS_Q2_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
+    const int nwarps = NWARPS_Q2_K_AMPERE;
+
+    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q2_K_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q2_K_PASCAL;
+    const int nwarps = NWARPS_Q2_K_PASCAL;
+
+    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q3_K_RDNA2  128
+#define  MMQ_Y_Q3_K_RDNA2  64
+#define NWARPS_Q3_K_RDNA2  8
+#define  MMQ_X_Q3_K_RDNA1  32
+#define  MMQ_Y_Q3_K_RDNA1  128
+#define NWARPS_Q3_K_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q3_K_AMPERE 4
+#define  MMQ_Y_Q3_K_AMPERE 32
+#define NWARPS_Q3_K_AMPERE 4
+#else
+#define  MMQ_X_Q3_K_AMPERE 128
+#define  MMQ_Y_Q3_K_AMPERE 128
+#define NWARPS_Q3_K_AMPERE 4
+#endif
+#define  MMQ_X_Q3_K_PASCAL 64
+#define  MMQ_Y_Q3_K_PASCAL 64
+#define NWARPS_Q3_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+    __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+    mul_mat_q3_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q3_K_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q3_K_RDNA2;
+    const int nwarps = NWARPS_Q3_K_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q3_K_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q3_K_RDNA1;
+    const int nwarps = NWARPS_Q3_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
+    const int nwarps = NWARPS_Q3_K_AMPERE;
+
+    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q3_K_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q3_K_PASCAL;
+    const int nwarps = NWARPS_Q3_K_PASCAL;
+
+    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q4_K_RDNA2  64
+#define  MMQ_Y_Q4_K_RDNA2  128
+#define NWARPS_Q4_K_RDNA2  8
+#define  MMQ_X_Q4_K_RDNA1  32
+#define  MMQ_Y_Q4_K_RDNA1  64
+#define NWARPS_Q4_K_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q4_K_AMPERE 4
+#define  MMQ_Y_Q4_K_AMPERE 32
+#define NWARPS_Q4_K_AMPERE 4
+#else
+#define  MMQ_X_Q4_K_AMPERE 64
+#define  MMQ_Y_Q4_K_AMPERE 128
+#define NWARPS_Q4_K_AMPERE 4
+#endif
+#define  MMQ_X_Q4_K_PASCAL 64
+#define  MMQ_Y_Q4_K_PASCAL 64
+#define NWARPS_Q4_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+    __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+    mul_mat_q4_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q4_K_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q4_K_RDNA2;
+    const int nwarps = NWARPS_Q4_K_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q4_K_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q4_K_RDNA1;
+    const int nwarps = NWARPS_Q4_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
+    const int nwarps = NWARPS_Q4_K_AMPERE;
+
+    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q4_K_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q4_K_PASCAL;
+    const int nwarps = NWARPS_Q4_K_PASCAL;
+
+    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q5_K_RDNA2  64
+#define  MMQ_Y_Q5_K_RDNA2  128
+#define NWARPS_Q5_K_RDNA2  8
+#define  MMQ_X_Q5_K_RDNA1  32
+#define  MMQ_Y_Q5_K_RDNA1  64
+#define NWARPS_Q5_K_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q5_K_AMPERE 4
+#define  MMQ_Y_Q5_K_AMPERE 32
+#define NWARPS_Q5_K_AMPERE 4
+#else
+#define  MMQ_X_Q5_K_AMPERE 64
+#define  MMQ_Y_Q5_K_AMPERE 128
+#define NWARPS_Q5_K_AMPERE 4
+#endif
+#define  MMQ_X_Q5_K_PASCAL 64
+#define  MMQ_Y_Q5_K_PASCAL 64
+#define NWARPS_Q5_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q5_K_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q5_K_RDNA2;
+    const int nwarps = NWARPS_Q5_K_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q5_K_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q5_K_RDNA1;
+    const int nwarps = NWARPS_Q5_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
+    const int nwarps = NWARPS_Q5_K_AMPERE;
+
+    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q5_K_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q5_K_PASCAL;
+    const int nwarps = NWARPS_Q5_K_PASCAL;
+
+    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define  MMQ_X_Q6_K_RDNA2  64
+#define  MMQ_Y_Q6_K_RDNA2  128
+#define NWARPS_Q6_K_RDNA2  8
+#define  MMQ_X_Q6_K_RDNA1  32
+#define  MMQ_Y_Q6_K_RDNA1  64
+#define NWARPS_Q6_K_RDNA1  8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define  MMQ_X_Q6_K_AMPERE 4
+#define  MMQ_Y_Q6_K_AMPERE 32
+#define NWARPS_Q6_K_AMPERE 4
+#else
+#define  MMQ_X_Q6_K_AMPERE 64
+#define  MMQ_Y_Q6_K_AMPERE 64
+#define NWARPS_Q6_K_AMPERE 4
+#endif
+#define  MMQ_X_Q6_K_PASCAL 64
+#define  MMQ_Y_Q6_K_PASCAL 64
+#define NWARPS_Q6_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+    __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+    mul_mat_q6_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+    const int mmq_x  =  MMQ_X_Q6_K_RDNA2;
+    const int mmq_y  =  MMQ_Y_Q6_K_RDNA2;
+    const int nwarps = NWARPS_Q6_K_RDNA2;
+#else
+    const int mmq_x  =  MMQ_X_Q6_K_RDNA1;
+    const int mmq_y  =  MMQ_Y_Q6_K_RDNA1;
+    const int nwarps = NWARPS_Q6_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+    const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
+    const int nwarps = NWARPS_Q6_K_AMPERE;
+
+    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+    const int mmq_x  =  MMQ_X_Q6_K_PASCAL;
+    const int mmq_y  =  MMQ_Y_Q6_K_PASCAL;
+    const int nwarps = NWARPS_Q6_K_PASCAL;
+
+    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+    GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+static void ggml_mul_mat_q4_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q4_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_0_RDNA2;
+        nwarps = NWARPS_Q4_0_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q4_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_0_RDNA1;
+        nwarps = NWARPS_Q4_0_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q4_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_0_AMPERE;
+        nwarps = NWARPS_Q4_0_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q4_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_0_PASCAL;
+        nwarps = NWARPS_Q4_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q4_1_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q4_1_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_1_RDNA2;
+        nwarps = NWARPS_Q4_1_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q4_1_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_1_RDNA1;
+        nwarps = NWARPS_Q4_1_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q4_1_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_1_AMPERE;
+        nwarps = NWARPS_Q4_1_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q4_1_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_1_PASCAL;
+        nwarps = NWARPS_Q4_1_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q5_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q5_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_0_RDNA2;
+        nwarps = NWARPS_Q5_0_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q5_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_0_RDNA1;
+        nwarps = NWARPS_Q5_0_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q5_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_0_AMPERE;
+        nwarps = NWARPS_Q5_0_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q5_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_0_PASCAL;
+        nwarps = NWARPS_Q5_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q5_1_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q5_1_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_1_RDNA2;
+        nwarps = NWARPS_Q5_1_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q5_1_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_1_RDNA1;
+        nwarps = NWARPS_Q5_1_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q5_1_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_1_AMPERE;
+        nwarps = NWARPS_Q5_1_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q5_1_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_1_PASCAL;
+        nwarps = NWARPS_Q5_1_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q8_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q8_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q8_0_RDNA2;
+        nwarps = NWARPS_Q8_0_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q8_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q8_0_RDNA1;
+        nwarps = NWARPS_Q8_0_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q8_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q8_0_AMPERE;
+        nwarps = NWARPS_Q8_0_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q8_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q8_0_PASCAL;
+        nwarps = NWARPS_Q8_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q2_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q2_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q2_K_RDNA2;
+        nwarps = NWARPS_Q2_K_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q2_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q2_K_RDNA1;
+        nwarps = NWARPS_Q2_K_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q2_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q2_K_AMPERE;
+        nwarps = NWARPS_Q2_K_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q2_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q2_K_PASCAL;
+        nwarps = NWARPS_Q2_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q3_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+#if QK_K == 256
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q3_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q3_K_RDNA2;
+        nwarps = NWARPS_Q3_K_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q3_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q3_K_RDNA1;
+        nwarps = NWARPS_Q3_K_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q3_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q3_K_AMPERE;
+        nwarps = NWARPS_Q3_K_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q3_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q3_K_PASCAL;
+        nwarps = NWARPS_Q3_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+#endif
+}
+
+static void ggml_mul_mat_q4_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q4_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_K_RDNA2;
+        nwarps = NWARPS_Q4_K_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q4_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_K_RDNA1;
+        nwarps = NWARPS_Q4_K_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q4_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_K_AMPERE;
+        nwarps = NWARPS_Q4_K_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q4_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_K_PASCAL;
+        nwarps = NWARPS_Q4_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q5_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q5_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_K_RDNA2;
+        nwarps = NWARPS_Q5_K_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q5_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_K_RDNA1;
+        nwarps = NWARPS_Q5_K_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q5_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_K_AMPERE;
+        nwarps = NWARPS_Q5_K_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q5_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_K_PASCAL;
+        nwarps = NWARPS_Q5_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+static void ggml_mul_mat_q6_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+    const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= CC_RDNA2) {
+        mmq_x  =  MMQ_X_Q6_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q6_K_RDNA2;
+        nwarps = NWARPS_Q6_K_RDNA2;
+    } else if (compute_capability >= CC_OFFSET_AMD) {
+        mmq_x  =  MMQ_X_Q6_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q6_K_RDNA1;
+        nwarps = NWARPS_Q6_K_RDNA1;
+    } else if (compute_capability >= CC_VOLTA) {
+        mmq_x  =  MMQ_X_Q6_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q6_K_AMPERE;
+        nwarps = NWARPS_Q6_K_AMPERE;
+    } else if (compute_capability >= MIN_CC_DP4A) {
+        mmq_x  =  MMQ_X_Q6_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q6_K_PASCAL;
+        nwarps = NWARPS_Q6_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const dim3 block_nums(block_num_x, block_num_y, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    } else {
+        const bool need_check = true;
+        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+    }
+}
+
+void ggml_cuda_op_mul_mat_q(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+    const int64_t ne00 = src0->ne[0];
+
+    const int64_t ne10 = src1->ne[0];
+    GGML_ASSERT(ne10 % QK8_1 == 0);
+
+    const int64_t ne0 = dst->ne[0];
+
+    const int64_t row_diff = row_high - row_low;
+
+    int id = ggml_cuda_get_device();
+
+    // the main device has a larger memory buffer to hold the results from all GPUs
+    // nrows_dst == nrows of the matrix that the kernel writes into
+    const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    GGML_UNUSED(src1);
+    GGML_UNUSED(dst);
+    GGML_UNUSED(src1_ddf_i);
+}
+
+bool ggml_cuda_supports_mmq(enum ggml_type type) {
+    switch (type) {
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+        case GGML_TYPE_Q2_K:
+        case GGML_TYPE_Q3_K:
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+        case GGML_TYPE_Q6_K:
+            return true;
+        default:
+            return false;
+    }
+}
diff --git a/ggml-cuda/mmq.cuh b/ggml-cuda/mmq.cuh
new file mode 100644 (file)
index 0000000..807817c
--- /dev/null
@@ -0,0 +1,9 @@
+#include "common.cuh"
+
+void ggml_cuda_op_mul_mat_q(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream);
+
+bool ggml_cuda_supports_mmq(enum ggml_type type);
diff --git a/ggml-cuda/mmvq.cu b/ggml-cuda/mmvq.cu
new file mode 100644 (file)
index 0000000..3965590
--- /dev/null
@@ -0,0 +1,406 @@
+#include "mmvq.cuh"
+#include "vecdotq.cuh"
+
+typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
+
+template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+// tell the compiler to use as many registers as it wants, see nwarps definition below
+__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void mul_mat_vec_q(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+    constexpr int nwarps              = 1;
+    constexpr int rows_per_cuda_block = 1;
+#else
+    constexpr int nwarps              = ncols_y <= 4 ? 4 : 2;
+    constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+
+    const     int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+    const     int row0 = rows_per_cuda_block*blockIdx.x;
+    const     int blocks_per_row_x = ncols_x / qk;
+    const     int blocks_per_col_y = nrows_y / QK8_1;
+    constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
+
+// partial sum for each thread
+    float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
+
+    const block_q_t  * x = (const block_q_t  *) vx;
+    const block_q8_1 * y = (const block_q8_1 *) vy;
+
+    for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
+        const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
+
+        // x block quant index when casting the quants to int
+        const int kqs = vdr * (tid % (qi/vdr));
+
+#pragma unroll
+        for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+            for (int i = 0; i < rows_per_cuda_block; ++i) {
+                tmp[j][i] += vec_dot_q_cuda(
+                    &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
+            }
+        }
+    }
+
+    __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
+    if (threadIdx.y > 0) {
+#pragma unroll
+        for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+            for (int i = 0; i < rows_per_cuda_block; ++i) {
+                tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
+            }
+        }
+    }
+    __syncthreads();
+    if (threadIdx.y > 0) {
+        return;
+    }
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+        for (int i = 0; i < rows_per_cuda_block; ++i) {
+#pragma unroll
+            for (int l = 0; l < nwarps-1; ++l) {
+                tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
+            }
+            tmp[j][i] = warp_reduce_sum(tmp[j][i]);
+        }
+
+        if (threadIdx.x < rows_per_cuda_block) {
+            dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
+        }
+    }
+}
+
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
+static void mul_mat_vec_q_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    GGML_ASSERT(ncols_x % qk == 0);
+    GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+
+    int64_t nwarps = 1;
+    int64_t rows_per_cuda_block = 1;
+
+    if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
+        switch(ncols_y) {
+            case 1:
+                nwarps = 4;
+                rows_per_cuda_block = 1;
+                break;
+            case 2:
+            case 3:
+            case 4:
+                nwarps = 4;
+                rows_per_cuda_block = 2;
+                break;
+            case 5:
+            case 6:
+            case 7:
+            case 8:
+                nwarps = 2;
+                rows_per_cuda_block = 2;
+                break;
+            default:
+                GGML_ASSERT(false);
+                break;
+        }
+    }
+    const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
+    const dim3 block_nums(nblocks, 1, 1);
+    const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+    switch (ncols_y) {
+        case 1:
+            mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 2:
+            mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 3:
+            mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 4:
+            mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 5:
+            mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 6:
+            mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 7:
+            mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        case 8:
+            mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
+                <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+}
+
+static void mul_mat_vec_q4_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q4_1_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_1_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q8_0_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q2_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q3_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q4_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q6_K_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_xxs_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_xs_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_s_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq3_xxs_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq1_s_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq1_m_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq4_nl_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq4_xs_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq3_s_q8_1_cuda(
+    const void * vx, const void * vy, float * dst,
+    const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+    mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
+        (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+void ggml_cuda_op_mul_mat_vec_q(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t row_diff = row_high - row_low;
+
+    const int64_t ne10 = src1->ne[0];
+    GGML_ASSERT(ne10 % QK8_1 == 0);
+
+    const int64_t ne0 = dst->ne[0];
+
+    int id;
+    CUDA_CHECK(cudaGetDevice(&id));
+
+    // the main device has a larger memory buffer to hold the results from all GPUs
+    // nrows_dst == nrows of the matrix that the kernel writes into
+    const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ2_XXS:
+            mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ2_XS:
+            mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ2_S:
+            mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ3_XXS:
+            mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ1_S:
+            mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ1_M:
+            mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ4_NL:
+            mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ4_XS:
+            mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        case GGML_TYPE_IQ3_S:
+            mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    GGML_UNUSED(src1);
+    GGML_UNUSED(dst);
+    GGML_UNUSED(src1_ddf_i);
+    GGML_UNUSED(src1_ncols);
+    GGML_UNUSED(src1_padded_row_size);
+}
diff --git a/ggml-cuda/mmvq.cuh b/ggml-cuda/mmvq.cuh
new file mode 100644 (file)
index 0000000..88c42c4
--- /dev/null
@@ -0,0 +1,7 @@
+#include "common.cuh"
+
+void ggml_cuda_op_mul_mat_vec_q(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream);
diff --git a/ggml-cuda/norm.cu b/ggml-cuda/norm.cu
new file mode 100644 (file)
index 0000000..86f7745
--- /dev/null
@@ -0,0 +1,215 @@
+#include "norm.cuh"
+
+template <int block_size>
+static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    const int tid = threadIdx.x;
+
+    float2 mean_var = make_float2(0.f, 0.f);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row*ncols + col];
+        mean_var.x += xi;
+        mean_var.y += xi * xi;
+    }
+
+    // sum up partial sums
+    mean_var = warp_reduce_sum(mean_var);
+    if (block_size > WARP_SIZE) {
+        __shared__ float2 s_sum[32];
+        int warp_id = threadIdx.x / WARP_SIZE;
+        int lane_id = threadIdx.x % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = mean_var;
+        }
+        __syncthreads();
+        mean_var = s_sum[lane_id];
+        mean_var = warp_reduce_sum(mean_var);
+    }
+
+    const float mean = mean_var.x / ncols;
+    const float var = mean_var.y / ncols - mean * mean;
+    const float inv_std = rsqrtf(var + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
+    }
+}
+
+template <int block_size>
+static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
+    // blockIdx.x: num_groups idx
+    // threadIdx.x: block_size idx
+    int start = blockIdx.x * group_size;
+    int end = start + group_size;
+
+    start += threadIdx.x;
+
+    if (end >= ne_elements) {
+        end = ne_elements;
+    }
+
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int j = start; j < end; j += block_size) {
+        tmp += x[j];
+    }
+
+    tmp = warp_reduce_sum(tmp);
+    if (block_size > WARP_SIZE) {
+        __shared__ float s_sum[32];
+        int warp_id = threadIdx.x / WARP_SIZE;
+        int lane_id = threadIdx.x % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        __syncthreads();
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp);
+    }
+
+    float mean = tmp / group_size;
+    tmp = 0.0f;
+
+    for (int j = start; j < end; j += block_size) {
+        float xi = x[j] - mean;
+        dst[j] = xi;
+        tmp += xi * xi;
+    }
+
+    tmp = warp_reduce_sum(tmp);
+    if (block_size > WARP_SIZE) {
+        __shared__ float s_sum[32];
+        int warp_id = threadIdx.x / WARP_SIZE;
+        int lane_id = threadIdx.x % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        __syncthreads();
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp);
+    }
+
+    float variance = tmp / group_size;
+    float scale = rsqrtf(variance + eps);
+    for (int j = start; j < end; j += block_size) {
+        dst[j] *= scale;
+    }
+}
+
+template <int block_size>
+static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
+    const int row = blockIdx.x*blockDim.y + threadIdx.y;
+    const int tid = threadIdx.x;
+
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row*ncols + col];
+        tmp += xi * xi;
+    }
+
+    // sum up partial sums
+    tmp = warp_reduce_sum(tmp);
+    if (block_size > WARP_SIZE) {
+        __shared__ float s_sum[32];
+        int warp_id = threadIdx.x / WARP_SIZE;
+        int lane_id = threadIdx.x % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        __syncthreads();
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp);
+    }
+
+    const float mean = tmp / ncols;
+    const float scale = rsqrtf(mean + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row*ncols + col] = scale * x[row*ncols + col];
+    }
+}
+
+static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    if (ncols < 1024) {
+        const dim3 block_dims(WARP_SIZE, 1, 1);
+        norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+    } else {
+        const dim3 block_dims(1024, 1, 1);
+        norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+    }
+}
+
+static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
+    static const float eps = 1e-6f;
+    if (group_size < 1024) {
+        const dim3 block_dims(WARP_SIZE, 1, 1);
+        group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
+    } else {
+        const dim3 block_dims(1024, 1, 1);
+        group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
+    }
+}
+
+static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    if (ncols < 1024) {
+        const dim3 block_dims(WARP_SIZE, 1, 1);
+        rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+    } else {
+        const dim3 block_dims(1024, 1, 1);
+        rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+    }
+}
+
+void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
+}
+
+void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int num_groups = dst->op_params[0];
+    int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+    group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
+}
diff --git a/ggml-cuda/norm.cuh b/ggml-cuda/norm.cuh
new file mode 100644 (file)
index 0000000..431a8f7
--- /dev/null
@@ -0,0 +1,7 @@
+#include "common.cuh"
+
+void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/pad.cu b/ggml-cuda/pad.cu
new file mode 100644 (file)
index 0000000..aba539e
--- /dev/null
@@ -0,0 +1,49 @@
+#include "pad.cuh"
+
+static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
+    // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
+    // blockIdx.y: idx of ne1
+    // blockIDx.x: idx of ne0 / BLOCK_SIZE
+    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (nidx >= ne0) {
+        return;
+    }
+
+    // operation
+    int offset_dst =
+        nidx +
+        blockIdx.y * ne0 +
+        blockIdx.z * ne0 * gridDim.y;
+    if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
+        int offset_src =
+            nidx +
+            blockIdx.y * ne00 +
+            blockIdx.z * ne00 * ne01;
+        dst[offset_dst] = x[offset_src];
+    } else {
+        dst[offset_dst] = 0.0f;
+    }
+}
+
+static void pad_f32_cuda(const float * x, float * dst,
+    const int ne00, const int ne01, const int ne02, const int ne03,
+    const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
+    int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
+    dim3 gridDim(num_blocks, ne1, ne2*ne3);
+    pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
+}
+
+void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+    pad_f32_cuda(src0_d, dst_d,
+        src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+        dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
+}
diff --git a/ggml-cuda/pad.cuh b/ggml-cuda/pad.cuh
new file mode 100644 (file)
index 0000000..8fd386b
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_PAD_BLOCK_SIZE 256
+
+void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/pool2d.cu b/ggml-cuda/pool2d.cu
new file mode 100644 (file)
index 0000000..c6d51e4
--- /dev/null
@@ -0,0 +1,94 @@
+#include "pool2d.cuh"
+
+template <typename Ti, typename To>
+static  __global__ void pool2d_nchw_kernel(
+        const int ih, const int iw, const int oh, const int ow,
+        const int kh, const int kw, const int sh, const int sw,
+        const int ph, const int pw, const int parallel_elements,
+        const Ti* src, To* dst, const enum ggml_op_pool op) {
+    int idx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (idx >= parallel_elements) {
+        return;
+    }
+
+    const int I_HW = ih * iw;
+    const int O_HW = oh * ow;
+    const int nc = idx / O_HW;
+    const int cur_oh = idx % O_HW / ow;
+    const int cur_ow = idx % O_HW % ow;
+    const Ti* i_ptr = src + nc * I_HW;
+    To* o_ptr = dst + nc * O_HW;
+    const int start_h = cur_oh * sh - ph;
+    const int bh = max(0, start_h);
+    const int eh = min(ih, start_h + kh);
+    const int start_w = cur_ow * sw - pw;
+    const int bw = max(0, start_w);
+    const int ew = min(iw, start_w + kw);
+    const To scale = 1. / (kh * kw);
+    To res = 0;
+
+    switch (op) {
+        case GGML_OP_POOL_AVG: res = 0; break;
+        case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+        default: assert(false);
+    }
+
+    for (int i = bh; i < eh; i += 1) {
+        for (int j = bw; j < ew; j += 1) {
+#if __CUDA_ARCH__ >= 350
+            Ti cur = __ldg(i_ptr + i * iw + j);
+#else
+            Ti cur = i_ptr[i * iw + j];
+#endif
+            switch (op) {
+                case GGML_OP_POOL_AVG: res += cur * scale; break;
+                case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
+                default: assert(false);
+            }
+        }
+    }
+    o_ptr[cur_oh * ow + cur_ow] = res;
+}
+
+static void pool2d_nchw_kernel_f32_f32_cuda(
+        const int ih, const int iw, const int oh, const int ow,
+        const int kh, const int kw, const int sh, const int sw,
+        const int ph, const int pw, const int parallel_elements,
+        const float * src, float * dst, const enum ggml_op_pool op,
+        cudaStream_t stream) {
+
+    const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
+    dim3 block_nums(num_blocks);
+    pool2d_nchw_kernel<<<block_nums, CUDA_POOL2D_BLOCK_SIZE, 0, stream>>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op);
+}
+
+void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int32_t * opts = (const int32_t *)dst->op_params;
+    enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+    const int k0 = opts[1];
+    const int k1 = opts[2];
+    const int s0 = opts[3];
+    const int s1 = opts[4];
+    const int p0 = opts[5];
+    const int p1 = opts[6];
+
+    const int64_t IH = src0->ne[1];
+    const int64_t IW = src0->ne[0];
+
+    const int64_t N = dst->ne[3];
+    const int64_t OC = dst->ne[2];
+    const int64_t OH = dst->ne[1];
+    const int64_t OW = dst->ne[0];
+
+    const int parallel_elements = N * OC * OH * OW;
+
+    pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream);
+}
diff --git a/ggml-cuda/pool2d.cuh b/ggml-cuda/pool2d.cuh
new file mode 100644 (file)
index 0000000..7841292
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_POOL2D_BLOCK_SIZE 256
+
+void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/quantize.cu b/ggml-cuda/quantize.cu
new file mode 100644 (file)
index 0000000..a1fbc99
--- /dev/null
@@ -0,0 +1,45 @@
+#include "quantize.cuh"
+
+static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
+    const int ix = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (ix >= kx_padded) {
+        return;
+    }
+
+    const int iy = blockDim.y*blockIdx.y + threadIdx.y;
+
+    const int i_padded = iy*kx_padded + ix;
+
+    block_q8_1 * y = (block_q8_1 *) vy;
+
+    const int ib = i_padded / QK8_1; // block index
+    const int iqs = i_padded % QK8_1; // quant index
+
+    const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
+    float amax = fabsf(xi);
+    float sum = xi;
+
+    amax = warp_reduce_max(amax);
+    sum = warp_reduce_sum(sum);
+
+    const float d = amax / 127;
+    const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
+
+    y[ib].qs[iqs] = q;
+
+    if (iqs > 0) {
+        return;
+    }
+
+    reinterpret_cast<half&>(y[ib].ds.x) = d;
+    reinterpret_cast<half&>(y[ib].ds.y) = sum;
+}
+
+void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
+    const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
+    const dim3 num_blocks(block_num_x, ky, 1);
+    const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
+    quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
+}
+
diff --git a/ggml-cuda/quantize.cuh b/ggml-cuda/quantize.cuh
new file mode 100644 (file)
index 0000000..adb89c8
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_QUANTIZE_BLOCK_SIZE 256
+
+void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream);
diff --git a/ggml-cuda/rope.cu b/ggml-cuda/rope.cu
new file mode 100644 (file)
index 0000000..4b0d2e5
--- /dev/null
@@ -0,0 +1,308 @@
+#include "rope.cuh"
+
+struct rope_corr_dims {
+    float v[4];
+};
+
+static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
+    const float y = (i0 / 2 - low) / max(0.001f, high - low);
+    return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static __device__ void rope_yarn(
+    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+    float * cos_theta, float * sin_theta
+) {
+    // Get n-d rotational scaling corrected for extrapolation
+    float theta_interp = freq_scale * theta_extrap;
+    float theta = theta_interp;
+    if (ext_factor != 0.0f) {
+        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+        // Get n-d magnitude scaling corrected for interpolation
+        mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
+    }
+    *cos_theta = cosf(theta) * mscale;
+    *sin_theta = sinf(theta) * mscale;
+}
+
+// rope == RoPE == rotary positional embedding
+template<typename T, bool has_pos>
+static __global__ void rope(
+    const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims
+) {
+    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = blockDim.x*blockIdx.x + threadIdx.x;
+    const int i = row*ncols + col;
+    const int i2 = row/p_delta_rows;
+
+    const int p = has_pos ? pos[i2] : 0;
+    const float theta_base = p*powf(freq_base, -float(col)/ncols);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + 1];
+
+    dst[i + 0] = x0*cos_theta - x1*sin_theta;
+    dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_pos>
+static __global__ void rope_neox(
+    const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
+) {
+    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = blockDim.x*blockIdx.x + threadIdx.x;
+    const int ib = col / n_dims;
+    const int ic = col % n_dims;
+
+    if (ib > 0) {
+        const int i = row*ncols + ib*n_dims + ic;
+
+        dst[i + 0] = x[i + 0];
+        dst[i + 1] = x[i + 1];
+
+        return;
+    }
+
+    const int i  = row*ncols + ib*n_dims + ic/2;
+    const int i2 = row/p_delta_rows;
+
+    float cur_rot = inv_ndims * ic - ib;
+
+    const int p = has_pos ? pos[i2] : 0;
+    const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + n_dims/2];
+
+    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
+    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+static __global__ void rope_glm_f32(
+    const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+    int n_ctx
+) {
+    const int col = blockDim.x*blockIdx.x + threadIdx.x;
+    const int half_n_dims = ncols/4;
+
+    if (col >= half_n_dims) {
+        return;
+    }
+
+    const int row = blockDim.y*blockIdx.y + threadIdx.y;
+    const int i = row*ncols + col;
+    const int i2 = row/p_delta_rows;
+
+    const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
+     // FIXME: this is likely wrong
+    const int p = pos != nullptr ? pos[i2] : 0;
+
+    const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
+    const float sin_theta = sinf(theta);
+    const float cos_theta = cosf(theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + half_n_dims];
+
+    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
+    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
+
+    const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
+    const float sin_block_theta = sinf(block_theta);
+    const float cos_block_theta = cosf(block_theta);
+
+    const float x2 = x[i + half_n_dims * 2];
+    const float x3 = x[i + half_n_dims * 3];
+
+    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
+    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
+}
+
+
+template<typename T>
+static void rope_cuda(
+    const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+    GGML_ASSERT(ncols % 2 == 0);
+    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+    const dim3 block_nums(nrows, num_blocks_x, 1);
+    if (pos == nullptr) {
+        rope<T, false><<<block_nums, block_dims, 0, stream>>>(
+            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+        );
+    } else {
+        rope<T, true><<<block_nums, block_dims, 0, stream>>>(
+            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+        );
+    }
+}
+
+template<typename T>
+static void rope_neox_cuda(
+    const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+    GGML_ASSERT(ncols % 2 == 0);
+    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+    const dim3 block_nums(nrows, num_blocks_x, 1);
+
+    const float theta_scale = powf(freq_base, -2.0f/n_dims);
+    const float inv_ndims = -1.0f / n_dims;
+
+    if (pos == nullptr) {
+        rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
+            x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+            theta_scale, inv_ndims
+        );
+    } else {
+        rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
+            x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+            theta_scale, inv_ndims
+        );
+    }
+}
+
+static void rope_glm_f32_cuda(
+    const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, int n_ctx, cudaStream_t stream
+) {
+    GGML_ASSERT(ncols % 4 == 0);
+    const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
+    const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
+    const dim3 block_nums(num_blocks_x, nrows, 1);
+    rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
+}
+
+static void rope_cuda_f16(
+    const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+    rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_cuda_f32(
+    const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+    rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_neox_cuda_f16(
+    const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+    rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_neox_cuda_f32(
+    const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+
+    rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src0_d = (const float *)src0->data;
+    const float * src1_d = (const float *)src1->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
+    GGML_ASSERT(src0->type == dst->type);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne2 = dst->ne[2];
+    const int64_t nrows = ggml_nrows(src0);
+
+    //const int n_past      = ((int32_t *) dst->op_params)[0];
+    const int n_dims      = ((int32_t *) dst->op_params)[1];
+    const int mode        = ((int32_t *) dst->op_params)[2];
+    const int n_ctx       = ((int32_t *) dst->op_params)[3];
+    const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
+
+    // RoPE alteration for extended context
+    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
+    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
+    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
+    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
+    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
+    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
+
+    const int32_t * pos = nullptr;
+    if ((mode & 1) == 0) {
+        GGML_ASSERT(src1->type == GGML_TYPE_I32);
+        GGML_ASSERT(src1->ne[0] == ne2);
+        pos = (const int32_t *) src1_d;
+    }
+
+    const bool is_neox = mode & 2;
+    const bool is_glm  = mode & 4;
+
+    rope_corr_dims corr_dims;
+    ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+    // compute
+    if (is_glm) {
+        GGML_ASSERT(false);
+        rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
+    } else if (is_neox) {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_neox_cuda_f32(
+                (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_neox_cuda_f16(
+                (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, stream
+            );
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_cuda_f32(
+                (const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_cuda_f16(
+                (const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, stream
+            );
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+}
diff --git a/ggml-cuda/rope.cuh b/ggml-cuda/rope.cuh
new file mode 100644 (file)
index 0000000..0f787a0
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_ROPE_BLOCK_SIZE 256
+
+void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/scale.cu b/ggml-cuda/scale.cu
new file mode 100644 (file)
index 0000000..6e3617d
--- /dev/null
@@ -0,0 +1,32 @@
+#include "scale.cuh"
+
+static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+
+    dst[i] = scale * x[i];
+}
+
+static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
+    scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
+}
+
+void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float scale;
+    memcpy(&scale, dst->op_params, sizeof(float));
+
+    scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
+    CUDA_CHECK(cudaGetLastError());
+}
diff --git a/ggml-cuda/scale.cuh b/ggml-cuda/scale.cuh
new file mode 100644 (file)
index 0000000..8ff75c8
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_SCALE_BLOCK_SIZE 256
+
+void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/softmax.cu b/ggml-cuda/softmax.cu
new file mode 100644 (file)
index 0000000..9bda18e
--- /dev/null
@@ -0,0 +1,201 @@
+#include "softmax.cuh"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
+    const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+    const int tid  = threadIdx.x;
+    const int rowx = blockIdx.x;
+    const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
+
+    const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
+
+    const int warp_id = threadIdx.x / WARP_SIZE;
+    const int lane_id = threadIdx.x % WARP_SIZE;
+
+    float slope = 0.0f;
+
+    // ALiBi
+    if (max_bias > 0.0f) {
+        const int h = rowx/nrows_y; // head index
+
+        const float base = h < n_head_log2 ? m0 : m1;
+        const int   exp  = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+        slope = powf(base, exp);
+    }
+
+    extern __shared__ float data_soft_max_f32[];
+    float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
+    // shared memory buffer to cache values between iterations:
+    float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
+
+    float max_val = -INFINITY;
+
+#pragma unroll
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+
+        if (ncols_template == 0 && col >= ncols) {
+            break;
+        }
+
+        const int ix = rowx*ncols + col;
+        const int iy = rowy*ncols + col;
+
+        const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
+
+        vals[col] = val;
+        max_val = max(max_val, val);
+    }
+
+    // find the max value in the block
+    max_val = warp_reduce_max(max_val);
+    if (block_size > WARP_SIZE) {
+        if (warp_id == 0) {
+            buf_iw[lane_id] = -INFINITY;
+        }
+        __syncthreads();
+
+        if (lane_id == 0) {
+            buf_iw[warp_id] = max_val;
+        }
+        __syncthreads();
+
+        max_val = buf_iw[lane_id];
+        max_val = warp_reduce_max(max_val);
+    }
+
+    float tmp = 0.0f; // partial sum
+
+#pragma unroll
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+
+        if (ncols_template == 0 && col >= ncols) {
+            break;
+        }
+
+        const float val = expf(vals[col] - max_val);
+        tmp += val;
+        vals[col] = val;
+    }
+
+    // find the sum of exps in the block
+    tmp = warp_reduce_sum(tmp);
+    if (block_size > WARP_SIZE) {
+        __syncthreads();
+        if (warp_id == 0) {
+            buf_iw[lane_id] = 0.0f;
+        }
+        __syncthreads();
+
+        if (lane_id == 0) {
+            buf_iw[warp_id] = tmp;
+        }
+        __syncthreads();
+
+        tmp = buf_iw[lane_id];
+        tmp = warp_reduce_sum(tmp);
+    }
+
+    const float inv_sum = 1.0f / tmp;
+
+#pragma unroll
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+
+        if (ncols_template == 0 && col >= ncols) {
+            return;
+        }
+
+        const int idst = rowx*ncols + col;
+        dst[idst] = vals[col] * inv_sum;
+    }
+}
+
+static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
+    int nth = WARP_SIZE;
+    while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
+    const dim3 block_dims(nth,     1, 1);
+    const dim3 block_nums(nrows_x, 1, 1);
+    const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
+    static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
+
+    const uint32_t n_head_kv   = nrows_x/nrows_y;
+    const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
+    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+    if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
+        switch (ncols_x) {
+            case 32:
+                soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 64:
+                soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 128:
+                soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 256:
+                soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 512:
+                soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 1024:
+                soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 2048:
+                soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            case 4096:
+                soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+            default:
+                soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+                break;
+        }
+    } else {
+        const size_t shmem_low = WARP_SIZE*sizeof(float);
+        soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+    }
+}
+
+void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const ggml_tensor * src1 = dst->src[1];
+    const float * src0_d = (const float *)src0->data;
+    const float * src1_d = src1 ? (const float *)src1->data : nullptr;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+    const int64_t ne00    = src0->ne[0];
+    const int64_t nrows_x = ggml_nrows(src0);
+    const int64_t nrows_y = src0->ne[1];
+
+    float scale    = 1.0f;
+    float max_bias = 0.0f;
+
+    memcpy(&scale,    (float *) dst->op_params + 0, sizeof(float));
+    memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+    // positions tensor
+    float * src2_dd = nullptr;
+
+    ggml_tensor * src2 = dst->src[2];
+    const bool use_src2 = src2 != nullptr;
+
+    if (use_src2) {
+        src2_dd = (float *)src2->data;
+    }
+
+    soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
+}
diff --git a/ggml-cuda/softmax.cuh b/ggml-cuda/softmax.cuh
new file mode 100644 (file)
index 0000000..4ef4ff8
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
+
+void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/sumrows.cu b/ggml-cuda/sumrows.cu
new file mode 100644 (file)
index 0000000..82e8e87
--- /dev/null
@@ -0,0 +1,40 @@
+#include "sumrows.cuh"
+
+static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
+    const int row = blockIdx.x;
+    const int col = threadIdx.x;
+
+    float sum = 0.0f;
+    for (int i = col; i < ncols; i += blockDim.x) {
+        sum += x[row * ncols + i];
+    }
+
+    sum = warp_reduce_sum(sum);
+
+    if (col == 0) {
+        dst[row] = sum;
+    }
+}
+
+static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+    const dim3 block_dims(WARP_SIZE, 1, 1);
+    const dim3 block_nums(nrows, 1, 1);
+    k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+}
+
+void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(ggml_is_contiguous(src0));
+
+
+    const int64_t ncols = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
+}
diff --git a/ggml-cuda/sumrows.cuh b/ggml-cuda/sumrows.cuh
new file mode 100644 (file)
index 0000000..e7545f8
--- /dev/null
@@ -0,0 +1,3 @@
+#include "common.cuh"
+
+void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/tsembd.cu b/ggml-cuda/tsembd.cu
new file mode 100644 (file)
index 0000000..153ddbc
--- /dev/null
@@ -0,0 +1,47 @@
+#include "tsembd.cuh"
+
+static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
+    // blockIDx.y: idx of timesteps->ne[0]
+    // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
+    int i = blockIdx.y;
+    int j = threadIdx.x + blockIdx.x * blockDim.x;
+    float * embed_data = (float *)((char *)dst +  i*nb1);
+
+    if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
+        embed_data[dim] = 0.f;
+    }
+
+    int half = dim / 2;
+    if (j >= half) {
+        return;
+    }
+
+    float timestep = timesteps[i];
+    float freq = (float)expf(-logf(max_period) * j / half);
+    float arg = timestep * freq;
+    embed_data[j] = cosf(arg);
+    embed_data[j + half] = sinf(arg);
+}
+
+static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
+                                        const int dim, const int max_period, cudaStream_t stream) {
+    int half_ceil = (dim + 1) / 2;
+    int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
+    dim3 gridDim(num_blocks, ne00, 1);
+    timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
+}
+
+void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    const int dim = dst->op_params[0];
+    const int max_period = dst->op_params[1];
+
+    timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
+}
diff --git a/ggml-cuda/tsembd.cuh b/ggml-cuda/tsembd.cuh
new file mode 100644 (file)
index 0000000..84340e3
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
+
+void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/unary.cu b/ggml-cuda/unary.cu
new file mode 100644 (file)
index 0000000..1a7f094
--- /dev/null
@@ -0,0 +1,240 @@
+#include "unary.cuh"
+
+static __global__ void gelu_f32(const float * x, float * dst, const int k) {
+    const float GELU_COEF_A    = 0.044715f;
+    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+
+    float xi = x[i];
+    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
+}
+
+static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
+    const float GELU_QUICK_COEF = -1.702f;
+    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
+}
+
+static __global__ void silu_f32(const float * x, float * dst, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] / (1.0f + expf(-x[i]));
+}
+
+static __global__ void tanh_f32(const float * x, float * dst, int k) {
+    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
+    if (i >= k) {
+        return;
+    }
+    dst[i] = tanhf(x[i]);
+}
+
+static __global__ void relu_f32(const float * x, float * dst, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = fmaxf(x[i], 0);
+}
+
+static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
+    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
+    if (i >= k) {
+        return;
+    }
+    dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
+}
+
+static __global__ void sqr_f32(const float * x, float * dst, const int k) {
+    const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] * x[i];
+}
+
+static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+    gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
+    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
+    tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+    relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
+    hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
+    hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+    leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
+}
+
+static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+    const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
+    sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float negative_slope;
+    memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+    leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
+}
+
+void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
diff --git a/ggml-cuda/unary.cuh b/ggml-cuda/unary.cuh
new file mode 100644 (file)
index 0000000..2002ed9
--- /dev/null
@@ -0,0 +1,27 @@
+#include "common.cuh"
+
+#define CUDA_GELU_BLOCK_SIZE 256
+#define CUDA_SILU_BLOCK_SIZE 256
+#define CUDA_TANH_BLOCK_SIZE 256
+#define CUDA_RELU_BLOCK_SIZE 256
+#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
+#define CUDA_HARDSWISH_BLOCK_SIZE 256
+#define CUDA_SQR_BLOCK_SIZE 256
+
+void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/upscale.cu b/ggml-cuda/upscale.cu
new file mode 100644 (file)
index 0000000..2f62fed
--- /dev/null
@@ -0,0 +1,48 @@
+#include "upscale.cuh"
+
+static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
+    // blockIdx.z: idx of ne02*ne03
+    // blockIdx.y: idx of ne01*scale_factor, aka ne1
+    // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
+    // ne00xne01: ne00 * ne01
+    int ne0 = ne00 * scale_factor;
+    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+    if (nidx >= ne0) {
+        return;
+    }
+    // operation
+    int i00 = nidx / scale_factor;
+    int i01 = blockIdx.y / scale_factor;
+    int offset_src =
+        i00 +
+        i01 * ne00 +
+        blockIdx.z * ne00xne01;
+    int offset_dst =
+        nidx +
+        blockIdx.y * ne0 +
+        blockIdx.z * ne0 * gridDim.y;
+    dst[offset_dst] = x[offset_src];
+}
+
+static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
+                             const int scale_factor, cudaStream_t stream) {
+    int ne0 = (ne00 * scale_factor);
+    int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
+    dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
+    upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
+}
+
+void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+    const ggml_tensor * src0 = dst->src[0];
+    const float * src0_d = (const float *)src0->data;
+    float * dst_d = (float *)dst->data;
+    cudaStream_t stream = ctx.stream();
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+    const int scale_factor = dst->op_params[0];
+
+    upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
+}
diff --git a/ggml-cuda/upscale.cuh b/ggml-cuda/upscale.cuh
new file mode 100644 (file)
index 0000000..d4d7652
--- /dev/null
@@ -0,0 +1,5 @@
+#include "common.cuh"
+
+#define CUDA_UPSCALE_BLOCK_SIZE 256
+
+void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml-cuda/vecdotq.cuh b/ggml-cuda/vecdotq.cuh
new file mode 100644 (file)
index 0000000..86b87fa
--- /dev/null
@@ -0,0 +1,1280 @@
+#include "common.cuh"
+
+static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
+    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+    int x32 = 0;
+    x32 |= x16[0] <<  0;
+    x32 |= x16[1] << 16;
+
+    return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
+    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+    int x32 = 0;
+    x32 |= x16[0] <<  0;
+    x32 |= x16[1] << 16;
+
+    return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
+    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
+    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+
+// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
+// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+
+#define VDR_Q4_0_Q8_1_MMVQ 2
+#define VDR_Q4_0_Q8_1_MMQ  4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
+    const int * v, const int * u, const float & d4, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+        // SIMD dot product of quantized values
+        sumi = __dp4a(vi0, u[2*i+0], sumi);
+        sumi = __dp4a(vi1, u[2*i+1], sumi);
+    }
+
+    const float2 ds8f = __half22float2(ds8);
+
+    // second part effectively subtracts 8 from each quant value
+    return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q4_1_Q8_1_MMVQ 2
+#define VDR_Q4_1_Q8_1_MMQ  4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
+    const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+        // SIMD dot product of quantized values
+        sumi = __dp4a(vi0, u[2*i+0], sumi);
+        sumi = __dp4a(vi1, u[2*i+1], sumi);
+    }
+
+#ifdef GGML_CUDA_F16
+    const float2 tmp = __half22float2(__hmul2(dm4, ds8));
+    const float d4d8 = tmp.x;
+    const float m4s8 = tmp.y;
+#else
+    const float2 dm4f = __half22float2(dm4);
+    const float2 ds8f = __half22float2(ds8);
+    const float d4d8 = dm4f.x * ds8f.x;
+    const float m4s8 = dm4f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+    // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
+    return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_0_Q8_1_MMVQ 2
+#define VDR_Q5_0_Q8_1_MMQ  4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
+    const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
+        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
+        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
+        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
+        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
+        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+    }
+
+    const float2 ds8f = __half22float2(ds8);
+
+    // second part effectively subtracts 16 from each quant value
+    return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_1_Q8_1_MMVQ 2
+#define VDR_Q5_1_Q8_1_MMQ  4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
+    const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
+        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
+        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
+        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
+        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
+        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+    }
+
+#ifdef GGML_CUDA_F16
+    const float2 tmp = __half22float2(__hmul2(dm5, ds8));
+    const float d5d8 = tmp.x;
+    const float m5s8 = tmp.y;
+#else
+    const float2 dm5f = __half22float2(dm5);
+    const float2 ds8f = __half22float2(ds8);
+    const float d5d8 = dm5f.x * ds8f.x;
+    const float m5s8 = dm5f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+    // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
+    return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q8_0_Q8_1_MMVQ 2
+#define VDR_Q8_0_Q8_1_MMQ 8
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
+    const int * v, const int * u, const float & d8_0, const float & d8_1) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        // SIMD dot product of quantized values
+        sumi = __dp4a(v[i], u[i], sumi);
+    }
+
+    return d8_0*d8_1 * sumi;
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
+    const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        // SIMD dot product of quantized values
+        sumi = __dp4a(v[i], u[i], sumi);
+    }
+
+#ifdef GGML_CUDA_F16
+    const float2 tmp = __half22float2(__hmul2(dm8, ds8));
+    const float d8d8 = tmp.x;
+    const float m8s8 = tmp.y;
+#else
+    const float2 dm8f = __half22float2(dm8);
+    const float2 ds8f = __half22float2(ds8);
+    const float d8d8 = dm8f.x * ds8f.x;
+    const float m8s8 = dm8f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+    // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
+    return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q2_K_Q8_1_MMVQ 1
+#define VDR_Q2_K_Q8_1_MMQ  2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
+    const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+    const half2 & dm2, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR2_K; ++i) {
+        const int sc = scales[2*i];
+
+        const int vi = (v >> (2*i)) & 0x03030303;
+
+        sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+
+        // fill int with 4x m
+        int m = sc >> 4;
+        m |= m <<  8;
+        m |= m << 16;
+        sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
+    }
+
+    const float2 dm2f = __half22float2(dm2);
+
+    return dm2f.x*sumf_d - dm2f.y*sumf_m;
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
+    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+    const half2 & dm2, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi_d = 0;
+    int sumi_m = 0;
+
+#pragma unroll
+    for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+        int sumi_d_sc = 0;
+
+        const int sc = scales[i0 / (QI8_1/2)];
+
+        // fill int with 4x m
+        int m = sc >> 4;
+        m |= m <<  8;
+        m |= m << 16;
+
+#pragma unroll
+        for (int i = i0; i < i0 + QI8_1/2; ++i) {
+            sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+            sumi_m    = __dp4a(m,    u[i], sumi_m); // multiply sum of q8_1 values with m
+        }
+
+        sumi_d += sumi_d_sc * (sc & 0xF);
+    }
+
+    const float2 dm2f = __half22float2(dm2);
+
+    return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q3_K_Q8_1_MMVQ 1
+#define VDR_Q3_K_Q8_1_MMQ  2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
+    const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+    const int & scale_offset, const float & d3, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR3_K; ++i) {
+        const int isc = scale_offset + 2*i;
+
+        const int isc_low = isc % (QK_K/32);
+        const int sc_shift_low = 4 * (isc / (QK_K/32));
+        const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
+
+        const int isc_high = isc % (QK_K/64);
+        const int sc_shift_high = 2 * (isc / (QK_K/64));
+        const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+
+        const int sc = (sc_low | sc_high) - 32;
+
+        const int vil = (vl >> (2*i)) & 0x03030303;
+
+        const int vih = ((vh >> i) << 2) & 0x04040404;
+
+        const int vi = __vsubss4(vil, vih);
+
+        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+    }
+
+    return d3 * sumf;
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
+    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
+    const float & d3, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    int sumi = 0;
+
+#pragma unroll
+    for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+        int sumi_sc = 0;
+
+        for (int i = i0; i < i0 + QI8_1/2; ++i) {
+            sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+        }
+
+        sumi += sumi_sc * scales[i0 / (QI8_1/2)];
+    }
+
+    return d3*d8 * sumi;
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q4_K_Q8_1_MMVQ 2
+#define VDR_Q4_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
+    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+    const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR4_K; ++i) {
+        const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
+        const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
+
+        const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
+        const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
+
+        sumf_d += d8[i] * (dot1 * sc[i]);
+        sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
+    }
+
+    const float2 dm4f = __half22float2(dm4);
+
+    return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
+    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
+        int sumi_d = 0;
+
+#pragma unroll
+        for (int j = 0; j < QI8_1; ++j) {
+            sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
+        }
+
+        const float2 ds8f = __half22float2(ds8[i]);
+
+        sumf_d += ds8f.x * (sc[i] * sumi_d);
+        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
+    }
+
+    const float2 dm4f = __half22float2(dm4);
+
+    return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_K_Q8_1_MMVQ 2
+#define VDR_Q5_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
+    const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+    const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K; ++i) {
+        const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
+        const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+
+        const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
+        const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+
+        const int v0i = vl0i | vh0i;
+        const int v1i = vl1i | vh1i;
+
+        const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
+        const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
+
+        sumf_d += d8[i] * (dot1 * sc[i]);
+        sumf_m += d8[i] * (dot2 * m[i]);
+
+    }
+
+    const float2 dm5f = __half22float2(dm5);
+
+    return dm5f.x*sumf_d - dm5f.y*sumf_m;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
+    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
+        int sumi_d = 0;
+
+#pragma unroll
+        for (int j = 0; j < QI8_1; ++j) {
+            sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
+        }
+
+        const float2 ds8f = __half22float2(ds8[i]);
+
+        sumf_d += ds8f.x * (sc[i] * sumi_d);
+        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
+    }
+
+    const float2 dm4f = __half22float2(dm4);
+
+    return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q6_K_Q8_1_MMVQ 1
+#define VDR_Q6_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
+    const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
+    const float & d, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR6_K; ++i) {
+        const int sc = scales[4*i];
+
+        const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+
+        const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+
+        const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
+
+        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+    }
+
+    return d*sumf;
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
+    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
+    const float & d6, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    float sumf_d = 0.0f;
+
+#pragma unroll
+    for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+        int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+        for (int i = i0; i < i0 + 2; ++i) {
+            sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
+            sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+
+            sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
+            sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
+        }
+
+        sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
+    }
+
+    return d6 * sumf_d;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+
+    int v[VDR_Q4_0_Q8_1_MMVQ];
+    int u[2*VDR_Q4_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
+        v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
+    }
+
+    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
+}
+
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+
+    int v[VDR_Q4_1_Q8_1_MMVQ];
+    int u[2*VDR_Q4_1_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
+        v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
+    }
+
+    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+
+    int vl[VDR_Q5_0_Q8_1_MMVQ];
+    int vh[VDR_Q5_0_Q8_1_MMVQ];
+    int  u[2*VDR_Q5_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
+        vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
+        vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
+    }
+
+    return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+
+    int vl[VDR_Q5_1_Q8_1_MMVQ];
+    int vh[VDR_Q5_1_Q8_1_MMVQ];
+    int  u[2*VDR_Q5_1_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
+        vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
+        vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
+    }
+
+    return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
+
+    int v[VDR_Q8_0_Q8_1_MMVQ];
+    int u[VDR_Q8_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
+        v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
+        u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+    }
+
+    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q2_K * bq2_K = (const block_q2_K *) vbq;
+
+    const int bq8_offset = QR2_K * (iqs / QI8_1);
+    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+    const uint8_t * scales = bq2_K->scales + scale_offset;
+
+    const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
+    int    u[QR2_K];
+    float d8[QR2_K];
+
+#pragma unroll
+    for (int i = 0; i < QR2_K; ++ i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+        d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+    }
+
+    return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q3_K * bq3_K = (const block_q3_K *) vbq;
+
+    const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
+    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+    const float d = bq3_K->d;
+
+    const int vl = get_int_from_uint8(bq3_K->qs, iqs);
+
+    // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+    const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
+
+    int    u[QR3_K];
+    float d8[QR3_K];
+
+#pragma unroll
+    for (int i = 0; i < QR3_K; ++i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+        d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+    }
+
+    return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+    int    v[2];
+    int    u[2*QR4_K];
+    float d8[QR4_K];
+
+    // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
+    const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
+
+    // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
+    // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
+    // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
+    // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
+
+    const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+    v[0] = q4[0];
+    v[1] = q4[4];
+
+    const uint16_t * scales = (const uint16_t *)bq4_K->scales;
+    uint16_t aux[2];
+    const int j = bq8_offset/2;
+    if (j < 2) {
+        aux[0] = scales[j+0] & 0x3f3f;
+        aux[1] = scales[j+2] & 0x3f3f;
+    } else {
+        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+    }
+    const uint8_t * sc = (const uint8_t *)aux;
+    const uint8_t * m  = sc + 2;
+
+    for (int i = 0; i < QR4_K; ++i) {
+        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+        d8[i] = __low2float(bq8i->ds);
+
+        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+        u[2*i+0] = q8[0];
+        u[2*i+1] = q8[4];
+    }
+
+    return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+    uint16_t aux16[2];
+    const uint8_t * s = (const uint8_t *)aux16;
+
+    const uint16_t * a = (const uint16_t *)bq4_K->scales;
+    aux16[0] = a[0] & 0x0f0f;
+    aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+    const float dall = bq4_K->dm[0];
+    const float dmin = bq4_K->dm[1];
+
+    const float d8_1 = __low2float(bq8_1[0].ds);
+    const float d8_2 = __low2float(bq8_1[1].ds);
+
+    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+    const int * q4 = (const int *)bq4_K->qs + (iqs/2);
+    const int v1 = q4[0];
+    const int v2 = q4[4];
+
+    const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
+    const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
+    const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
+    const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+
+    sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
+    sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+
+    return dall * sumf_d - dmin * sumf_m;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+    int   vl[2];
+    int   vh[2];
+    int    u[2*QR5_K];
+    float d8[QR5_K];
+
+    const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
+    const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+    const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
+
+    vl[0] = ql[0];
+    vl[1] = ql[4];
+
+    vh[0] = qh[0] >> bq8_offset;
+    vh[1] = qh[4] >> bq8_offset;
+
+    const uint16_t * scales = (const uint16_t *)bq5_K->scales;
+    uint16_t aux[2];
+    const int j = bq8_offset/2;
+    if (j < 2) {
+        aux[0] = scales[j+0] & 0x3f3f;
+        aux[1] = scales[j+2] & 0x3f3f;
+    } else {
+        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+    }
+    const uint8_t * sc = (const uint8_t *)aux;
+    const uint8_t * m  = sc + 2;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K; ++i) {
+        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+        d8[i] = __low2float(bq8i->ds);
+
+        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+        u[2*i+0] = q8[0];
+        u[2*i+1] = q8[4];
+    }
+
+    return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+    const int8_t * s = bq5_K->scales;
+
+    const float d = bq5_K->d;
+
+    const float d8_1 = __low2half(bq8_1[0].ds);
+    const float d8_2 = __low2half(bq8_1[1].ds);
+
+    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+    const int * ql = (const int *)bq5_K->qs + (iqs/2);
+    const int vl1 = ql[0];
+    const int vl2 = ql[4];
+
+    const int step = 4 * (iqs/2); // 0, 4, 8, 12
+    const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
+    const int in = step%8; // 0, 4, 0, 4
+    const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
+
+    const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
+    const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
+    const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
+    const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
+
+    const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+                       + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
+
+    return d * sumf_d;
+
+#else
+    NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_q6_K * bq6_K = (const block_q6_K *) vbq;
+
+    const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
+    const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
+    const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
+
+    const int vl = get_int_from_uint8(bq6_K->ql, iqs);
+    const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
+
+    const int8_t * scales = bq6_K->scales + scale_offset;
+
+    int    u[QR6_K];
+    float d8[QR6_K];
+
+#pragma unroll
+    for (int i = 0; i < QR6_K; ++i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
+        d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
+    }
+
+    return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+    const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
+
+#if QR2_XXS == 8
+    const int ib32 = iqs;
+    const uint16_t * q2 = bq2->qs + 4*ib32;
+    const uint8_t  * aux8 = (const uint8_t *)q2;
+    const int8_t   * q8 = bq8_1[ib32].qs;
+    uint32_t aux32 = q2[2] | (q2[3] << 16);
+    int sumi = 0;
+    for (int l = 0; l < 4; ++l) {
+        const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
+        const uint8_t  signs = ksigns_iq2xs[aux32 & 127];
+        for (int j = 0; j < 8; ++j) {
+            sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
+        }
+        q8 += 8;
+        aux32 >>= 7;
+    }
+    const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
+    return d * sumi;
+#else
+    // iqs is 0...15
+    const int ib32 = iqs/2;
+    const int il = iqs%2;
+    const uint16_t * q2 = bq2->qs + 4*ib32;
+    const uint8_t  * aux8 = (const uint8_t *)q2;
+    const uint8_t  * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
+    const uint8_t  * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
+    const uint32_t aux32 = q2[2] | (q2[3] << 16);
+    const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
+    const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
+    const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
+    const int8_t * q8 = bq8_1[ib32].qs + 16*il;
+    int sumi1 = 0, sumi2 = 0;
+    for (int j = 0; j < 8; ++j) {
+        sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
+        sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
+    }
+    return d * (sumi1 + sumi2);
+#endif
+#else
+    NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+    const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
+
+    const int ib32 = iqs;
+    const uint16_t * q2 = bq2->qs + 4*ib32;
+    const int8_t   * q8 = bq8_1[ib32].qs;
+    const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+    const uint8_t ls2 = bq2->scales[ib32] >>  4;
+    int sumi1 = 0;
+    for (int l = 0; l < 2; ++l) {
+        const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+        const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+        const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+        const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+        sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+        sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+        q8 += 8;
+    }
+    int sumi2 = 0;
+    for (int l = 2; l < 4; ++l) {
+        const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+        const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+        const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+        const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+        sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+        sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+        q8 += 8;
+    }
+    const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+    return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+    GGML_UNUSED(ksigns64);
+    NO_DEVICE_CODE;
+#endif
+#else
+    GGML_UNUSED(ksigns64);
+    NO_DEVICE_CODE;
+#endif
+}
+
+// TODO
+static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+    const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
+
+    const int ib32 = iqs;
+    const int8_t  * q8 = bq8_1[ib32].qs;
+    const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
+    const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+    const uint8_t ls2 = bq2->scales[ib32] >>  4;
+    int sumi1 = 0;
+    for (int l = 0; l < 2; ++l) {
+        const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+        const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+        const uint32_t signs1 = __vcmpeq4(((signs[l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
+        const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+        const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+        sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+        sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+        q8 += 8;
+    }
+    int sumi2 = 0;
+    for (int l = 2; l < 4; ++l) {
+        const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+        const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+        const uint32_t signs1 = __vcmpeq4(((signs[l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
+        const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+        const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+        sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+        sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+        q8 += 8;
+    }
+    const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+    return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+    GGML_UNUSED(ksigns64);
+    NO_DEVICE_CODE;
+#endif
+#else
+    GGML_UNUSED(ksigns64);
+    NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+    const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
+
+    const int ib32 = iqs;
+    const uint8_t  * q3 = bq2->qs + 8*ib32;
+    const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
+    const int8_t   * q8 = bq8_1[ib32].qs;
+    uint32_t aux32 = gas[0] | (gas[1] << 16);
+    int sumi = 0;
+    for (int l = 0; l < 4; ++l) {
+        const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
+        const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
+        const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
+        const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
+        const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
+        sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+        sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+        q8 += 8;
+        aux32 >>= 7;
+    }
+    const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
+    return d * sumi;
+#else
+    NO_DEVICE_CODE;
+#endif
+#else
+    NO_DEVICE_CODE;
+#endif
+}
+
+// TODO: don't use lookup table for signs
+static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+    const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
+
+    const int ib32 = iqs;
+    const uint8_t  * qs = bq2->qs + 8*ib32;
+    const int8_t   * q8 = bq8_1[ib32].qs;
+    int sumi = 0;
+    for (int l = 0; l < 4; ++l) {
+        const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
+        const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
+        uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+        uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >>  4) * 0x01010101) & 0x08040201, 0x08040201);
+        const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
+        const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
+        sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+        sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+        q8 += 8;
+    }
+    const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
+    return d * sumi;
+#else
+    NO_DEVICE_CODE;
+#endif
+#else
+    NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+    const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
+
+    const int ib32 = iqs;
+    int sumi = 0;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    const int * q8 = (const int *)bq8_1[ib32].qs;
+    for (int l = 0; l < 4; ++l) {
+        const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+        int grid0 = grid[0] & 0x0f0f0f0f;
+        int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
+        sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
+    }
+#else
+    const int8_t * q8 = bq8_1[ib32].qs;
+    for (int l = 0; l < 4; ++l) {
+        const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+        for (int j = 0; j < 4; ++j) {
+            sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+        }
+        q8 += 8;
+    }
+#endif
+    const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
+    const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
+    const float d = d1q * __low2float (bq8_1[ib32].ds);
+    const float m = d1q * __high2float(bq8_1[ib32].ds);
+    return d * sumi + m * delta;
+#else
+    NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+    const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
+
+    const int ib32 = iqs;
+    int   sumi[2] = {0, 0};
+    float sumf[2] = {0.f, 0.f};
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    const int * q8 = (const int *)bq8_1[ib32].qs;
+    for (int l = 0; l < 4; ++l) {
+        const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
+        int grid0 = grid[0] & 0x0f0f0f0f;
+        int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
+        sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2]));
+        const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
+        const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0));
+        sumf[l/2] += delta*sumy;
+    }
+#else
+    const int8_t * q8 = bq8_1[ib32].qs;
+    for (int l = 0; l < 4; ++l) {
+        const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+        int sumy = 0;
+        for (int j = 0; j < 4; ++j) {
+            sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+            sumy += q8[j] + q8[j+4];
+        }
+        const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
+        sumf[l/2] += delta*sumy;
+        q8 += 8;
+    }
+#endif
+    iq1m_scale_t scale;
+    const uint16_t * sc = (const uint16_t *)bq1->scales;
+    scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+    const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
+    return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
+#else
+    NO_DEVICE_CODE;
+#endif
+}
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
+        int & val1, int & val2) {
+
+    uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
+    aux32 = q4 & 0x0f0f0f0f;
+    uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
+    uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
+    val1 = v1 | (v2 << 16);
+    aux32 = (q4 >> 4) & 0x0f0f0f0f;
+    v1 = values[q8[0]] | (values[q8[1]] << 8);
+    v2 = values[q8[2]] | (values[q8[3]] << 8);
+    val2 = v1 | (v2 << 16);
+}
+#endif
+
+static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+    const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+    const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
+    const int32_t  * q8 = (const int32_t  *)bq8_1->qs + iqs;
+
+    const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+    int v1, v2;
+    int sumi1 = 0, sumi2 = 0;
+    for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
+        const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
+        get_int_from_table_16(aux, values, v1, v2);
+        sumi1 = __dp4a(v1, q8[l+0], sumi1);
+        sumi2 = __dp4a(v2, q8[l+4], sumi2);
+    }
+
+#else
+    const uint8_t * q4 = bq->qs + 4*iqs;
+    const int8_t  * q8 = bq8_1->qs + 4*iqs;
+
+    int sumi1 = 0, sumi2 = 0;
+    for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
+        sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
+        sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >>  4];
+    }
+#endif
+    const float d = (float)bq->d * __low2float(bq8_1->ds);
+    return d * (sumi1 + sumi2);
+}
+
+static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
+    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#if QK_K == 256
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+
+    const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
+    const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+    // iqs is 0...7
+    const int ib32 = iqs;
+    const int32_t  * q8 = (const int *)bq8_1[ib32].qs;
+    const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
+    const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
+    const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
+    int v1, v2;
+    int sumi1 = 0, sumi2 = 0;
+    for (int j = 0; j < 4; ++j) {
+        get_int_from_table_16(q4[j], values, v1, v2);
+        sumi1 = __dp4a(v1, q8[j+0], sumi1);
+        sumi2 = __dp4a(v2, q8[j+4], sumi2);
+    }
+    return d * (sumi1 + sumi2);
+
+#else
+    NO_DEVICE_CODE;
+#endif
+#else
+    return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
+#endif
+}
index 4caf2c9e78b0281ffe19e0caa687f31c3c5f91c5..407062e6fd47625d6cb2f78e17649f64387d2866 100644 (file)
@@ -1430,6 +1430,10 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
             struct ggml_tensor * dst = gf->nodes[i];
             GGML_ASSERT(dst->data != nullptr);
 
+            if (ggml_is_empty(dst)) {
+                continue;
+            }
+
             switch (dst->op) {
                 case GGML_OP_NONE:
                 case GGML_OP_RESHAPE:
@@ -1951,6 +1955,7 @@ static struct ggml_backend_i kompute_backend_i = {
     /* .graph_plan_compute      = */ NULL,
     /* .graph_compute           = */ ggml_backend_kompute_graph_compute,
     /* .supports_op             = */ ggml_backend_kompute_supports_op,
+    /* .offload_op              = */ NULL,
     /* .event_new               = */ NULL,
     /* .event_free              = */ NULL,
     /* .event_record            = */ NULL,
index c3451a79b103f0b7a0b8b64c96db64f0ad747674..a08abbc2918028cc178d997a67946b8030295fd6 100644 (file)
@@ -64,6 +64,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
+    GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
     GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
@@ -91,6 +92,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
@@ -114,6 +116,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
@@ -134,6 +137,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
@@ -154,6 +158,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
     GGML_METAL_KERNEL_TYPE_ROPE_F32,
@@ -173,8 +178,9 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
     GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
     GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
-  //GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
-  //GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
+    GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
+    GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
+    GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
     GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
     GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
     GGML_METAL_KERNEL_TYPE_CONCAT,
@@ -489,6 +495,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,            get_rows_iq3_s,         true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,            get_rows_iq2_s,         true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,            get_rows_iq1_s,         true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,            get_rows_iq1_m,         true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,           get_rows_iq4_nl,        true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,           get_rows_iq4_xs,        true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,              get_rows_i32,           true);
@@ -516,6 +523,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,          mul_mv_iq3_s_f32,       ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,          mul_mv_iq2_s_f32,       ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,          mul_mv_iq1_s_f32,       ctx->support_simdgroup_reduction);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,          mul_mv_iq1_m_f32,       ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,         mul_mv_iq4_nl_f32,      ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,         mul_mv_iq4_xs_f32,      ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,         mul_mv_id_f32_f32,      ctx->support_simdgroup_reduction);
@@ -539,6 +547,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,       mul_mv_id_iq3_s_f32,    ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,       mul_mv_id_iq2_s_f32,    ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,       mul_mv_id_iq1_s_f32,    ctx->support_simdgroup_reduction);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,       mul_mv_id_iq1_m_f32,    ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,      mul_mv_id_iq4_nl_f32,   ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,      mul_mv_id_iq4_xs_f32,   ctx->support_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,            mul_mm_f32_f32,         ctx->support_simdgroup_mm);
@@ -559,6 +568,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,          mul_mm_iq3_s_f32,       ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,          mul_mm_iq2_s_f32,       ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,          mul_mm_iq1_s_f32,       ctx->support_simdgroup_mm);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,          mul_mm_iq1_m_f32,       ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,         mul_mm_iq4_nl_f32,      ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,         mul_mm_iq4_xs_f32,      ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,         mul_mm_id_f32_f32,      ctx->support_simdgroup_mm);
@@ -579,6 +589,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,       mul_mm_id_iq3_s_f32,    ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,       mul_mm_id_iq2_s_f32,    ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,       mul_mm_id_iq1_s_f32,    ctx->support_simdgroup_mm);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,       mul_mm_id_iq1_m_f32,    ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,      mul_mm_id_iq4_nl_f32,   ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,      mul_mm_id_iq4_xs_f32,   ctx->support_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32,                  rope_f32,               true);
@@ -598,8 +609,9 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,              cpy_f32_q8_0,           true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,              cpy_f32_q4_0,           true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,              cpy_f32_q4_1,           true);
-      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,              cpy_f32_q5_0,           true);
-      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,              cpy_f32_q5_1,           true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,              cpy_f32_q5_0,           true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,              cpy_f32_q5_1,           true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,            cpy_f32_iq4_nl,         true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16,               cpy_f16_f16,            true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32,               cpy_f16_f32,            true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT,                    concat,                 true);
@@ -739,6 +751,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
                            case GGML_TYPE_Q8_0:
                            case GGML_TYPE_Q4_0:
                            case GGML_TYPE_Q4_1:
+                           case GGML_TYPE_Q5_0:
+                           case GGML_TYPE_Q5_1:
+                           case GGML_TYPE_IQ4_NL:
                                 return true;
                            default:
                                 return false;
@@ -832,6 +847,10 @@ static enum ggml_status ggml_metal_graph_compute(
             struct ggml_tensor * src2 = gf->nodes[i]->src[2];
             struct ggml_tensor * dst  = gf->nodes[i];
 
+            if (ggml_is_empty(dst)) {
+                continue;
+            }
+
             switch (dst->op) {
                 case GGML_OP_NONE:
                 case GGML_OP_RESHAPE:
@@ -1387,6 +1406,14 @@ static enum ggml_status ggml_metal_graph_compute(
                             (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
                             //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
 
+                            // some Metal matrix data types require aligned pointers
+                            // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
+                            switch (src0->type) {
+                                case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
+                                case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8  == 0); break;
+                                default: break;
+                            }
+
                             id<MTLComputePipelineState> pipeline = nil;
 
                             switch (src0->type) {
@@ -1408,6 +1435,7 @@ static enum ggml_status ggml_metal_graph_compute(
                                 case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32  ].pipeline; break;
+                                case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
                                 case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
                                 default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
@@ -1562,6 +1590,12 @@ static enum ggml_status ggml_metal_graph_compute(
                                         nth1 = 16;
                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
                                     } break;
+                                case GGML_TYPE_IQ1_M:
+                                    {
+                                        nth0 = 4;
+                                        nth1 = 16;
+                                        pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
+                                    } break;
                                 case GGML_TYPE_IQ4_NL:
                                     {
                                         nth0 = 4;
@@ -1606,9 +1640,9 @@ static enum ggml_status ggml_metal_graph_compute(
                             [encoder setBytes:&r2   length:sizeof(r2)   atIndex:17];
                             [encoder setBytes:&r3   length:sizeof(r3)   atIndex:18];
 
-                            if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1  ||
-                                src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1  || src0t == GGML_TYPE_Q8_0 ||
-                                src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ2_S) {
+                            if (src0t == GGML_TYPE_Q4_0  || src0t == GGML_TYPE_Q4_1  || src0t == GGML_TYPE_Q5_0 ||
+                                src0t == GGML_TYPE_Q5_1  || src0t == GGML_TYPE_Q8_0  || src0t == GGML_TYPE_Q2_K ||
+                                src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                             }
                             else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
@@ -1701,6 +1735,14 @@ static enum ggml_status ggml_metal_graph_compute(
                             ne20 % 32 == 0 && ne20 >= 64 &&
                             ne11 > ne11_mm_min) {
 
+                            // some Metal matrix data types require aligned pointers
+                            // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
+                            switch (src0->type) {
+                                case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
+                                case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8  == 0); break;
+                                default: break;
+                            }
+
                             id<MTLComputePipelineState> pipeline = nil;
 
                             switch (src2->type) {
@@ -1722,6 +1764,7 @@ static enum ggml_status ggml_metal_graph_compute(
                                 case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32  ].pipeline; break;
+                                case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32  ].pipeline; break;
                                 case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
                                 case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
                                 default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
@@ -1879,6 +1922,12 @@ static enum ggml_status ggml_metal_graph_compute(
                                         nth1 = 16;
                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
                                     } break;
+                                case GGML_TYPE_IQ1_M:
+                                    {
+                                        nth0 = 4;
+                                        nth1 = 16;
+                                        pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
+                                    } break;
                                 case GGML_TYPE_IQ4_NL:
                                     {
                                         nth0 = 4;
@@ -1939,9 +1988,9 @@ static enum ggml_status ggml_metal_graph_compute(
                                 [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
                             }
 
-                            if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1  ||
-                                src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1  || src2t == GGML_TYPE_Q8_0 ||
-                                src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ2_S) {
+                            if (src2t == GGML_TYPE_Q4_0  || src2t == GGML_TYPE_Q4_1  || src2t == GGML_TYPE_Q5_0 ||
+                                src2t == GGML_TYPE_Q5_1  || src2t == GGML_TYPE_Q8_0  || src2t == GGML_TYPE_Q2_K ||
+                                src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ1_M || src2t == GGML_TYPE_IQ2_S) {
                                 [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                             }
                             else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
@@ -2003,6 +2052,7 @@ static enum ggml_status ggml_metal_graph_compute(
                             case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S  ].pipeline; break;
                             case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S  ].pipeline; break;
                             case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S  ].pipeline; break;
+                            case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M  ].pipeline; break;
                             case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
                             case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
                             case GGML_TYPE_I32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32    ].pipeline; break;
@@ -2431,13 +2481,14 @@ static enum ggml_status ggml_metal_graph_compute(
                                     GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
 
                                     switch (dstt) {
-                                        case GGML_TYPE_F16:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline;  break;
-                                        case GGML_TYPE_F32:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;  break;
-                                        case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
-                                        case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
-                                        case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
-                                      //case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
-                                      //case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
+                                        case GGML_TYPE_F16:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline;  break;
+                                        case GGML_TYPE_F32:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;  break;
+                                        case GGML_TYPE_Q8_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
+                                        case GGML_TYPE_Q4_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
+                                        case GGML_TYPE_Q4_1:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
+                                        case GGML_TYPE_Q5_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
+                                        case GGML_TYPE_Q5_1:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
+                                        case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
                                         default: GGML_ASSERT(false && "not implemented");
                                     };
                                 } break;
@@ -2837,6 +2888,7 @@ static struct ggml_backend_i ggml_backend_metal_i = {
     /* .graph_plan_compute      = */ NULL,
     /* .graph_compute           = */ ggml_backend_metal_graph_compute,
     /* .supports_op             = */ ggml_backend_metal_supports_op,
+    /* .offload_op              = */ NULL,
     /* .event_new               = */ NULL,
     /* .event_free              = */ NULL,
     /* .event_record            = */ NULL,
index 63de563251d8935c10668c0d5d0177a58cc436a3..744b2a8b4ce42c3e5982aceb478617ad7e1258a5 100644 (file)
@@ -2388,6 +2388,242 @@ kernel void kernel_cpy_f32_q4_1(
     }
 }
 
+kernel void kernel_cpy_f32_q5_0(
+        device const float * src0,
+        device        void * dst,
+        constant   int64_t & ne00,
+        constant   int64_t & ne01,
+        constant   int64_t & ne02,
+        constant   int64_t & ne03,
+        constant  uint64_t & nb00,
+        constant  uint64_t & nb01,
+        constant  uint64_t & nb02,
+        constant  uint64_t & nb03,
+        constant   int64_t & ne0,
+        constant   int64_t & ne1,
+        constant   int64_t & ne2,
+        constant   int64_t & ne3,
+        constant  uint64_t & nb0,
+        constant  uint64_t & nb1,
+        constant  uint64_t & nb2,
+        constant  uint64_t & nb3,
+        uint3 tgpig[[threadgroup_position_in_grid]],
+        uint3 tpitg[[thread_position_in_threadgroup]],
+        uint3   ntg[[threads_per_threadgroup]]) {
+    const int64_t i03 = tgpig[2];
+    const int64_t i02 = tgpig[1];
+    const int64_t i01 = tgpig[0];
+
+    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+    const int64_t i3 = n / (ne2*ne1*ne0);
+    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0;
+
+    device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+    for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) {
+        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+        float amax = 0.0f; // absolute max
+        float max  = 0.0f;
+
+        for (int j = 0; j < QK5_0; j++) {
+            const float v = src[j];
+            if (amax < fabs(v)) {
+                amax = fabs(v);
+                max  = v;
+            }
+        }
+
+        const float d = max / -16;
+        const float id = d ? 1.0f/d : 0.0f;
+
+        dst_data[i00/QK5_0].d = d;
+
+        uint32_t qh = 0;
+        for (int j = 0; j < QK5_0/2; ++j) {
+            const float x0 = src[0       + j]*id;
+            const float x1 = src[QK5_0/2 + j]*id;
+
+            const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
+            const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
+
+            dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+            qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
+        }
+        thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
+        for (int j = 0; j < 4; ++j) {
+            dst_data[i00/QK5_0].qh[j] = qh8[j];
+        }
+    }
+}
+
+kernel void kernel_cpy_f32_q5_1(
+        device const float * src0,
+        device        void * dst,
+        constant   int64_t & ne00,
+        constant   int64_t & ne01,
+        constant   int64_t & ne02,
+        constant   int64_t & ne03,
+        constant  uint64_t & nb00,
+        constant  uint64_t & nb01,
+        constant  uint64_t & nb02,
+        constant  uint64_t & nb03,
+        constant   int64_t & ne0,
+        constant   int64_t & ne1,
+        constant   int64_t & ne2,
+        constant   int64_t & ne3,
+        constant  uint64_t & nb0,
+        constant  uint64_t & nb1,
+        constant  uint64_t & nb2,
+        constant  uint64_t & nb3,
+        uint3 tgpig[[threadgroup_position_in_grid]],
+        uint3 tpitg[[thread_position_in_threadgroup]],
+        uint3   ntg[[threads_per_threadgroup]]) {
+    const int64_t i03 = tgpig[2];
+    const int64_t i02 = tgpig[1];
+    const int64_t i01 = tgpig[0];
+
+    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+    const int64_t i3 = n / (ne2*ne1*ne0);
+    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1;
+
+    device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+    for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) {
+        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+        float max = src[0];
+        float min = src[0];
+
+        for (int j = 1; j < QK5_1; j++) {
+            const float v = src[j];
+            min = v < min ? v : min;
+            max = v > max ? v : max;
+        }
+
+        const float d = (max - min) / 31;
+        const float id = d ? 1.0f/d : 0.0f;
+
+        dst_data[i00/QK5_1].d = d;
+        dst_data[i00/QK5_1].m = min;
+
+        uint32_t qh = 0;
+        for (int j = 0; j < QK5_1/2; ++j) {
+            const float x0 = (src[0       + j] - min)*id;
+            const float x1 = (src[QK5_1/2 + j] - min)*id;
+
+            const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
+            const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
+
+            dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+            qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
+        }
+        thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
+        for (int j = 0; j < 4; ++j) {
+            dst_data[i00/QK5_1].qh[j] = qh8[j];
+        }
+    }
+}
+
+static inline int best_index_int8(int n, constant float * val, float x) {
+    if (x <= val[0]) return 0;
+    if (x >= val[n-1]) return n-1;
+    int ml = 0, mu = n-1;
+    while (mu-ml > 1) {
+        int mav = (ml+mu)/2;
+        if (x < val[mav]) mu = mav; else ml = mav;
+    }
+    return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
+}
+
+constexpr constant static float kvalues_iq4nl_f[16] = {
+    -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
+};
+
+kernel void kernel_cpy_f32_iq4_nl(
+        device const float * src0,
+        device        void * dst,
+        constant   int64_t & ne00,
+        constant   int64_t & ne01,
+        constant   int64_t & ne02,
+        constant   int64_t & ne03,
+        constant  uint64_t & nb00,
+        constant  uint64_t & nb01,
+        constant  uint64_t & nb02,
+        constant  uint64_t & nb03,
+        constant   int64_t & ne0,
+        constant   int64_t & ne1,
+        constant   int64_t & ne2,
+        constant   int64_t & ne3,
+        constant  uint64_t & nb0,
+        constant  uint64_t & nb1,
+        constant  uint64_t & nb2,
+        constant  uint64_t & nb3,
+        uint3 tgpig[[threadgroup_position_in_grid]],
+        uint3 tpitg[[thread_position_in_threadgroup]],
+        uint3   ntg[[threads_per_threadgroup]]) {
+    const int64_t i03 = tgpig[2];
+    const int64_t i02 = tgpig[1];
+    const int64_t i01 = tgpig[0];
+
+    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+    const int64_t i3 = n / (ne2*ne1*ne0);
+    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL;
+
+    device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+    for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) {
+        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+        float amax = 0.0f; // absolute max
+        float max  = 0.0f;
+
+        for (int j = 0; j < QK4_0; j++) {
+            const float v = src[j];
+            if (amax < fabs(v)) {
+                amax = fabs(v);
+                max  = v;
+            }
+        }
+
+        const float d = max / kvalues_iq4nl_f[0];
+        const float id = d ? 1.0f/d : 0.0f;
+
+        float sumqx = 0, sumq2 = 0;
+        for (int j = 0; j < QK4_NL/2; ++j) {
+            const float x0 = src[0        + j]*id;
+            const float x1 = src[QK4_NL/2 + j]*id;
+
+            const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
+            const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
+
+            dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
+
+            const float v0 = kvalues_iq4nl_f[xi0];
+            const float v1 = kvalues_iq4nl_f[xi1];
+            const float w0 = src[0        + j]*src[0        + j];
+            const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
+            sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
+            sumq2 += w0*v0*v0 + w1*v1*v1;
+
+        }
+
+        dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
+
+    }
+}
+
 kernel void kernel_concat(
     device  const char * src0,
     device  const char * src1,
@@ -4220,9 +4456,113 @@ void kernel_mul_mv_iq1_s_f32_impl(
     }
 }
 
-constexpr constant static float kvalues_iq4nl_f[16] = {
-    -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
-};
+void kernel_mul_mv_iq1_m_f32_impl(
+        device const  void * src0,
+        device const float * src1,
+        device       float * dst,
+        constant   int64_t & ne00,
+        constant   int64_t & ne01,
+        constant   int64_t & ne02,
+        constant   int64_t & ne10,
+        constant   int64_t & ne12,
+        constant   int64_t & ne0,
+        constant   int64_t & ne1,
+        constant   uint    & r2,
+        constant   uint    & r3,
+        uint3 tgpig[[threadgroup_position_in_grid]],
+        uint  tiisg[[thread_index_in_simdgroup]],
+        uint  sgitg[[simdgroup_index_in_threadgroup]]) {
+
+    const int nb = ne00/QK_K;
+    const int r0 = tgpig.x;
+    const int r1 = tgpig.y;
+    const int im = tgpig.z;
+
+    const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
+    const int ib_row = first_row * nb;
+
+    const uint i12 = im%ne12;
+    const uint i13 = im/ne12;
+
+    const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+    device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0;
+    device const float       * y = (device const float       *) src1 + r1*ne10 + im*ne00*ne1;
+
+    float yl[32];
+    float sumf[N_DST]={0.f}, all_sum;
+
+    const int nb32 = nb * (QK_K / 32);
+
+    const int ix = tiisg;
+
+    device const float * y4 = y + 32 * ix;
+
+#if QK_K != 64
+    iq1m_scale_t scale;
+#endif
+
+    for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
+
+        float4 sumy = {0.f};
+        for (int i = 0; i < 8; ++i) {
+            yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
+            yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
+            yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
+            yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
+        }
+
+        const int ibl = ib32 / (QK_K / 32);
+        const int ib  = ib32 % (QK_K / 32);
+
+        device const block_iq1_m * xr = x + ibl;
+        device const uint8_t  * qs = xr->qs + 4 * ib;
+        device const uint8_t  * qh = xr->qh + 2 * ib;
+        device const uint16_t * sc = (device const uint16_t *)xr->scales;
+
+        for (int row = 0; row < N_DST; row++) {
+
+#if QK_K != 64
+            scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+#endif
+
+            constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
+            constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
+            constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
+            constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
+
+            float2 sum = {0.f};
+            for (int j = 0; j < 4; ++j) {
+                sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
+                        + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
+                sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
+                        + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
+            }
+            const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
+            const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
+#if QK_K == 64
+            const float d = (float) *((device const half *)(sc - 1));
+            sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
+                              (sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
+#else
+            sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
+                                             (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
+#endif
+
+            sc += nb*sizeof(block_iq1_m)/2;
+            qs += nb*sizeof(block_iq1_m);
+            qh += nb*sizeof(block_iq1_m);
+        }
+
+        y4 += 32 * 32;
+    }
+
+    for (int row = 0; row < N_DST; ++row) {
+        all_sum = simd_sum(sumf[row]);
+        if (tiisg == 0) {
+            dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
+        }
+    }
+}
 
 void kernel_mul_mv_iq4_nl_f32_impl(
         device const  void * src0,
@@ -4441,6 +4781,34 @@ kernel void kernel_mul_mv_iq1_s_f32(
     kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
 }
 
+[[host_name("kernel_mul_mv_iq1_m_f32")]]
+kernel void kernel_mul_mv_iq1_m_f32(
+        device const  void * src0,
+        device const float * src1,
+        device       float * dst,
+        constant   int64_t & ne00,
+        constant   int64_t & ne01,
+        constant   int64_t & ne02,
+        constant  uint64_t & nb00,
+        constant  uint64_t & nb01,
+        constant  uint64_t & nb02,
+        constant   int64_t & ne10,
+        constant   int64_t & ne11,
+        constant   int64_t & ne12,
+        constant  uint64_t & nb10,
+        constant  uint64_t & nb11,
+        constant  uint64_t & nb12,
+        constant   int64_t & ne0,
+        constant   int64_t & ne1,
+        constant   uint    & r2,
+        constant   uint    & r3,
+        uint3 tgpig[[threadgroup_position_in_grid]],
+        uint  tiisg[[thread_index_in_simdgroup]],
+        uint  sgitg[[simdgroup_index_in_threadgroup]]) {
+
+    kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
 [[host_name("kernel_mul_mv_iq4_nl_f32")]]
 kernel void kernel_mul_mv_iq4_nl_f32(
         device const  void * src0,
@@ -4914,6 +5282,38 @@ void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 &
     }
 }
 
+template <typename type4x4>
+void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
+    // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
+    const int ib32 = il/2;
+    il = il%2;
+    device const uint16_t * sc = (device const uint16_t *)xb->scales;
+#if QK_K == 64
+    const float d = xb->d;
+#else
+    iq1m_scale_t scale;
+    scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+    const float d = scale.f16;
+#endif
+    device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
+    device const uint8_t * qh = xb->qh + 2*ib32 + il;
+#if QK_K == 64
+    const float dl  = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
+#else
+    const float dl  = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
+#endif
+    const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
+    const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
+    constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
+    constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
+    for (int i = 0; i < 4; ++i) {
+        reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
+        reg[1][i] = dl * (grid1[i] >>  4) + ml1;
+        reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
+        reg[3][i] = dl * (grid2[i] >>  4) + ml2;
+    }
+}
+
 template <typename type4x4>
 void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
     device const uint16_t * q4 = (device const uint16_t *)xb->qs;
@@ -5498,6 +5898,7 @@ template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_r
 template [[host_name("kernel_get_rows_iq3_s")]]   kernel get_rows_t kernel_get_rows<block_iq3_s,   QK_NL, dequantize_iq3_s>;
 template [[host_name("kernel_get_rows_iq2_s")]]   kernel get_rows_t kernel_get_rows<block_iq2_s,   QK_NL, dequantize_iq2_s>;
 template [[host_name("kernel_get_rows_iq1_s")]]   kernel get_rows_t kernel_get_rows<block_iq1_s,   QK_NL, dequantize_iq1_s>;
+template [[host_name("kernel_get_rows_iq1_m")]]   kernel get_rows_t kernel_get_rows<block_iq1_m,   QK_NL, dequantize_iq1_m>;
 template [[host_name("kernel_get_rows_iq4_nl")]]  kernel get_rows_t kernel_get_rows<block_iq4_nl,  2,     dequantize_iq4_nl>;
 #if QK_K == 64
 template [[host_name("kernel_get_rows_iq4_xs")]]  kernel get_rows_t kernel_get_rows<block_iq4_xs,  2,     dequantize_iq4_xs>;
@@ -5528,24 +5929,25 @@ typedef void (mat_mm_t)(
         threadgroup   uchar *,
         uint3, uint, uint);
 
-template [[host_name("kernel_mul_mm_f32_f32")]]  kernel mat_mm_t kernel_mul_mm<float4x4,   1,     dequantize_f32>;
-template [[host_name("kernel_mul_mm_f16_f32")]]  kernel mat_mm_t kernel_mul_mm<half4x4,    1,     dequantize_f16>;
-template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2,     dequantize_q4_0>;
-template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2,     dequantize_q4_1>;
-template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2,     dequantize_q5_0>;
-template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2,     dequantize_q5_1>;
-template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2,     dequantize_q8_0>;
-template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
-template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
-template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
-template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
-template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
+template [[host_name("kernel_mul_mm_f32_f32")]]     kernel mat_mm_t kernel_mul_mm<float4x4,      1,     dequantize_f32>;
+template [[host_name("kernel_mul_mm_f16_f32")]]     kernel mat_mm_t kernel_mul_mm<half4x4,       1,     dequantize_f16>;
+template [[host_name("kernel_mul_mm_q4_0_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q4_0,    2,     dequantize_q4_0>;
+template [[host_name("kernel_mul_mm_q4_1_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q4_1,    2,     dequantize_q4_1>;
+template [[host_name("kernel_mul_mm_q5_0_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q5_0,    2,     dequantize_q5_0>;
+template [[host_name("kernel_mul_mm_q5_1_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q5_1,    2,     dequantize_q5_1>;
+template [[host_name("kernel_mul_mm_q8_0_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q8_0,    2,     dequantize_q8_0>;
+template [[host_name("kernel_mul_mm_q2_K_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q2_K,    QK_NL, dequantize_q2_K>;
+template [[host_name("kernel_mul_mm_q3_K_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q3_K,    QK_NL, dequantize_q3_K>;
+template [[host_name("kernel_mul_mm_q4_K_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q4_K,    QK_NL, dequantize_q4_K>;
+template [[host_name("kernel_mul_mm_q5_K_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q5_K,    QK_NL, dequantize_q5_K>;
+template [[host_name("kernel_mul_mm_q6_K_f32")]]    kernel mat_mm_t kernel_mul_mm<block_q6_K,    QK_NL, dequantize_q6_K>;
 template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
 template [[host_name("kernel_mul_mm_iq2_xs_f32")]]  kernel mat_mm_t kernel_mul_mm<block_iq2_xs,  QK_NL, dequantize_iq2_xs>;
 template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
 template [[host_name("kernel_mul_mm_iq3_s_f32")]]   kernel mat_mm_t kernel_mul_mm<block_iq3_s,   QK_NL, dequantize_iq3_s>;
 template [[host_name("kernel_mul_mm_iq2_s_f32")]]   kernel mat_mm_t kernel_mul_mm<block_iq2_s,   QK_NL, dequantize_iq2_s>;
 template [[host_name("kernel_mul_mm_iq1_s_f32")]]   kernel mat_mm_t kernel_mul_mm<block_iq1_s,   QK_NL, dequantize_iq1_s>;
+template [[host_name("kernel_mul_mm_iq1_m_f32")]]   kernel mat_mm_t kernel_mul_mm<block_iq1_m,   QK_NL, dequantize_iq1_m>;
 template [[host_name("kernel_mul_mm_iq4_nl_f32")]]  kernel mat_mm_t kernel_mul_mm<block_iq4_nl,  2,     dequantize_iq4_nl>;
 #if QK_K == 64
 template [[host_name("kernel_mul_mm_iq4_xs_f32")]]  kernel mat_mm_t kernel_mul_mm<block_iq4_nl,  2,     dequantize_iq4_xs>;
@@ -5588,24 +5990,25 @@ typedef void (mat_mm_id_t)(
         threadgroup    uchar *,
         uint3, uint, uint);
 
-template [[host_name("kernel_mul_mm_id_f32_f32")]]  kernel mat_mm_id_t kernel_mul_mm_id<float4x4,   1,     dequantize_f32>;
-template [[host_name("kernel_mul_mm_id_f16_f32")]]  kernel mat_mm_id_t kernel_mul_mm_id<half4x4,    1,     dequantize_f16>;
-template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2,     dequantize_q4_0>;
-template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2,     dequantize_q4_1>;
-template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2,     dequantize_q5_0>;
-template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2,     dequantize_q5_1>;
-template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2,     dequantize_q8_0>;
-template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
-template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
-template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
-template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
-template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
+template [[host_name("kernel_mul_mm_id_f32_f32")]]     kernel mat_mm_id_t kernel_mul_mm_id<float4x4,      1,     dequantize_f32>;
+template [[host_name("kernel_mul_mm_id_f16_f32")]]     kernel mat_mm_id_t kernel_mul_mm_id<half4x4,       1,     dequantize_f16>;
+template [[host_name("kernel_mul_mm_id_q4_0_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0,    2,     dequantize_q4_0>;
+template [[host_name("kernel_mul_mm_id_q4_1_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1,    2,     dequantize_q4_1>;
+template [[host_name("kernel_mul_mm_id_q5_0_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0,    2,     dequantize_q5_0>;
+template [[host_name("kernel_mul_mm_id_q5_1_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1,    2,     dequantize_q5_1>;
+template [[host_name("kernel_mul_mm_id_q8_0_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0,    2,     dequantize_q8_0>;
+template [[host_name("kernel_mul_mm_id_q2_K_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K,    QK_NL, dequantize_q2_K>;
+template [[host_name("kernel_mul_mm_id_q3_K_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K,    QK_NL, dequantize_q3_K>;
+template [[host_name("kernel_mul_mm_id_q4_K_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K,    QK_NL, dequantize_q4_K>;
+template [[host_name("kernel_mul_mm_id_q5_K_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K,    QK_NL, dequantize_q5_K>;
+template [[host_name("kernel_mul_mm_id_q6_K_f32")]]    kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K,    QK_NL, dequantize_q6_K>;
 template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
 template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]]  kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs,  QK_NL, dequantize_iq2_xs>;
 template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
 template [[host_name("kernel_mul_mm_id_iq3_s_f32")]]   kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s,   QK_NL, dequantize_iq3_s>;
 template [[host_name("kernel_mul_mm_id_iq2_s_f32")]]   kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s,   QK_NL, dequantize_iq2_s>;
 template [[host_name("kernel_mul_mm_id_iq1_s_f32")]]   kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s,   QK_NL, dequantize_iq1_s>;
+template [[host_name("kernel_mul_mm_id_iq1_m_f32")]]   kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m,   QK_NL, dequantize_iq1_m>;
 template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]]  kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl,  2,     dequantize_iq4_nl>;
 #if QK_K == 64
 template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]]  kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs,  2,     dequantize_iq4_xs>;
@@ -6773,6 +7176,69 @@ kernel void kernel_mul_mv_id_iq1_s_f32(
         sgitg);
 }
 
+[[host_name("kernel_mul_mv_id_iq1_m_f32")]]
+kernel void kernel_mul_mv_id_iq1_m_f32(
+        device const    char * ids,
+        device const    char * src1,
+        device         float * dst,
+        constant    uint64_t & nbi1,
+        constant     int64_t & ne00,
+        constant     int64_t & ne01,
+        constant     int64_t & ne02,
+        constant    uint64_t & nb00,
+        constant    uint64_t & nb01,
+        constant    uint64_t & nb02,
+        constant     int64_t & ne10,
+        constant     int64_t & ne11,
+        constant     int64_t & ne12,
+        constant     int64_t & ne13,
+        constant    uint64_t & nb10,
+        constant    uint64_t & nb11,
+        constant    uint64_t & nb12,
+        constant     int64_t & ne0,
+        constant     int64_t & ne1,
+        constant    uint64_t & nb1,
+        constant        uint & r2,
+        constant        uint & r3,
+        constant         int & idx,
+        device const    char * src00,
+        device const    char * src01,
+        device const    char * src02,
+        device const    char * src03,
+        device const    char * src04,
+        device const    char * src05,
+        device const    char * src06,
+        device const    char * src07,
+        uint3                  tgpig[[threadgroup_position_in_grid]],
+        uint                   tiitg[[thread_index_in_threadgroup]],
+        uint                   tiisg[[thread_index_in_simdgroup]],
+        uint                   sgitg[[simdgroup_index_in_threadgroup]]) {
+    device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+    const int64_t bid = tgpig.z/(ne12*ne13);
+
+    tgpig.z = tgpig.z%(ne12*ne13);
+
+    const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+    kernel_mul_mv_iq1_m_f32_impl(
+        src0[id],
+        (device const float *) (src1 + bid*nb11),
+        dst + bid*ne0,
+        ne00,
+        ne01,
+        ne02,
+        ne10,
+        ne12,
+        ne0,
+        ne1,
+        r2,
+        r3,
+        tgpig,
+        tiisg,
+        sgitg);
+}
+
 [[host_name("kernel_mul_mv_id_iq4_nl_f32")]]
 kernel void kernel_mul_mv_id_iq4_nl_f32(
         device const    char * ids,
index aa73d67df84b04197700e727e2b02693edf84591..b3f8b7eaf0a3b8f7e7ebfa5389611e9b1a165cf8 100644 (file)
@@ -2234,6 +2234,11 @@ static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(gg
 static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
     for (int i = 0; i < graph->n_nodes; ++i) {
         ggml_tensor * node = graph->nodes[i];
+
+        if (ggml_is_empty(node)) {
+            continue;
+        }
+
         switch (node->op) {
             case GGML_OP_MUL_MAT:
                 ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
index 109dd6660d856ae4f5eebb71005d3386877ab581..f2e6c4bd1a3216b21a2d071bc0c60ce22c9ab777 100644 (file)
@@ -132,7 +132,7 @@ static inline __m256 sum_i16_pairs_float(const __m256i x) {
 }
 
 static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
-#if __AVXVNNI__
+#if defined(__AVXVNNI__) || defined(__AVX512VNNI__)
     const __m256i zero = _mm256_setzero_si256();
     const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
     return _mm256_cvtepi32_ps(summed_pairs);
@@ -3474,6 +3474,65 @@ void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, in
     }
 }
 
+void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    float delta[4];
+    uint16_t idx[4];
+
+#if QK_K != 64
+    iq1m_scale_t scale;
+#endif
+
+    for (int i = 0; i < nb; i++) {
+
+        const uint16_t * sc = (const uint16_t *)x[i].scales;
+#if QK_K == 64
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+#else
+        scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+        const float d = GGML_FP16_TO_FP32(scale.f16);
+#endif
+        const uint8_t * qs = x[i].qs;
+        const uint8_t * qh = x[i].qh;
+
+        for (int ib = 0; ib < QK_K/32; ++ib) {
+#if QK_K == 64
+            const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1);
+            const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1);
+#else
+            const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
+            const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
+#endif
+            idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
+            idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
+            idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
+            idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
+            delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
+            delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
+            delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
+            delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
+            for (int l = 0; l < 2; ++l) {
+                const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
+                for (int j = 0; j < 8; ++j) {
+                    y[j] = dl1 * (grid[j] + delta[l]);
+                }
+                y += 8;
+            }
+            for (int l = 2; l < 4; ++l) {
+                const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
+                for (int j = 0; j < 8; ++j) {
+                    y[j] = dl2 * (grid[j] + delta[l]);
+                }
+                y += 8;
+            }
+            qs += 4;
+            qh += 2;
+        }
+    }
+}
+
 static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
 
 void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
@@ -9695,6 +9754,248 @@ void ggml_vec_dot_iq1_s_q8_K  (int n, float * restrict s, size_t bs, const void
 #endif
 }
 
+void ggml_vec_dot_iq1_m_q8_K  (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
+    assert(n % QK_K == 0);
+    assert(nrc == 1);
+    UNUSED(nrc);
+    UNUSED(bx);
+    UNUSED(by);
+    UNUSED(bs);
+
+    const block_iq1_m * restrict x = vx;
+    const block_q8_K  * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#if QK_K != 64
+    iq1m_scale_t scale;
+#endif
+
+#if defined __ARM_NEON
+
+#if QK_K == 64
+    const int32x4_t mask  = vdupq_n_s32(0xf);
+#else
+    const int32x4_t mask  = vdupq_n_s32(0x7);
+#endif
+    const int32x4_t mone  = vdupq_n_s32(1);
+    const int32x4_t mzero = vdupq_n_s32(0);
+
+    ggml_int8x16x4_t deltas;
+    deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
+    deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
+    deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
+    deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
+
+    ggml_int8x16x4_t q1b;
+    ggml_int8x16x4_t q8b;
+
+    uint32_t aux32;
+    const uint8_t * aux8 = (const uint8_t *)&aux32;
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+
+        const int8_t   * q8 = y[i].qs;
+        const uint8_t  * qs = x[i].qs;
+        const uint8_t  * qh = x[i].qh;
+        const uint16_t * sc = (const uint16_t *)x[i].scales;
+
+#if QK_K != 64
+        scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+#endif
+
+        int32x4_t sumi1 = mzero;
+        int32x4_t sumi2 = mzero;
+
+        for (int ib = 0; ib < QK_K/32; ib += 2) {
+
+            q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
+                                     vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
+            q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
+                                     vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
+            q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
+                                     vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
+            q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
+                                     vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
+
+            q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
+
+            const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
+            const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
+            const int32x4_t p12 = vpaddq_s32(p1, p2);
+
+            const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
+            aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
+
+            const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
+            const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
+            const int32x4_t p34 = vpaddq_s32(p3, p4);
+
+#if QK_K == 64
+            int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12);
+#else
+            int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
+#endif
+            scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
+
+            sumi1 = vmlaq_s32(sumi1, scales_4, p12);
+            sumi2 = vmlaq_s32(sumi2, scales_4, p34);
+
+            qs += 8; qh += 4;
+
+        }
+
+#if QK_K == 64
+        sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
+#else
+        sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
+#endif
+    }
+
+    *s = sumf;
+
+#elif defined __AVX2__
+
+#if QK_K == 64
+    const __m256i mask = _mm256_set1_epi16(0xf);
+#else
+    const __m256i mask = _mm256_set1_epi16(0x7);
+#endif
+    const __m256i mone = _mm256_set1_epi16(1);
+
+    __m256 accum1 = _mm256_setzero_ps();
+    __m256 accum2 = _mm256_setzero_ps();
+    for (int i = 0; i < nb; ++i) {
+
+        const int8_t   * q8 = y[i].qs;
+        const uint8_t  * qs = x[i].qs;
+        const uint8_t  * qh = x[i].qh;
+        const uint16_t * sc = (const uint16_t *)x[i].scales;
+
+#if QK_K != 64
+        scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+#endif
+
+        __m256i sumi1 = _mm256_setzero_si256();
+        __m256i sumi2 = _mm256_setzero_si256();
+        for (int ib = 0; ib < QK_K/32; ib += 2) {
+            const __m256i q1b_1 = _mm256_set_epi64x(
+                    iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
+                    iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
+            );
+            const __m256i q1b_2 = _mm256_set_epi64x(
+                    iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
+                    iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
+            );
+            const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+            const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
+            const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
+
+            const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
+            const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
+                                                     qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
+
+            const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
+            const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
+#if QK_K == 64
+            __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >>  4), _mm_set1_epi16(sc[0] >> 0));
+            __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8));
+#else
+            __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
+            __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
+#endif
+            scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
+            scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
+            const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
+            const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
+            const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
+            const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
+
+            sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
+            sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
+
+            qs += 8; qh += 4;
+        }
+
+#if QK_K == 64
+        const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
+#else
+        const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
+#endif
+        accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
+        accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
+
+    }
+
+    *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
+
+#else
+
+    int sum1[2], sum2[2], delta[4];
+
+    float sumf = 0;
+    for (int i = 0; i < nb; i++) {
+
+        const int8_t   * q8 = y[i].qs;
+        const uint8_t  * qs = x[i].qs;
+        const uint8_t  * qh = x[i].qh;
+        const uint16_t * sc = (const uint16_t *)x[i].scales;
+
+#if QK_K != 64
+        scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+#endif
+
+        int sumi1 = 0, sumi2 = 0;
+        for (int ib = 0; ib < QK_K/32; ++ib) {
+            delta[0] = qh[0] & 0x08 ? -1 : 1;
+            delta[1] = qh[0] & 0x80 ? -1 : 1;
+            delta[2] = qh[1] & 0x08 ? -1 : 1;
+            delta[3] = qh[1] & 0x80 ? -1 : 1;
+            sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
+            for (int l = 0; l < 4; ++l) {
+                const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
+                int lsum1 = 0, lsum2 = 0;
+                for (int j = 0; j < 8; ++j) {
+                    lsum1 += q8[j] * grid[j];
+                    lsum2 += q8[j];
+                }
+                q8 += 8;
+                sum1[l/2] += lsum1;
+                sum2[l/2] += lsum2*delta[l];
+            }
+#if QK_K == 64
+            const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1;
+            const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1;
+#else
+            const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
+            const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
+#endif
+            sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
+            sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
+            qs += 4;
+            qh += 2;
+        }
+
+#if QK_K == 64
+        sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
+#else
+        sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
+#endif
+    }
+
+    *s = sumf;
+
+#endif
+}
+
 void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
     assert(nrc == 1);
     UNUSED(nrc);
@@ -9938,17 +10239,17 @@ static iq2_entry_t iq2_data[4] = {
 };
 
 static inline int iq2_data_index(enum ggml_type type) {
-    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
+    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
     return type == GGML_TYPE_IQ2_XXS ? 0 :
            type == GGML_TYPE_IQ2_XS  ? 1 :
-           type == GGML_TYPE_IQ1_S   ? 2 : 3;
+           type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
 }
 
 static inline int iq2_grid_size(enum ggml_type type) {
-    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
+    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
     return type == GGML_TYPE_IQ2_XXS ? 256 :
            type == GGML_TYPE_IQ2_XS  ? 512 :
-           type == GGML_TYPE_IQ1_S   ? NGRID_IQ1S : 1024;
+           type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
 }
 
 static int iq2_compare_func(const void * left, const void * right) {
@@ -10214,10 +10515,10 @@ void iq2xs_init_impl(enum ggml_type type) {
 
     const int kmap_size = 43692;
     //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
-    const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
+    const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
     const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
                              type == GGML_TYPE_IQ2_XS  ? kgrid_2bit_512 :
-                             type == GGML_TYPE_IQ1_S   ? kgrid_1bit_2048 : kgrid_2bit_1024;
+                             type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
     uint64_t * kgrid_q2xs;
     int      * kmap_q2xs;
     uint16_t * kneighbors_q2xs;
@@ -10314,7 +10615,7 @@ void iq2xs_init_impl(enum ggml_type type) {
 }
 
 void iq2xs_free_impl(enum ggml_type type) {
-    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
+    GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
     const int gindex = iq2_data_index(type);
     if (iq2_data[gindex].grid) {
         free(iq2_data[gindex].grid);       iq2_data[gindex].grid = NULL;
@@ -11520,7 +11821,16 @@ static int iq1_sort_helper(const void * left, const void * right) {
 }
 
 #define IQ1S_BLOCK_SIZE 32
-static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
+#define IQ1M_BLOCK_SIZE 16
+static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights,
+        float    * scales,
+        float    * weight,
+        float    * sumx,
+        float    * sumw,
+        float    * pairs,
+        int8_t   * L,
+        uint16_t * index,
+        int8_t   * shifts) {
 
     const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
 
@@ -11534,22 +11844,17 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
     GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
     GGML_ASSERT(n%QK_K == 0);
 
+    block_iq1_s * y = vy;
+
     const int nbl = n/QK_K;
 
-    block_iq1_s * y = vy;
+    const int block_size = IQ1S_BLOCK_SIZE;
 
     const float x_p[3] = {-1 + IQ1S_DELTA,  IQ1S_DELTA, 1 + IQ1S_DELTA};
     const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
 
-    float  scales[QK_K/IQ1S_BLOCK_SIZE];
-    float  weight[IQ1S_BLOCK_SIZE];
-    int8_t L[IQ1S_BLOCK_SIZE];
-    float  sumx[IQ1S_BLOCK_SIZE+1];
-    float  sumw[IQ1S_BLOCK_SIZE+1];
-    float  pairs[2*IQ1S_BLOCK_SIZE];
+
     int * idx = (int *)(pairs + 1);
-    uint16_t index[IQ1S_BLOCK_SIZE/8];
-    int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
 
     for (int ibl = 0; ibl < nbl; ++ibl) {
 
@@ -11564,15 +11869,15 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
         float sigma2 = 2*sumx2/QK_K;
 
-        for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
-            const float * xb = xbl + IQ1S_BLOCK_SIZE*ib;
-            const float * qw = quant_weights + QK_K*ibl + IQ1S_BLOCK_SIZE*ib;
-            for (int i = 0; i < IQ1S_BLOCK_SIZE; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
+        for (int ib = 0; ib < QK_K/block_size; ++ib) {
+            const float * xb = xbl + block_size*ib;
+            const float * qw = quant_weights + QK_K*ibl + block_size*ib;
+            for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
             float max = fabsf(xb[0]);
-            for (int i = 1; i < IQ1S_BLOCK_SIZE; ++i) max = MAX(max, fabsf(xb[i]));
+            for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
             if (!max) {
                 scales[ib] = 0;
-                memset(L, 1, IQ1S_BLOCK_SIZE);
+                memset(L, 1, block_size);
                 continue;
             }
             // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
@@ -11581,14 +11886,14 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
             // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
             // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
             // for each possible and score for each split.
-            for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
+            for (int j = 0; j < block_size; ++j) {
                 pairs[2*j] = xb[j];
                 idx[2*j] = j;
             }
-            qsort(pairs, IQ1S_BLOCK_SIZE, 2*sizeof(float), iq1_sort_helper);
+            qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
             {
                 sumx[0] = sumw[0] = 0;
-                for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) {
+                for (int j = 0; j < block_size; ++j) {
                     int i = idx[2*j];
                     sumx[j+1] = sumx[j] + weight[i]*xb[i];
                     sumw[j+1] = sumw[j] + weight[i];
@@ -11596,16 +11901,16 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
             }
             float best_score = 0, scale = max;
             int besti1 = -1, besti2 = -1, best_shift = 0;
-            for (int i1 = 0; i1 <= IQ1S_BLOCK_SIZE; ++i1) {
-                for (int i2 = i1; i2 <= IQ1S_BLOCK_SIZE; ++i2) {
-                    float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_p[2];
-                    float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_p[2]*x_p[2];
+            for (int i1 = 0; i1 <= block_size; ++i1) {
+                for (int i2 = i1; i2 <= block_size; ++i2) {
+                    float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
+                    float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
                     if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
                         scale = sumqx/sumq2; best_score = scale*sumqx;
                         besti1 = i1; besti2 = i2; best_shift = 1;
                     }
-                    sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[IQ1S_BLOCK_SIZE] - sumx[i2])*x_m[2];
-                    sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[IQ1S_BLOCK_SIZE] - sumw[i2])*x_m[2]*x_m[2];
+                    sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
+                    sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
                     if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
                         scale = sumqx/sumq2; best_score = scale*sumqx;
                         besti1 = i1; besti2 = i2; best_shift = -1;
@@ -11615,14 +11920,14 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
             GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
             for (int j =      0; j < besti1; ++j) L[idx[2*j]] = 0;
             for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
-            for (int j = besti2; j < IQ1S_BLOCK_SIZE; ++j) L[idx[2*j]] = 2;
+            for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
             if (scale < 0) {
-                for (int j = 0; j < IQ1S_BLOCK_SIZE; ++j) L[j] = 2 - L[j];
+                for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
                 scale = -scale; best_shift = -best_shift;
             }
             bool all_on_grid = true;
             const float * xx = best_shift == 1 ? x_p : x_m;
-            for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
+            for (int k = 0; k < block_size/8; ++k) {
                 uint16_t u = 0;
                 for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
                 int grid_index = kmap_q2xs[u];
@@ -11636,7 +11941,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
             }
             if (!all_on_grid) {
                 float sumqx = 0, sumq2 = 0;
-                for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
+                for (int k = 0; k < block_size/8; ++k) {
                     const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
                     for (int j = 0; j < 8; ++j) {
                         float w = weight[8*k + j];
@@ -11648,8 +11953,8 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
                 if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
             }
             uint16_t h = 0;
-            for (int k = 0; k < IQ1S_BLOCK_SIZE/8; ++k) {
-                y[ibl].qs[(IQ1S_BLOCK_SIZE/8)*ib + k] = index[k] & 255;
+            for (int k = 0; k < block_size/8; ++k) {
+                y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
                 h |= (index[k] >> 8) << 3*k;
             }
             y[ibl].qh[ib] = h;
@@ -11660,14 +11965,13 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
         }
 
         if (!max_scale) {
-            memset(y[ibl].qs, 0, QK_K/8);
             continue;
         }
 
         float d = max_scale/15;
-        y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.085f is another fudge factor. Don't ask me why it is needed.
+        y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
         float id = 1/d;
-        for (int ib = 0; ib < QK_K/IQ1S_BLOCK_SIZE; ++ib) {
+        for (int ib = 0; ib < QK_K/block_size; ++ib) {
             int l = nearest_int(0.5f*(id*scales[ib]-1));
             l = MAX(0, MIN(7, l));
             if (shifts[ib] == -1) l |= 8;
@@ -11678,16 +11982,307 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
 
 size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
     GGML_ASSERT(n_per_row%QK_K == 0);
+    float  scales[QK_K/IQ1S_BLOCK_SIZE];
+    float  weight[IQ1S_BLOCK_SIZE];
+    int8_t L[IQ1S_BLOCK_SIZE];
+    float  sumx[IQ1S_BLOCK_SIZE+1];
+    float  sumw[IQ1S_BLOCK_SIZE+1];
+    float  pairs[2*IQ1S_BLOCK_SIZE];
+    uint16_t index[IQ1S_BLOCK_SIZE/8];
+    int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
     int nblock = n_per_row/QK_K;
     char * qrow = (char *)dst;
     for (int row = 0; row < nrow; ++row) {
-        quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
+        quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
         src += n_per_row;
         qrow += nblock*sizeof(block_iq1_s);
     }
     return nrow * nblock * sizeof(block_iq1_s);
 }
 
+static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights,
+        float    * scales,
+        float    * weight,
+        float    * pairs,
+        int8_t   * L,
+        uint16_t * index,
+        int8_t   * shifts) {
+
+    const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
+
+    const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
+    const int      * kmap_q2xs       = iq2_data[gindex].map;
+    const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
+
+    //GGML_ASSERT(quant_weights   && "missing quantization weights");
+    GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
+    GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
+    GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
+    GGML_ASSERT(n%QK_K == 0);
+
+    block_iq1_m * y = vy;
+
+    const int nbl = n/QK_K;
+
+    const int block_size = IQ1M_BLOCK_SIZE;
+
+    const float x_p[3] = {-1 + IQ1M_DELTA,  IQ1M_DELTA, 1 + IQ1M_DELTA};
+    const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
+    const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
+
+    int * idx = (int *)(pairs + 1);
+
+    float sumqx[4], sumq2[4];
+
+    iq1m_scale_t s;
+    const float * xx;
+
+    for (int ibl = 0; ibl < nbl; ++ibl) {
+
+#if QK_K == 64
+        y[ibl].d = GGML_FP32_TO_FP16(0.f);
+#endif
+        memset(y[ibl].qs, 0, QK_K/8);
+        memset(y[ibl].qh, 0, QK_K/16);
+        memset(y[ibl].scales, 0, QK_K/32);
+
+        float max_scale = 0;
+
+        const float * xbl = x + QK_K*ibl;
+        float sumx2 = 0;
+        for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
+        float sigma2 = 2*sumx2/QK_K;
+
+        for (int ib = 0; ib < QK_K/block_size; ++ib) {
+            const float * xb = xbl + block_size*ib;
+            if (quant_weights) {
+                const float * qw = quant_weights + QK_K*ibl + block_size*ib;
+                for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
+            } else {
+                for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
+            }
+            float max = fabsf(xb[0]);
+            for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
+            if (!max) {
+                scales[ib] = 0;
+                memset(L, 1, block_size);
+                continue;
+            }
+            // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
+            // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
+            // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
+            // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
+            // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
+            // for each possible and score for each split.
+            for (int j = 0; j < block_size; ++j) {
+                pairs[2*j] = xb[j];
+                idx[2*j] = j;
+            }
+            qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
+            float best_score = 0, scale = max;
+            int besti1 = -1, besti2 = -1, best_k = -1;
+            // 0: +, +
+            // 1: +, -
+            // 2: -, +
+            // 3: -, -
+            for (int i1 = 0; i1 <= block_size; ++i1) {
+                for (int i2 = i1; i2 <= block_size; ++i2) {
+                    memset(sumqx, 0, 4*sizeof(float));
+                    memset(sumq2, 0, 4*sizeof(float));
+                    for (int j = 0; j < i1; ++j) {
+                        int i = idx[2*j];
+                        if (i < block_size/2) {
+                            sumqx[0] += weight[i]*x_p[0]*xb[i];
+                            sumqx[1] += weight[i]*x_p[0]*xb[i];
+                            sumqx[2] += weight[i]*x_m[0]*xb[i];
+                            sumqx[3] += weight[i]*x_m[0]*xb[i];
+                            sumq2[0] += weight[i]*x_p[0]*x_p[0];
+                            sumq2[1] += weight[i]*x_p[0]*x_p[0];
+                            sumq2[2] += weight[i]*x_m[0]*x_m[0];
+                            sumq2[3] += weight[i]*x_m[0]*x_m[0];
+                        } else {
+                            sumqx[0] += weight[i]*x_p[0]*xb[i];
+                            sumqx[2] += weight[i]*x_p[0]*xb[i];
+                            sumqx[1] += weight[i]*x_m[0]*xb[i];
+                            sumqx[3] += weight[i]*x_m[0]*xb[i];
+                            sumq2[0] += weight[i]*x_p[0]*x_p[0];
+                            sumq2[2] += weight[i]*x_p[0]*x_p[0];
+                            sumq2[1] += weight[i]*x_m[0]*x_m[0];
+                            sumq2[3] += weight[i]*x_m[0]*x_m[0];
+                        }
+                    }
+                    for (int j = i1; j < i2; ++j) {
+                        int i = idx[2*j];
+                        if (i < block_size/2) {
+                            sumqx[0] += weight[i]*x_p[1]*xb[i];
+                            sumqx[1] += weight[i]*x_p[1]*xb[i];
+                            sumqx[2] += weight[i]*x_m[1]*xb[i];
+                            sumqx[3] += weight[i]*x_m[1]*xb[i];
+                            sumq2[0] += weight[i]*x_p[1]*x_p[1];
+                            sumq2[1] += weight[i]*x_p[1]*x_p[1];
+                            sumq2[2] += weight[i]*x_m[1]*x_m[1];
+                            sumq2[3] += weight[i]*x_m[1]*x_m[1];
+                        } else {
+                            sumqx[0] += weight[i]*x_p[1]*xb[i];
+                            sumqx[2] += weight[i]*x_p[1]*xb[i];
+                            sumqx[1] += weight[i]*x_m[1]*xb[i];
+                            sumqx[3] += weight[i]*x_m[1]*xb[i];
+                            sumq2[0] += weight[i]*x_p[1]*x_p[1];
+                            sumq2[2] += weight[i]*x_p[1]*x_p[1];
+                            sumq2[1] += weight[i]*x_m[1]*x_m[1];
+                            sumq2[3] += weight[i]*x_m[1]*x_m[1];
+                        }
+                    }
+                    for (int j = i2; j < block_size; ++j) {
+                        int i = idx[2*j];
+                        if (i < block_size/2) {
+                            sumqx[0] += weight[i]*x_p[2]*xb[i];
+                            sumqx[1] += weight[i]*x_p[2]*xb[i];
+                            sumqx[2] += weight[i]*x_m[2]*xb[i];
+                            sumqx[3] += weight[i]*x_m[2]*xb[i];
+                            sumq2[0] += weight[i]*x_p[2]*x_p[2];
+                            sumq2[1] += weight[i]*x_p[2]*x_p[2];
+                            sumq2[2] += weight[i]*x_m[2]*x_m[2];
+                            sumq2[3] += weight[i]*x_m[2]*x_m[2];
+                        } else {
+                            sumqx[0] += weight[i]*x_p[2]*xb[i];
+                            sumqx[2] += weight[i]*x_p[2]*xb[i];
+                            sumqx[1] += weight[i]*x_m[2]*xb[i];
+                            sumqx[3] += weight[i]*x_m[2]*xb[i];
+                            sumq2[0] += weight[i]*x_p[2]*x_p[2];
+                            sumq2[2] += weight[i]*x_p[2]*x_p[2];
+                            sumq2[1] += weight[i]*x_m[2]*x_m[2];
+                            sumq2[3] += weight[i]*x_m[2]*x_m[2];
+                        }
+                    }
+                    for (int k = 0; k < 4; ++k) {
+                        if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
+                            scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
+                            besti1 = i1; besti2 = i2; best_k = k;
+                        }
+                    }
+                }
+            }
+            GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
+            for (int j =      0; j < besti1; ++j) L[idx[2*j]] = 0;
+            for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
+            for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
+            if (scale < 0) {
+                for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
+                scale = -scale;
+                best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
+            }
+            bool all_on_grid = true;
+            for (int k = 0; k < block_size/8; ++k) {
+                if (k == 0) xx = best_k < 2 ? x_p : x_m;
+                else xx = best_k%2 == 0 ? x_p : x_m;
+                uint16_t u = 0;
+                for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
+                int grid_index = kmap_q2xs[u];
+                if (grid_index < 0) {
+                    all_on_grid = false;
+                    const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
+                    grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
+                    GGML_ASSERT(grid_index >= 0);
+                }
+                index[k] = grid_index;
+            }
+            if (!all_on_grid) {
+                float sumqx_f = 0, sumq2_f = 0;
+                for (int k = 0; k < block_size/8; ++k) {
+                    if (k == 0) xx = best_k < 2 ? x_p : x_m;
+                    else xx = best_k%2 == 0 ? x_p : x_m;
+                    const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
+                    for (int j = 0; j < 8; ++j) {
+                        float w = weight[8*k + j];
+                        float q = xx[(pg[j] - 1)/2];
+                        sumqx_f += w*q*xb[8*k+j];
+                        sumq2_f += w*q*q;
+                    }
+                }
+                if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
+            }
+            y[ibl].qs[2*ib + 0] = index[0] & 255;
+            y[ibl].qs[2*ib + 1] = index[1] & 255;
+            y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
+            GGML_ASSERT(scale >= 0);
+            scales[ib] = scale;
+            shifts[ib] = best_k;
+            max_scale = MAX(max_scale, scale);
+        }
+
+        if (!max_scale) {
+            continue;
+        }
+
+        uint16_t * sc = (uint16_t *)y[ibl].scales;
+#if QK_K == 64
+        float d = max_scale/31;
+#else
+        float d = max_scale/15;
+#endif
+        float id = 1/d;
+        float sumqx_f = 0, sumq2_f = 0;
+        for (int ib = 0; ib < QK_K/block_size; ++ib) {
+            int l = nearest_int(0.5f*(id*scales[ib+0]-1));
+#if QK_K == 64
+            l = MAX(0, MIN(15, l));
+            sc[ib/4] |= (l << 4*(ib%4));
+#else
+            l = MAX(0, MIN(7, l));
+            sc[ib/4] |= (l << 3*(ib%4));
+#endif
+            y[ibl].qh[ib] |= masks[shifts[ib]];
+            const float * xb = xbl + block_size*ib;
+            if (quant_weights) {
+                const float * qw = quant_weights + QK_K*ibl + block_size*ib;
+                for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
+            } else {
+                for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
+            }
+            for (int k = 0; k < block_size/8; ++k) {
+                if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
+                else xx = shifts[ib]%2 == 0 ? x_p : x_m;
+                const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
+                for (int j = 0; j < 8; ++j) {
+                    float w = weight[8*k + j];
+                    float q = xx[(pg[j] - 1)/2]*(2*l+1);
+                    sumqx_f += w*q*xb[8*k+j];
+                    sumq2_f += w*q*q;
+                }
+            }
+        }
+        if (sumq2_f > 0) d = sumqx_f/sumq2_f;
+        s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
+#if QK_K == 64
+        y[ibl].d = s.f16;
+#else
+        sc[0] |= ((s.u16 & 0x000f) << 12);
+        sc[1] |= ((s.u16 & 0x00f0) <<  8);
+        sc[2] |= ((s.u16 & 0x0f00) <<  4);
+        sc[3] |= ((s.u16 & 0xf000) <<  0);
+#endif
+    }
+}
+
+size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
+    GGML_ASSERT(n_per_row%QK_K == 0);
+    float  scales[QK_K/IQ1M_BLOCK_SIZE];
+    float  weight[IQ1M_BLOCK_SIZE];
+    int8_t L[IQ1M_BLOCK_SIZE];
+    float  pairs[2*IQ1M_BLOCK_SIZE];
+    uint16_t index[IQ1M_BLOCK_SIZE/8];
+    int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
+    int nblock = n_per_row/QK_K;
+    char * qrow = (char *)dst;
+    for (int row = 0; row < nrow; ++row) {
+        quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
+        src += n_per_row;
+        qrow += nblock*sizeof(block_iq1_m);
+    }
+    return nrow * nblock * sizeof(block_iq1_m);
+}
+
 // ============================ 4-bit non-linear quants
 
 static inline int best_index_int8(int n, const int8_t * val, float x) {
@@ -11705,9 +12300,8 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
         ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
         float * scales, float * weight, uint8_t * L,
         const int8_t * values,
-        const float * quant_weights) {
-
-    const int ntry = 7;
+        const float * quant_weights,
+        const int ntry) {
 
     float sigma2 = 0;
     for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
@@ -11719,6 +12313,7 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
     float max_scale = 0, amax_scale = 0;
     for (int ib = 0; ib < super_block_size/block_size; ++ib) {
         const float * xb = x + ib*block_size;
+        uint8_t * Lb = L + ib*block_size;
         if (quant_weights) {
             const float * qw = quant_weights + ib*block_size;
             for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
@@ -11736,12 +12331,13 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
             scales[ib] = 0;
             continue;
         }
-        float d = -max/values[0];
+        float d = ntry > 0 ? -max/values[0] : max/values[0];
         float id = 1/d;
         float sumqx = 0, sumq2 = 0;
         for (int j = 0; j < block_size; ++j) {
             float al = id*xb[j];
             int l = best_index_int8(16, values, al);
+            Lb[j] = l;
             float q = values[l];
             float w = weight[j];
             sumqx += w*q*xb[j];
@@ -11796,9 +12392,11 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
         }
     } else {
         dh[0] = GGML_FP32_TO_FP16(scales[0]);
-        float id = scales[0] ? 1/scales[0] : 0;
-        for (int j = 0; j < super_block_size; ++j) {
-            L[j] = best_index_int8(16, values, id*x[j]);
+        if (ntry > 0) {
+            float id = scales[0] ? 1/scales[0] : 0;
+            for (int j = 0; j < super_block_size; ++j) {
+                L[j] = best_index_int8(16, values, id*x[j]);
+            }
         }
     }
 
@@ -11823,7 +12421,7 @@ size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow
         for (int ibl = 0; ibl < nblock; ++ibl) {
             const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
             quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
-                    &scale, weight, L, kvalues_iq4nl, qw);
+                    &scale, weight, L, kvalues_iq4nl, qw, 7);
         }
         src += n_per_row;
         qrow += nblock*sizeof(block_iq4_nl);
@@ -11832,14 +12430,23 @@ size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow
 }
 
 void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
-    assert(k % QK4_NL == 0);
-    block_iq4_nl * restrict y = vy;
-    quantize_row_iq4_nl_reference(x, y, k);
+    GGML_ASSERT(k%QK4_NL == 0);
+    int nblock = k/QK4_NL;
+    uint8_t L[QK4_NL];
+    float weight[QK4_NL];
+    uint16_t unused_h;
+    uint8_t * unused_l = NULL;
+    float scale;
+    block_iq4_nl * iq4 = (block_iq4_nl *)vy;
+    for (int ibl = 0; ibl < nblock; ++ibl) {
+        quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
+                &scale, weight, L, kvalues_iq4nl, NULL, -1);
+    }
 }
 
 void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
     assert(k % QK4_NL == 0);
-    quantize_iq4_nl(x, y, 1, k, NULL);
+    quantize_row_iq4_nl(x, y, k);
 }
 
 size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
@@ -11857,7 +12464,7 @@ size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow
         for (int ibl = 0; ibl < nblock; ++ibl) {
             const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
             quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
-                    scales, weight, L, kvalues_iq4nl, qw);
+                    scales, weight, L, kvalues_iq4nl, qw, 7);
         }
         src += n_per_row;
         qrow += nblock*sizeof(block_iq4_xs);
index aa7e54a16e867e8f288b40ad1756c63162b5aa7e..ac1091c3d3b66b8ca083a25b17479870ec94a1b5 100644 (file)
@@ -72,6 +72,7 @@ void dequantize_row_iq2_xs (const block_iq2_xs  * GGML_RESTRICT x, float * GGML_
 void dequantize_row_iq2_s  (const block_iq2_s   * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 void dequantize_row_iq1_s  (const block_iq1_s   * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
+void dequantize_row_iq1_m  (const block_iq1_m   * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 void dequantize_row_iq4_nl (const block_iq4_nl  * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 void dequantize_row_iq4_xs (const block_iq4_xs  * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 void dequantize_row_iq3_s  (const block_iq3_s   * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
@@ -94,6 +95,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
 void ggml_vec_dot_iq2_s_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq1_s_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
+void ggml_vec_dot_iq1_m_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq3_s_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
@@ -104,6 +106,7 @@ size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT ds
 size_t quantize_iq2_s  (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
 size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
 size_t quantize_iq1_s  (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
+size_t quantize_iq1_m  (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
 size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
 size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
 size_t quantize_iq3_s  (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
index 9f6506383cc0dde78de71e72b455307386eff042..cc8f95274fd321660d289a3171cb4d613b48e0f5 100644 (file)
@@ -16,6 +16,7 @@
 #include <cinttypes>
 #include <cstddef>
 #include <cstdint>
+#include <cstdlib>
 #include <float.h>
 #include <limits>
 #include <stdint.h>
 #include <cmath>
 #include <iostream>
 #include <fstream>
-
 #include <stdio.h>
 #include <stdlib.h>
-
+#include <regex>
 
 #include <sycl/sycl.hpp>
 #include <sycl/half_type.hpp>
@@ -82,6 +82,30 @@ Following definition copied from DPCT head files, which are used by ggml-sycl.cp
 #define __dpct_noinline__ __attribute__((noinline))
 #endif
 
+
+std::string get_device_type_name(const sycl::device &Device) {
+    auto DeviceType = Device.get_info<sycl::info::device::device_type>();
+    switch (DeviceType) {
+    case sycl::info::device_type::cpu:
+        return "cpu";
+    case sycl::info::device_type::gpu:
+        return "gpu";
+    case sycl::info::device_type::host:
+        return "host";
+    case sycl::info::device_type::accelerator:
+        return "acc";
+    default:
+        return "unknown";
+    }
+}
+
+std::string get_device_backend_and_type(const sycl::device &device) {
+    std::stringstream device_type;
+    sycl::backend backend = device.get_backend();
+    device_type <<  backend << ":" << get_device_type_name(device);
+    return device_type.str();
+}
+
 namespace dpct
 {
     typedef sycl::queue *queue_ptr;
@@ -716,11 +740,7 @@ namespace dpct
 
         sycl::queue &default_queue()
         {
-#ifdef DPCT_USM_LEVEL_NONE
-            return out_of_order_queue();
-#else
             return in_order_queue();
-#endif // DPCT_USM_LEVEL_NONE
         }
 
         void queues_wait_and_throw()
@@ -739,11 +759,7 @@ namespace dpct
 
         sycl::queue *create_queue(bool enable_exception_handler = false)
         {
-#ifdef DPCT_USM_LEVEL_NONE
-            return create_out_of_order_queue(enable_exception_handler);
-#else
             return create_in_order_queue(enable_exception_handler);
-#endif // DPCT_USM_LEVEL_NONE
         }
 
         sycl::queue *create_queue(sycl::context context, sycl::device device,
@@ -942,17 +958,67 @@ namespace dpct
 
     private:
         mutable std::recursive_mutex m_mutex;
+        static bool compare_dev(sycl::device &device1, sycl::device &device2)
+        {
+            dpct::device_info prop1;
+            dpct::get_device_info(prop1, device1);
+            dpct::device_info prop2;
+            dpct::get_device_info(prop2, device2);
+            return prop1.get_max_compute_units() > prop2.get_max_compute_units();
+        }
+        static int convert_backend_index(std::string & backend) {
+            if (backend == "ext_oneapi_level_zero:gpu") return 0;
+            if (backend == "opencl:gpu") return 1;
+            if (backend == "ext_oneapi_cuda:gpu") return 2;
+            if (backend == "ext_oneapi_hip:gpu") return 3;
+            if (backend == "opencl:cpu") return 4;
+            if (backend == "opencl:acc") return 5;
+            printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
+            GGML_ASSERT(false);
+        }
+        static bool compare_backend(std::string &backend1, std::string &backend2) {
+            return convert_backend_index(backend1) < convert_backend_index(backend2);
+        }
         dev_mgr()
         {
             sycl::device default_device =
                 sycl::device(sycl::default_selector_v);
             _devs.push_back(std::make_shared<device_ext>(default_device));
 
-            std::vector<sycl::device> sycl_all_devs =
-                sycl::device::get_devices(sycl::info::device_type::all);
+            std::vector<sycl::device> sycl_all_devs;
             // Collect other devices except for the default device.
             if (default_device.is_cpu())
                 _cpu_device = 0;
+
+            auto Platforms = sycl::platform::get_platforms();
+            // Keep track of the number of devices per backend
+            std::map<sycl::backend, size_t> DeviceNums;
+            std::map<std::string, std::vector<sycl::device>> backend_devices;
+
+            while (!Platforms.empty()) {
+                auto Platform = Platforms.back();
+                Platforms.pop_back();
+                auto devices = Platform.get_devices();
+                std::string backend_type = get_device_backend_and_type(devices[0]);
+                for (const auto &device : devices) {
+                    backend_devices[backend_type].push_back(device);
+                }
+            }
+
+            std::vector<std::string> keys;
+            for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
+                keys.push_back(it->first);
+            }
+            std::sort(keys.begin(), keys.end(), compare_backend);
+
+            for (auto &key : keys) {
+                std::vector<sycl::device> devs = backend_devices[key];
+                std::sort(devs.begin(), devs.end(), compare_dev);
+                for (const auto &dev : devs) {
+                    sycl_all_devs.push_back(dev);
+                }
+            }
+
             for (auto &dev : sycl_all_devs)
             {
                 if (dev == default_device)
@@ -1001,11 +1067,6 @@ namespace dpct
         static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
                                                               const void *ptr)
         {
-#ifdef DPCT_USM_LEVEL_NONE
-            return mem_mgr::instance().is_device_ptr(ptr)
-                       ? pointer_access_attribute::device_only
-                       : pointer_access_attribute::host_only;
-#else
             switch (sycl::get_pointer_type(ptr, q.get_context()))
             {
             case sycl::usm::alloc::unknown:
@@ -1016,7 +1077,6 @@ namespace dpct
             case sycl::usm::alloc::host:
                 return pointer_access_attribute::host_device;
             }
-#endif
         }
 
         template <typename ArgT>
@@ -1199,11 +1259,7 @@ namespace dpct
 
         static inline void *dpct_malloc(size_t size, sycl::queue &q)
         {
-#ifdef DPCT_USM_LEVEL_NONE
-            return mem_mgr::instance().mem_alloc(size * sizeof(byte_t));
-#else
             return sycl::malloc_device(size, q.get_device(), q.get_context());
-#endif // DPCT_USM_LEVEL_NONE
         }
 
 #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
@@ -1227,25 +1283,7 @@ namespace dpct
         static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
                                               valueT value, size_t size)
         {
-#ifdef DPCT_USM_LEVEL_NONE
-            auto &mm = mem_mgr::instance();
-            assert(mm.is_device_ptr(dev_ptr));
-            auto alloc = mm.translate_ptr(dev_ptr);
-            size_t offset = (valueT *)dev_ptr - (valueT *)alloc.alloc_ptr;
-
-            return q.submit([&](sycl::handler &cgh)
-                            {
-    auto r = sycl::range<1>(size);
-    auto o = sycl::id<1>(offset);
-    auto new_buffer = alloc.buffer.reinterpret<valueT>(
-        sycl::range<1>(alloc.size / sizeof(valueT)));
-    sycl::accessor<valueT, 1, sycl::access_mode::write,
-                sycl::access::target::device>
-        acc(new_buffer, cgh, r, o);
-    cgh.fill(acc, value); });
-#else
             return q.fill(dev_ptr, value, size);
-#endif // DPCT_USM_LEVEL_NONE
         }
 
         /**
@@ -1339,72 +1377,8 @@ namespace dpct
         {
             if (!size)
                 return sycl::event{};
-#ifdef DPCT_USM_LEVEL_NONE
-            auto &mm = mem_mgr::instance();
-            auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
-
-            switch (real_direction)
-            {
-            case host_to_host:
-                return q.submit([&](sycl::handler &cgh)
-                                {
-    cgh.depends_on(dep_events);
-    cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
-            case host_to_device:
-            {
-                auto alloc = mm.translate_ptr(to_ptr);
-                size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
-                return q.submit([&](sycl::handler &cgh)
-                                {
-    cgh.depends_on(dep_events);
-    auto r = sycl::range<1>(size);
-    auto o = sycl::id<1>(offset);
-    sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                        sycl::access::target::device>
-        acc(alloc.buffer, cgh, r, o);
-    cgh.copy(from_ptr, acc); });
-            }
-            case device_to_host:
-            {
-                auto alloc = mm.translate_ptr(from_ptr);
-                size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
-                return q.submit([&](sycl::handler &cgh)
-                                {
-    cgh.depends_on(dep_events);
-    auto r = sycl::range<1>(size);
-    auto o = sycl::id<1>(offset);
-    sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                        sycl::access::target::device>
-        acc(alloc.buffer, cgh, r, o);
-    cgh.copy(acc, to_ptr); });
-            }
-            case device_to_device:
-            {
-                auto to_alloc = mm.translate_ptr(to_ptr);
-                auto from_alloc = mm.translate_ptr(from_ptr);
-                size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
-                size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
-                return q.submit([&](sycl::handler &cgh)
-                                {
-    cgh.depends_on(dep_events);
-    auto r = sycl::range<1>(size);
-    auto to_o = sycl::id<1>(to_offset);
-    auto from_o = sycl::id<1>(from_offset);
-    sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                        sycl::access::target::device>
-        to_acc(to_alloc.buffer, cgh, r, to_o);
-    sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                        sycl::access::target::device>
-        from_acc(from_alloc.buffer, cgh, r, from_o);
-    cgh.copy(from_acc, to_acc); });
-            }
-            default:
-                throw std::runtime_error("dpct_memcpy: invalid direction value");
-            }
-#else
             return q.memcpy(to_ptr, from_ptr, size, dep_events);
             GGML_UNUSED(direction);
-#endif // DPCT_USM_LEVEL_NONE
         }
 
         // Get actual copy range and make sure it will not exceed range.
@@ -1544,45 +1518,15 @@ namespace dpct
                 break;
             }
             case device_to_device:
-#ifdef DPCT_USM_LEVEL_NONE
-            {
-                auto &mm = mem_mgr::instance();
-                auto to_alloc = mm.translate_ptr(to_surface);
-                auto from_alloc = mm.translate_ptr(from_surface);
-                size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
-                size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
-                event_list.push_back(q.submit([&](sycl::handler &cgh)
-                                              {
-    cgh.depends_on(dep_events);
-    auto to_o = sycl::id<1>(to_offset);
-    auto from_o = sycl::id<1>(from_offset);
-    sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                        sycl::access::target::device>
-        to_acc(to_alloc.buffer, cgh,
-                get_copy_range(size, to_slice, to_range.get(0)), to_o);
-    sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                        sycl::access::target::device>
-        from_acc(from_alloc.buffer, cgh,
-                get_copy_range(size, from_slice, from_range.get(0)), from_o);
-    cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
-        size,
-        [=](sycl::id<3> id) {
-            to_acc[get_offset(id, to_slice, to_range.get(0))] =
-                from_acc[get_offset(id, from_slice, from_range.get(0))];
-        }); }));
-            }
-#else
-                event_list.push_back(q.submit([&](sycl::handler &cgh)
-                                              {
-    cgh.depends_on(dep_events);
-    cgh.parallel_for<class dpct_memcpy_3d_detail>(
-        size,
-        [=](sycl::id<3> id) {
-            to_surface[get_offset(id, to_slice, to_range.get(0))] =
-                from_surface[get_offset(id, from_slice, from_range.get(0))];
-        }); }));
-#endif
-            break;
+                event_list.push_back(q.submit([&](sycl::handler &cgh){
+                cgh.depends_on(dep_events);
+                cgh.parallel_for<class dpct_memcpy_3d_detail>(
+                    size,
+                    [=](sycl::id<3> id) {
+                        to_surface[get_offset(id, to_slice, to_range.get(0))] =
+                            from_surface[get_offset(id, from_slice, from_range.get(0))];
+                    }); }));
+                break;
             default:
                 throw std::runtime_error("dpct_memcpy: invalid direction value");
             }
@@ -1680,11 +1624,7 @@ namespace dpct
         {
             if (ptr)
             {
-#ifdef DPCT_USM_LEVEL_NONE
-                detail::mem_mgr::instance().mem_free(ptr);
-#else
                 sycl::free(ptr, q.get_context());
-#endif // DPCT_USM_LEVEL_NONE
             }
         }
 
@@ -1692,11 +1632,7 @@ namespace dpct
         inline auto get_memory(const void *x)
         {
             T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
-#ifdef DPCT_USM_LEVEL_NONE
-            return dpct::get_buffer<std::remove_cv_t<T>>(new_x);
-#else
             return new_x;
-#endif
         }
 
         template <typename T>
@@ -2148,72 +2084,8 @@ namespace dpct
     {
         if (!size)
             return sycl::event{};
-#ifdef DPCT_USM_LEVEL_NONE
-        auto &mm = mem_mgr::instance();
-        auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
-
-        switch (real_direction)
-        {
-        case host_to_host:
-            return q.submit([&](sycl::handler &cgh)
-                            {
-        cgh.depends_on(dep_events);
-        cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
-        case host_to_device:
-        {
-            auto alloc = mm.translate_ptr(to_ptr);
-            size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
-            return q.submit([&](sycl::handler &cgh)
-                            {
-        cgh.depends_on(dep_events);
-        auto r = sycl::range<1>(size);
-        auto o = sycl::id<1>(offset);
-        sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                            sycl::access::target::device>
-            acc(alloc.buffer, cgh, r, o);
-        cgh.copy(from_ptr, acc); });
-        }
-        case device_to_host:
-        {
-            auto alloc = mm.translate_ptr(from_ptr);
-            size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
-            return q.submit([&](sycl::handler &cgh)
-                            {
-        cgh.depends_on(dep_events);
-        auto r = sycl::range<1>(size);
-        auto o = sycl::id<1>(offset);
-        sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                            sycl::access::target::device>
-            acc(alloc.buffer, cgh, r, o);
-        cgh.copy(acc, to_ptr); });
-        }
-        case device_to_device:
-        {
-            auto to_alloc = mm.translate_ptr(to_ptr);
-            auto from_alloc = mm.translate_ptr(from_ptr);
-            size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
-            size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
-            return q.submit([&](sycl::handler &cgh)
-                            {
-        cgh.depends_on(dep_events);
-        auto r = sycl::range<1>(size);
-        auto to_o = sycl::id<1>(to_offset);
-        auto from_o = sycl::id<1>(from_offset);
-        sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                            sycl::access::target::device>
-            to_acc(to_alloc.buffer, cgh, r, to_o);
-        sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                            sycl::access::target::device>
-            from_acc(from_alloc.buffer, cgh, r, from_o);
-        cgh.copy(from_acc, to_acc); });
-        }
-        default:
-            throw std::runtime_error("dpct_memcpy: invalid direction value");
-        }
-#else
         return q.memcpy(to_ptr, from_ptr, size, dep_events);
         GGML_UNUSED(direction);
-#endif // DPCT_USM_LEVEL_NONE
     }
 
     // Get actual copy range and make sure it will not exceed range.
@@ -2353,34 +2225,6 @@ namespace dpct
             break;
         }
         case device_to_device:
-#ifdef DPCT_USM_LEVEL_NONE
-        {
-            auto &mm = mem_mgr::instance();
-            auto to_alloc = mm.translate_ptr(to_surface);
-            auto from_alloc = mm.translate_ptr(from_surface);
-            size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
-            size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
-            event_list.push_back(q.submit([&](sycl::handler &cgh)
-                                          {
-        cgh.depends_on(dep_events);
-        auto to_o = sycl::id<1>(to_offset);
-        auto from_o = sycl::id<1>(from_offset);
-        sycl::accessor<byte_t, 1, sycl::access_mode::write,
-                            sycl::access::target::device>
-            to_acc(to_alloc.buffer, cgh,
-                    get_copy_range(size, to_slice, to_range.get(0)), to_o);
-        sycl::accessor<byte_t, 1, sycl::access_mode::read,
-                            sycl::access::target::device>
-            from_acc(from_alloc.buffer, cgh,
-                    get_copy_range(size, from_slice, from_range.get(0)), from_o);
-        cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
-            size,
-            [=](sycl::id<3> id) {
-                to_acc[get_offset(id, to_slice, to_range.get(0))] =
-                    from_acc[get_offset(id, from_slice, from_range.get(0))];
-            }); }));
-        }
-#else
             event_list.push_back(q.submit([&](sycl::handler &cgh)
                                           {
         cgh.depends_on(dep_events);
@@ -2390,7 +2234,6 @@ namespace dpct
                 to_surface[get_offset(id, to_slice, to_range.get(0))] =
                     from_surface[get_offset(id, from_slice, from_range.get(0))];
             }); }));
-#endif
         break;
         default:
             throw std::runtime_error("dpct_memcpy: invalid direction value");
@@ -2581,9 +2424,6 @@ namespace dpct
                            void *c[], library_data_t c_type, int ldc,
                            int batch_size, library_data_t scaling_type)
     {
-#ifdef DPCT_USM_LEVEL_NONE
-        throw std::runtime_error("this API is unsupported when USM level is none");
-#else
         if (scaling_type == library_data_t::real_float &&
             c_type == library_data_t::complex_float)
         {
@@ -2718,7 +2558,6 @@ namespace dpct
         default:
             throw std::runtime_error("the combination of data type is unsupported");
         }
-#endif
     }
 
     /// Computes a batch of matrix-matrix product with general matrices.
@@ -3057,24 +2896,9 @@ namespace dpct
             template <size_t D = Dimension>
             typename std::enable_if<D == 1, T>::type &operator[](size_t index) {
                 init();
-        #ifdef DPCT_USM_LEVEL_NONE
-                return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>(
-                        _device_ptr)
-                    .template get_access<sycl::access_mode::read_write>()[index];
-        #else
                 return _device_ptr[index];
-        #endif // DPCT_USM_LEVEL_NONE
             }
 
-        #ifdef DPCT_USM_LEVEL_NONE
-            /// Get sycl::accessor for the device memory object when usm is not used.
-            accessor_t get_access(sycl::handler &cgh) {
-                return get_buffer(_device_ptr)
-                    .template reinterpret<T, Dimension>(_range)
-                    .template get_access<detail::memory_traits<Memory, T>::mode,
-                                        detail::memory_traits<Memory, T>::target>(cgh);
-            }
-        #else
             /// Get dpct::accessor with dimension info for the device memory object
             /// when usm is used and dimension is greater than 1.
             template <size_t D = Dimension>
@@ -3082,7 +2906,6 @@ namespace dpct
             get_access(sycl::handler &cgh) {
                 return dpct_accessor_t((T *)_device_ptr, _range);
             }
-        #endif // DPCT_USM_LEVEL_NONE
 
         private:
             device_memory(value_t *memory_ptr, size_t size)
@@ -3127,15 +2950,6 @@ namespace dpct
 
             /// Default constructor
             device_memory() : base(1) {}
-
-        #ifdef DPCT_USM_LEVEL_NONE
-            /// Get sycl::accessor for the device memory object when usm is not used.
-            accessor_t get_access(sycl::handler &cgh) {
-                auto buf = get_buffer(base::get_ptr())
-                            .template reinterpret<T, 1>(sycl::range<1>(1));
-                return accessor_t(buf, cgh);
-            }
-        #endif // DPCT_USM_LEVEL_NONE
         };
         } // namespace detail
 
@@ -3202,6 +3016,11 @@ static int g_work_group_size = 0;
 #define GGML_SYCL_MMV_Y 1
 #endif
 
+enum ggml_sycl_backend_gpu_mode {
+    SYCL_UNSET_GPU_MODE = -1,
+    SYCL_SINGLE_GPU_MODE = 0,
+    SYCL_MUL_GPU_MODE
+};
 
 static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 
@@ -3401,12 +3220,31 @@ class sycl_gpu_mgr {
         int work_group_size = 0;
         std::string gpus_list = "";
 
+        /*
+        Use all GPUs with same top max compute units
+        */
         sycl_gpu_mgr() {
             detect_sycl_gpu_list_with_max_cu();
             get_allow_gpus();
             create_context_with_gpus();
         }
 
+        /*
+        Only use the assigned GPU
+        */
+        sycl_gpu_mgr(int main_gpu_id) {
+            sycl::device device = dpct::dev_mgr::instance().get_device(main_gpu_id);
+            dpct::device_info prop;
+            dpct::get_device_info(prop, device);
+            gpus.push_back(main_gpu_id);
+            devices.push_back(device);
+            work_group_size = prop.get_max_work_group_size();
+            max_compute_units = prop.get_max_compute_units();
+
+            get_allow_gpus();
+            create_context_with_gpus();
+        }
+
         void create_context_with_gpus() {
             sycl::context ctx = sycl::context(devices);
             assert(gpus.size() > 0);
@@ -3422,7 +3260,7 @@ class sycl_gpu_mgr {
                 gpus_list += std::to_string(gpus[i]);
                 gpus_list += ",";
             }
-            if (gpus_list.length() > 2) {
+            if (gpus_list.length() > 1) {
                 gpus_list.pop_back();
             }
         }
@@ -3451,7 +3289,7 @@ class sycl_gpu_mgr {
                 dpct::device_info prop;
                 dpct::get_device_info(prop, device);
                 if (max_compute_units == prop.get_max_compute_units() &&
-                    prop.get_major_version() == 1) {
+                    is_ext_oneapi_device(device)) {
                     gpus.push_back(id);
                     devices.push_back(device);
                     work_group_size = prop.get_max_work_group_size();
@@ -3471,8 +3309,8 @@ class sycl_gpu_mgr {
                 if (gpus[i] == id)
                     return i;
             }
-            assert(false);
-            return -1;
+            printf("miss to get device index by id=%d\n", id);
+            GGML_ASSERT(false);
         }
 
         int get_next_index(int id) {
@@ -3481,8 +3319,16 @@ class sycl_gpu_mgr {
                 if (gpus[i] == id)
                     return i;
             }
-            assert(false);
-            return -1;
+            GGML_ASSERT(false);
+        }
+
+        bool is_ext_oneapi_device(const sycl::device &dev) {
+            sycl::backend dev_backend = dev.get_backend();
+            if (dev_backend == sycl::backend::ext_oneapi_level_zero ||
+                dev_backend == sycl::backend::ext_oneapi_cuda ||
+                dev_backend == sycl::backend::ext_oneapi_hip)
+                return true;
+            return false;
         }
 };
 
@@ -3491,11 +3337,14 @@ static int g_device_count = -1;
 static int g_all_sycl_device_count = -1;
 static int g_main_device = -1;
 static int g_main_device_id = -1;
+static bool g_ggml_backend_sycl_buffer_type_initialized = false;
 
 static std::array<float, GGML_SYCL_MAX_DEVICES> g_default_tensor_split = {};
 
 static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
 
+static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = SYCL_UNSET_GPU_MODE;
+
 struct sycl_device_capabilities {
     int     cc;                 // compute capability
     bool    vmm;                // virtual memory support
@@ -12999,17 +12848,20 @@ bool ggml_sycl_loaded(void) {
     return g_sycl_loaded;
 }
 
-void print_device_detail(int id) {
+void print_device_detail(int id, sycl::device &device, std::string device_type) {
+
     dpct::device_info prop;
     SYCL_CHECK(CHECK_TRY_ERROR(
-        dpct::get_device_info(prop, dpct::dev_mgr::instance().get_device(id))));
-    sycl::device cur_device = dpct::dev_mgr::instance().get_device(id);
+        dpct::get_device_info(prop, device)));
+
     std::string version;
     version += std::to_string(prop.get_major_version());
     version += ".";
     version += std::to_string(prop.get_minor_version());
 
-    fprintf(stderr, "|%2d|%45s|%18s|%17d|%14d|%13d|%15lu|\n", id,
+    device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
+
+    fprintf(stderr, "|%2d|%18s|%45s|%10s|%11d|%8d|%7d|%15lu|\n", id, device_type.c_str(),
             prop.get_name(), version.c_str(), prop.get_max_compute_units(),
             prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
             prop.get_global_mem_size());
@@ -13017,19 +12869,35 @@ void print_device_detail(int id) {
 
 void ggml_backend_sycl_print_sycl_devices() {
     int device_count = dpct::dev_mgr::instance().device_count();
+    std::map<std::string, size_t> DeviceNums;
     fprintf(stderr, "found %d SYCL devices:\n", device_count);
-    fprintf(stderr, "|ID| Name                                        |compute capability|Max compute units|Max work group|Max sub group|Global mem size|\n");
-    fprintf(stderr, "|--|---------------------------------------------|------------------|-----------------|--------------|-------------|---------------|\n");
+    fprintf(stderr, "|  |                  |                                             |Compute   |Max compute|Max work|Max sub|               |\n");
+    fprintf(stderr, "|ID|       Device Type|                                         Name|capability|units      |group   |group  |Global mem size|\n");
+    fprintf(stderr, "|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|\n");
     for (int id = 0; id < device_count; ++id) {
-        print_device_detail(id);
+        sycl::device device = dpct::dev_mgr::instance().get_device(id);
+        sycl::backend backend = device.get_backend();
+        std::string backend_type = get_device_backend_and_type(device);
+        int type_id=DeviceNums[backend_type]++;
+        std::stringstream device_type;
+        device_type << "[" <<  backend_type << ":" << std::to_string(type_id) << "]";
+        print_device_detail(id, device, device_type.str());
     }
 }
 
 void print_gpu_device_list() {
-    fprintf(stderr, "detect %d SYCL GPUs: [%s] with Max compute units:%d\n",
-            g_sycl_gpu_mgr->get_gpu_count(),
-            g_sycl_gpu_mgr->gpus_list.c_str(),
-            g_sycl_gpu_mgr->max_compute_units);
+    GGML_ASSERT(g_sycl_gpu_mgr);
+
+    char* hint=NULL;
+    if (g_ggml_sycl_backend_gpu_mode == SYCL_SINGLE_GPU_MODE) {
+        hint = "use %d SYCL GPUs: [%s] with Max compute units:%d\n";
+    } else {
+        hint = "detect %d SYCL GPUs: [%s] with top Max compute units:%d\n";
+    }
+    fprintf(stderr, hint,
+        g_sycl_gpu_mgr->get_gpu_count(),
+        g_sycl_gpu_mgr->gpus_list.c_str(),
+        g_sycl_gpu_mgr->max_compute_units);
 }
 
 int get_sycl_env(const char *env_name, int default_val) {
@@ -13053,7 +12921,7 @@ int get_work_group_size(int user_device_id) {
     return prop.get_max_work_group_size();
 }
 
-void ggml_init_sycl() try {
+static void ggml_init_sycl() try {
     static bool initialized = false;
 
     if (!initialized) {
@@ -13065,6 +12933,15 @@ void ggml_init_sycl() try {
 #else
         fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
 #endif
+
+/* NOT REMOVE, keep it for next optimize for XMX.
+#if defined(SYCL_USE_XMX)
+        fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
+#else
+        fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
+#endif
+*/
+
         if (CHECK_TRY_ERROR(g_all_sycl_device_count =
                             dpct::dev_mgr::instance().device_count()) != 0) {
             initialized = true;
@@ -13073,68 +12950,65 @@ void ggml_init_sycl() try {
         }
         GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
         ggml_backend_sycl_print_sycl_devices();
+        initialized = true;
+        g_sycl_loaded = true;
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
 
-        if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr();
-
-        g_device_count = g_sycl_gpu_mgr->get_gpu_count();
-        g_work_group_size = g_sycl_gpu_mgr->work_group_size;
-
-        print_gpu_device_list();
+void ggml_init_by_gpus(int device_count) try {
+    g_device_count = device_count;
+    g_work_group_size = g_sycl_gpu_mgr->work_group_size;
 
-        int64_t total_vram = 0;
+    int64_t total_vram = 0;
 
-/* NOT REMOVE, keep it for next optimize for XMX.
-#if defined(SYCL_USE_XMX)
-        fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
-#else
-        fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
-#endif
-*/
-        for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
-            g_device_caps[id].vmm = 0;
-            g_device_caps[id].device_id = -1;
-            g_device_caps[id].cc = 0;
-            g_tensor_split[id] = 0;
-            g_default_tensor_split[id] = 0;
-        }
+    print_gpu_device_list();
 
-        for (int i = 0; i < g_device_count; ++i) {
-            int device_id = g_sycl_gpu_mgr->gpus[i];
-            g_device_caps[i].vmm = 0;
+    for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
+        g_device_caps[id].vmm = 0;
+        g_device_caps[id].device_id = -1;
+        g_device_caps[id].cc = 0;
+        g_tensor_split[id] = 0;
+        g_default_tensor_split[id] = 0;
+    }
 
-            dpct::device_info prop;
-            SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
-                prop, dpct::dev_mgr::instance().get_device(device_id))));
+    for (int i = 0; i < g_device_count; ++i) {
+        int device_id = g_sycl_gpu_mgr->gpus[i];
+        g_device_caps[i].vmm = 0;
 
-            g_default_tensor_split[i] = total_vram;
-            total_vram += prop.get_global_mem_size();
+        dpct::device_info prop;
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+            prop, dpct::dev_mgr::instance().get_device(device_id))));
 
-            g_device_caps[i].cc =
-                100 * prop.get_major_version() + 10 * prop.get_minor_version();
-        }
+        g_default_tensor_split[i] = total_vram;
+        total_vram += prop.get_global_mem_size();
 
-        for (int i = 0; i < g_device_count; ++i) {
-            g_default_tensor_split[i] /= total_vram;
-        }
+        g_device_caps[i].cc =
+            100 * prop.get_major_version() + 10 * prop.get_minor_version();
+    }
 
-        for (int i = 0; i < g_device_count; ++i) {
-            SYCL_CHECK(ggml_sycl_set_device(i));
+    for (int i = 0; i < g_device_count; ++i) {
+        g_default_tensor_split[i] /= total_vram;
+    }
 
-            // create sycl streams
-            for (int is = 0; is < MAX_STREAMS; ++is) {
-                SYCL_CHECK(CHECK_TRY_ERROR(
-                    g_syclStreams[i][is] =
-                        dpct::get_current_device().create_queue(
-                            g_sycl_gpu_mgr->get_co_ctx(), dpct::get_current_device())));
-            }
+    for (int i = 0; i < g_device_count; ++i) {
+        SYCL_CHECK(ggml_sycl_set_device(i));
 
-            const dpct::queue_ptr stream = g_syclStreams[i][0];
-            // create sycl handle
-            SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[i] = stream));
+        // create sycl streams
+        for (int is = 0; is < MAX_STREAMS; ++is) {
+            SYCL_CHECK(CHECK_TRY_ERROR(
+                g_syclStreams[i][is] =
+                    dpct::get_current_device().create_queue(
+                        g_sycl_gpu_mgr->get_co_ctx(), dpct::get_current_device())));
         }
 
-        initialized = true;
-        g_sycl_loaded = true;
+        const dpct::queue_ptr stream = g_syclStreams[i][0];
+        // create sycl handle
+        SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[i] = stream));
     }
 }
 catch (sycl::exception const &exc) {
@@ -15112,6 +14986,9 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
     dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
 
+    bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
+                           main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
+
     SYCL_CHECK(
         CHECK_TRY_ERROR(g_sycl_handles[g_main_device] = main_stream));
 
@@ -15142,24 +15019,38 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
 
     dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
     dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
+    if (no_mixed_dtypes) {
+        cu_compute_type = dpct::library_data_t::real_half;
+        cu_data_type = dpct::library_data_t::real_half;
+    }
 
     // dst strides
     size_t nbd2 = dst->nb[2];
     size_t nbd3 = dst->nb[3];
 
+    const float alpha_f32 = 1.0f;
+    const float beta_f32 = 0.0f;
+
     const sycl::half alpha_f16 = 1.0f;
     const sycl::half beta_f16 = 0.0f;
 
-    const float alpha_f32 = 1.0f;
-    const float beta_f32  = 0.0f;
-
     const void * alpha = &alpha_f32;
     const void * beta  = &beta_f32;
+    if (no_mixed_dtypes) {
+        alpha = &alpha_f16;
+        beta  = &beta_f16;
+    }
 
     // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
-    // oneMKL open source supports half, half, float, float: datatypes
+    // when oneMKL open source supports half, half, float, float: datatypes
 
     dst_t = (char *) dst_ddf;
+    if (no_mixed_dtypes) {
+        dst_t = (char *) dst_f16.alloc(ne_dst);
+
+        nbd2 /= sizeof(float) / sizeof(sycl::half);
+        nbd3 /= sizeof(float) / sizeof(sycl::half);
+    }
 
     GGML_ASSERT(ne12 % ne02 == 0);
     GGML_ASSERT(ne13 % ne03 == 0);
@@ -15245,6 +15136,10 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
     }
 #endif
 
+    if (no_mixed_dtypes) {
+        const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
+        to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
+    }
 }
 catch (sycl::exception const &exc) {
   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -16542,22 +16437,25 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
     /* .is_host          = */ nullptr,
 };
 
-ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
+ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device_index) {
+    ggml_init_sycl();
+    if (device_index>=g_device_count or device_index<0) {
+        printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
+            device_index, g_device_count-1);
+        GGML_ASSERT(device_index<g_device_count);
+    }
     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
 
-    static bool ggml_backend_sycl_buffer_type_initialized = false;
-
-    if (!ggml_backend_sycl_buffer_type_initialized) {
+    if (!g_ggml_backend_sycl_buffer_type_initialized) {
         for (int i = 0; i < g_device_count; i++) {
             ggml_backend_sycl_buffer_types[i] = {
                 /* .iface    = */ ggml_backend_sycl_buffer_type_interface,
                 /* .context  = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(g_sycl_gpu_mgr->gpus[i])},
             };
         }
-        ggml_backend_sycl_buffer_type_initialized = true;
+        g_ggml_backend_sycl_buffer_type_initialized = true;
     }
-
-    return &ggml_backend_sycl_buffer_types[device];
+    return &ggml_backend_sycl_buffer_types[device_index];
 }
 
 // sycl split buffer type
@@ -16910,6 +16808,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface
 };
 
 GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
+    ggml_init_sycl();
     // FIXME: this is not thread safe
     static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
 
@@ -17095,7 +16994,7 @@ GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t back
     params.ith = 0;
     for (int i = 0; i < cgraph->n_nodes; i++) {
         ggml_tensor * node = cgraph->nodes[i];
-        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
+        if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
             continue;
         }
 #ifndef NDEBUG
@@ -17243,6 +17142,13 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
     UNUSED(backend);
 }
 
+GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+    const int min_batch_size = 32;
+    return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
+    GGML_UNUSED(backend);
+}
+
+
 static ggml_backend_i ggml_backend_sycl_interface = {
     /* .get_name                = */ ggml_backend_sycl_name,
     /* .free                    = */ ggml_backend_sycl_free,
@@ -17256,6 +17162,7 @@ static ggml_backend_i ggml_backend_sycl_interface = {
     /* .graph_plan_compute      = */ NULL,
     /* .graph_compute           = */ ggml_backend_sycl_graph_compute,
     /* .supports_op             = */ ggml_backend_sycl_supports_op,
+    /* .offload_op              = */ ggml_backend_sycl_offload_op,
     /* .event_new               = */ NULL,
     /* .event_free              = */ NULL,
     /* .event_record            = */ NULL,
@@ -17269,7 +17176,7 @@ static ggml_guid_t ggml_backend_sycl_guid() {
 }
 
 GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
-    ggml_init_sycl(); // TODO: remove from ggml.c
+    ggml_init_sycl();
 
     check_allow_gpu_index(device);
 
@@ -17310,11 +17217,42 @@ GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id) {
     return g_sycl_gpu_mgr->get_index(device_id);
 }
 
+GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index) {
+    return g_sycl_gpu_mgr->gpus[device_index];
+}
+
+GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id) {
+    GGML_ASSERT(main_gpu_id<g_all_sycl_device_count);
+    fprintf(stderr, "ggml_backend_sycl_set_single_device: use single device: [%d]\n", main_gpu_id);
+    if (g_sycl_gpu_mgr) {
+        delete g_sycl_gpu_mgr;
+    }
+    g_sycl_gpu_mgr = new sycl_gpu_mgr(main_gpu_id);
+    g_ggml_sycl_backend_gpu_mode = SYCL_SINGLE_GPU_MODE;
+    ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
+    g_ggml_backend_sycl_buffer_type_initialized = false;
+}
+
+GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode() {
+    if (g_ggml_sycl_backend_gpu_mode == SYCL_MUL_GPU_MODE) {
+        return;
+    }
+
+    fprintf(stderr, "ggml_backend_sycl_set_mul_device_mode: true\n");
+
+    if (g_sycl_gpu_mgr) {
+        delete g_sycl_gpu_mgr;
+    }
+    g_sycl_gpu_mgr = new sycl_gpu_mgr();
+    g_ggml_sycl_backend_gpu_mode = SYCL_MUL_GPU_MODE;
+    ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
+    g_ggml_backend_sycl_buffer_type_initialized = false;
+}
+
 extern "C" int ggml_backend_sycl_reg_devices();
 
 int ggml_backend_sycl_reg_devices() {
-    if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr();
-    g_device_count = g_sycl_gpu_mgr->get_gpu_count();
+    ggml_backend_sycl_set_mul_device_mode();
     assert(g_device_count>0);
     for (int i = 0; i < g_device_count; i++) {
         int id = g_sycl_gpu_mgr->gpus[i];
index bf5b11b369d1996c5b2c0ea3569dfc3f244cea0b..a9f776fc1dd59786f84b7b015d90c585f6d08267 100644 (file)
 extern "C" {
 #endif
 
-#define GGML_SYCL_MAX_DEVICES       16
+#define GGML_SYCL_MAX_DEVICES       48
 #define GGML_SYCL_NAME "SYCL"
 
-GGML_API void   ggml_init_sycl(void);
-GGML_API bool   ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
+// backend API
 GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
+
+// devide buffer
 GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
+
+// split tensor buffer that splits matrices by rows across multiple devices
+GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
+
+// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
 GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
+
 GGML_API void   ggml_backend_sycl_print_sycl_devices(void);
 GGML_API GGML_CALL void   ggml_sycl_get_gpu_list(int *id_list, int max_len);
 GGML_API GGML_CALL void   ggml_sycl_get_device_description(int device, char *description, size_t description_size);
 GGML_API GGML_CALL int   ggml_backend_sycl_get_device_count();
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
 GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
 GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
 
+// TODO: these are temporary
+//       ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
+GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
+GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
+GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
+
+// SYCL doesn't support registering host memory, keep here for reference
+// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
+// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
 #ifdef  __cplusplus
 }
 #endif
index 7cce616ba714fd6ca5ceb591365fcce32fe1f1f7..521a1314b35655dc6fc1e3ef42e013137eae1347 100644 (file)
@@ -710,6 +710,12 @@ static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyPrope
         }
     }
 
+    // All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
+    // Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
+    if (compute_index >= 0) {
+        return compute_index;
+    }
+
     std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
 
     for(auto &q_family : queue_family_props) {
@@ -5560,7 +5566,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
     for (int i = 0; i < cgraph->n_nodes; i++) {
         ggml_tensor * node = cgraph->nodes[i];
 
-        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
+        if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
             continue;
         }
 
@@ -5693,6 +5699,7 @@ static ggml_backend_i ggml_backend_vk_interface = {
     /* .graph_plan_compute      = */ NULL,
     /* .graph_compute           = */ ggml_backend_vk_graph_compute,
     /* .supports_op             = */ ggml_backend_vk_supports_op,
+    /* .offload_op              = */ NULL,
     /* .event_new               = */ NULL,
     /* .event_free              = */ NULL,
     /* .event_record            = */ NULL,
diff --git a/ggml.c b/ggml.c
index fbc66f65b105214748f3d5e9020f52ffa3cd782f..eb469d0f7953d514bdf14a99009fdda0c2b00453 100644 (file)
--- a/ggml.c
+++ b/ggml.c
@@ -3,6 +3,7 @@
 
 #include "ggml-impl.h"
 #include "ggml-quants.h"
+#include "ggml.h"
 
 #if defined(_MSC_VER) || defined(__MINGW32__)
 #include <malloc.h> // using malloc.h with MSC/MINGW
 
 #if defined(_WIN32)
 
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+    #define NOMINMAX
+#endif
 #include <windows.h>
 
 typedef volatile LONG atomic_int;
@@ -282,14 +287,10 @@ inline static void * ggml_calloc(size_t num, size_t size) {
 #else
 #include <cblas.h>
 #endif
-#elif defined(GGML_USE_CUBLAS)
-#include "ggml-cuda.h"
 #elif defined(GGML_USE_CLBLAST)
 #include "ggml-opencl.h"
 #elif defined(GGML_USE_VULKAN)
 #include "ggml-vulkan.h"
-#elif defined(GGML_USE_SYCL)
-#include "ggml-sycl.h"
 #endif
 
 // floating point type used to accumulate sums
@@ -432,6 +433,57 @@ int64_t ggml_cycles_per_ms(void) {
 #define ggml_perf_cycles_per_ms() 0
 #endif
 
+//
+// cross-platform UTF-8 file paths
+//
+
+#ifdef _WIN32
+static wchar_t * ggml_mbstowcs(const char * mbs) {
+    int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
+    if (!wlen) {
+        errno = EINVAL;
+        return NULL;
+    }
+
+    wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
+    wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
+    if (!wlen) {
+        GGML_FREE(wbuf);
+        errno = EINVAL;
+        return NULL;
+    }
+
+    return wbuf;
+}
+#endif
+
+FILE * ggml_fopen(const char * fname, const char * mode) {
+#ifdef _WIN32
+    FILE * file = NULL;
+
+    // convert fname (UTF-8)
+    wchar_t * wfname = ggml_mbstowcs(fname);
+    if (wfname) {
+        // convert mode (ANSI)
+        wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
+        wchar_t * wmode_p = wmode;
+        do {
+            *wmode_p++ = (wchar_t)*mode;
+        } while (*mode++);
+
+        // open file
+        file = _wfopen(wfname, wmode);
+
+        GGML_FREE(wfname);
+        GGML_FREE(wmode);
+    }
+
+    return file;
+#else
+    return fopen(fname, mode);
+#endif
+}
+
 //
 // cache line
 //
@@ -470,6 +522,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
         .type_size                = sizeof(int32_t),
         .is_quantized             = false,
     },
+    [GGML_TYPE_I64] = {
+        .type_name                = "i64",
+        .blck_size                = 1,
+        .type_size                = sizeof(int64_t),
+        .is_quantized             = false,
+    },
+    [GGML_TYPE_F64] = {
+        .type_name                = "f64",
+        .blck_size                = 1,
+        .type_size                = sizeof(double),
+        .is_quantized             = false,
+        .nrows                    = 1,
+    },
     [GGML_TYPE_F32] = {
         .type_name                = "f32",
         .blck_size                = 1,
@@ -729,6 +794,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
         .vec_dot_type             = GGML_TYPE_Q8_K,
         .nrows                    = 1,
     },
+    [GGML_TYPE_IQ1_M] = {
+        .type_name                = "iq1_m",
+        .blck_size                = QK_K,
+        .type_size                = sizeof(block_iq1_m),
+        .is_quantized             = true,
+        .to_float                 = (ggml_to_float_t) dequantize_row_iq1_m,
+        .from_float               = NULL,
+        .from_float_reference     = NULL,
+        .vec_dot                  = ggml_vec_dot_iq1_m_q8_K,
+        .vec_dot_type             = GGML_TYPE_Q8_K,
+        .nrows                    = 1,
+    },
     [GGML_TYPE_IQ4_NL] = {
         .type_name                = "iq4_nl",
         .blck_size                = QK4_NL,
@@ -918,6 +995,101 @@ inline static float vaddvq_f32(float32x4_t v) {
     #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
 #endif
 
+#elif defined(__AVX512F__)
+
+#define GGML_SIMD
+
+// F32 AVX512
+
+#define GGML_F32_STEP 64
+#define GGML_F32_EPR  16
+
+#define GGML_F32x16         __m512
+#define GGML_F32x16_ZERO    _mm512_setzero_ps()
+#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
+#define GGML_F32x16_LOAD    _mm512_loadu_ps
+#define GGML_F32x16_STORE   _mm512_storeu_ps
+// _mm512_fmadd_ps is defined in AVX512F so no guard is required
+#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
+#define GGML_F32x16_ADD     _mm512_add_ps
+#define GGML_F32x16_MUL     _mm512_mul_ps
+#define GGML_F32x16_REDUCE(res, x)                                    \
+do {                                                                  \
+    int offset = GGML_F32_ARR >> 1;                                   \
+    for (int i = 0; i < offset; ++i) {                                \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
+    }                                                                 \
+    offset >>= 1;                                                     \
+    for (int i = 0; i < offset; ++i) {                                \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
+    }                                                                 \
+    offset >>= 1;                                                     \
+    for (int i = 0; i < offset; ++i) {                                \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
+    }                                                                 \
+    res = _mm512_reduce_add_ps(x[0]);                                 \
+} while (0)
+
+// TODO: is this optimal ?
+
+#define GGML_F32_VEC        GGML_F32x16
+#define GGML_F32_VEC_ZERO   GGML_F32x16_ZERO
+#define GGML_F32_VEC_SET1   GGML_F32x16_SET1
+#define GGML_F32_VEC_LOAD   GGML_F32x16_LOAD
+#define GGML_F32_VEC_STORE  GGML_F32x16_STORE
+#define GGML_F32_VEC_FMA    GGML_F32x16_FMA
+#define GGML_F32_VEC_ADD    GGML_F32x16_ADD
+#define GGML_F32_VEC_MUL    GGML_F32x16_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
+
+// F16 AVX512
+
+// F16 AVX
+
+#define GGML_F16_STEP 64
+#define GGML_F16_EPR  16
+
+// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
+
+#define GGML_F32Cx16             __m512
+#define GGML_F32Cx16_ZERO        _mm512_setzero_ps()
+#define GGML_F32Cx16_SET1(x)     _mm512_set1_ps(x)
+
+// unlike  _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
+// so F16C guard isn't required
+#define GGML_F32Cx16_LOAD(x)     _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
+#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
+
+#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
+#define GGML_F32Cx16_ADD         _mm512_add_ps
+#define GGML_F32Cx16_MUL         _mm512_mul_ps
+#define GGML_F32Cx16_REDUCE(res, x)                               \
+do {                                                              \
+    int offset = GGML_F32_ARR >> 1;                               \
+    for (int i = 0; i < offset; ++i) {                            \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
+    }                                                             \
+    offset >>= 1;                                                 \
+    for (int i = 0; i < offset; ++i) {                            \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
+    }                                                             \
+    offset >>= 1;                                                 \
+    for (int i = 0; i < offset; ++i) {                            \
+        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
+    }                                                             \
+    res = _mm512_reduce_add_ps(x[0]);                             \
+} while (0)
+
+#define GGML_F16_VEC                GGML_F32Cx16
+#define GGML_F16_VEC_ZERO           GGML_F32Cx16_ZERO
+#define GGML_F16_VEC_SET1           GGML_F32Cx16_SET1
+#define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx16_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
+#define GGML_F16_VEC_FMA            GGML_F32Cx16_FMA
+#define GGML_F16_VEC_ADD            GGML_F32Cx16_ADD
+#define GGML_F16_VEC_MUL            GGML_F32Cx16_MUL
+#define GGML_F16_VEC_REDUCE         GGML_F32Cx16_REDUCE
+
 #elif defined(__AVX__)
 
 #define GGML_SIMD
@@ -2379,6 +2551,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
         case GGML_FTYPE_MOSTLY_IQ2_XS:        wtype = GGML_TYPE_IQ2_XS;   break;
         case GGML_FTYPE_MOSTLY_IQ3_XXS:       wtype = GGML_TYPE_IQ3_XXS;  break;
         case GGML_FTYPE_MOSTLY_IQ1_S:         wtype = GGML_TYPE_IQ1_S;    break;
+        case GGML_FTYPE_MOSTLY_IQ1_M:         wtype = GGML_TYPE_IQ1_M;    break;
         case GGML_FTYPE_MOSTLY_IQ4_NL:        wtype = GGML_TYPE_IQ4_NL;   break;
         case GGML_FTYPE_MOSTLY_IQ4_XS:        wtype = GGML_TYPE_IQ4_XS;   break;
         case GGML_FTYPE_MOSTLY_IQ3_S:         wtype = GGML_TYPE_IQ3_S;    break;
@@ -2434,6 +2607,16 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 }
 
+GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
+    for (int i = 0; i < GGML_MAX_DIMS; ++i) {
+        if (tensor->ne[i] == 0) {
+            // empty if any dimension has no elements
+            return true;
+        }
+    }
+    return false;
+}
+
 bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 
@@ -2448,7 +2631,7 @@ bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor
 static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 
-    return
+    return ggml_is_empty(t0) ? ggml_is_empty(t1) :
         (t1->ne[0]%t0->ne[0] == 0) &&
         (t1->ne[1]%t0->ne[1] == 0) &&
         (t1->ne[2]%t0->ne[2] == 0) &&
@@ -2532,14 +2715,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
             GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
         }
 
-#if defined(GGML_USE_CUBLAS)
-        ggml_init_cublas();
-#elif defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CLBLAST)
         ggml_cl_init();
 #elif defined(GGML_USE_VULKAN)
         ggml_vk_init_cpu_assist();
-#elif defined(GGML_USE_SYCL)
-        ggml_init_sycl();
 #endif
 
         ggml_setup_op_has_task_pass();
@@ -7979,6 +8158,7 @@ static void ggml_compute_forward_add(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -8261,6 +8441,7 @@ static void ggml_compute_forward_add1(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -8388,6 +8569,7 @@ static void ggml_compute_forward_acc(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -10997,7 +11179,6 @@ static void ggml_compute_forward_out_prod_f32(
     // nb01 >= nb00 - src0 is not transposed
     //   compute by src0 rows
 
-    // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
     // TODO: #if defined(GGML_USE_CLBLAST)
 
 #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
@@ -11197,7 +11378,6 @@ static void ggml_compute_forward_out_prod_q_f32(
     // nb01 >= nb00 - src0 is not transposed
     //   compute by src0 rows
 
-    // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
     // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
 
     if (params->type == GGML_TASK_TYPE_INIT) {
@@ -11293,6 +11473,7 @@ static void ggml_compute_forward_out_prod(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -11484,6 +11665,7 @@ static void ggml_compute_forward_set(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -11707,6 +11889,7 @@ static void ggml_compute_forward_get_rows(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -12410,6 +12593,7 @@ static void ggml_compute_forward_alibi(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -12418,6 +12602,8 @@ static void ggml_compute_forward_alibi(
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
+        case GGML_TYPE_I64:
+        case GGML_TYPE_F64:
         case GGML_TYPE_COUNT:
             {
                 GGML_ASSERT(false);
@@ -12496,6 +12682,7 @@ static void ggml_compute_forward_clamp(
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ3_XXS:
         case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:
         case GGML_TYPE_IQ4_NL:
         case GGML_TYPE_IQ4_XS:
         case GGML_TYPE_IQ3_S:
@@ -12504,6 +12691,8 @@ static void ggml_compute_forward_clamp(
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
+        case GGML_TYPE_I64:
+        case GGML_TYPE_F64:
         case GGML_TYPE_COUNT:
             {
                 GGML_ASSERT(false);
@@ -15935,18 +16124,11 @@ static void ggml_compute_forward_cross_entropy_loss_back(
 static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
     GGML_ASSERT(params);
 
-    if (tensor->op == GGML_OP_NONE) {
+    if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
         return;
     }
 
-#ifdef GGML_USE_CUBLAS
-    bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
-    if (skip_cpu) {
-        return;
-    }
-    GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
-    GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
-#elif defined(GGML_USE_VULKAN)
+#if defined(GGML_USE_VULKAN)
     const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
 #ifdef GGML_VULKAN_CHECK_RESULTS
     if (skip_cpu) {
@@ -15958,14 +16140,8 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
     }
     GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
     GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
-#endif // GGML_USE_CUBLAS
+#endif // GGML_USE_VULKAN
 
-#ifdef GGML_USE_SYCL
-    bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
-    if (skip_cpu) {
-        return;
-    }
-#endif // GGML_USE_SYCL
     switch (tensor->op) {
         case GGML_OP_DUP:
             {
@@ -17817,6 +17993,12 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const
 static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
     int n_tasks = 0;
 
+    if (ggml_is_empty(node)) {
+        // no need to multi-thread a no-op
+        n_tasks = 1;
+        return n_tasks;
+    }
+
     switch (node->op) {
         case GGML_OP_CPY:
         case GGML_OP_DUP:
@@ -18640,7 +18822,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
 
     // write binary data
     {
-        FILE * fout = fopen(fname, "wb");
+        FILE * fout = ggml_fopen(fname, "wb");
 
         if (!fout) {
             fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
@@ -18778,7 +18960,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
 
     // read file into data
     {
-        FILE * fin = fopen(fname, "rb");
+        FILE * fin = ggml_fopen(fname, "rb");
         if (!fin) {
             fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
             return result;
@@ -19114,7 +19296,7 @@ static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node,
 void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
     char color[16];
 
-    FILE * fp = fopen(filename, "w");
+    FILE * fp = ggml_fopen(filename, "w");
     GGML_ASSERT(fp);
 
     fprintf(fp, "digraph G {\n");
@@ -20161,7 +20343,8 @@ void ggml_quantize_init(enum ggml_type type) {
         case GGML_TYPE_IQ2_XXS:
         case GGML_TYPE_IQ2_XS:
         case GGML_TYPE_IQ2_S:
-        case GGML_TYPE_IQ1_S:   iq2xs_init_impl(type); break;
+        case GGML_TYPE_IQ1_S:
+        case GGML_TYPE_IQ1_M:   iq2xs_init_impl(type); break;
         case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
         case GGML_TYPE_IQ3_S:   iq3xs_init_impl(512); break;
         default: // nothing
@@ -20186,7 +20369,8 @@ bool ggml_quantize_requires_imatrix(enum ggml_type type) {
     return
         type == GGML_TYPE_IQ2_XXS ||
         type == GGML_TYPE_IQ2_XS  ||
-        type == GGML_TYPE_IQ1_S;
+        type == GGML_TYPE_IQ1_S;//   ||
+        //type == GGML_TYPE_IQ1_M;
 }
 
 size_t ggml_quantize_chunk(
@@ -20230,6 +20414,7 @@ size_t ggml_quantize_chunk(
         case GGML_TYPE_IQ3_S:   result = quantize_iq3_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_IQ2_S:   result = quantize_iq2_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_IQ1_S:   result = quantize_iq1_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+        case GGML_TYPE_IQ1_M:   result = quantize_iq1_m  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_IQ4_NL:  result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
 #if QK_K == 64
         case GGML_TYPE_IQ4_XS:  result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
@@ -20432,7 +20617,7 @@ struct gguf_context * gguf_init_empty(void) {
 }
 
 struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
-    FILE * file = fopen(fname, "rb");
+    FILE * file = ggml_fopen(fname, "rb");
     if (!file) {
         return NULL;
     }
@@ -21387,7 +21572,7 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
 }
 
 void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
-    FILE * file = fopen(fname, "wb");
+    FILE * file = ggml_fopen(fname, "wb");
     if (!file) {
         GGML_ASSERT(false && "failed to open file for writing");
     }
@@ -21529,15 +21714,15 @@ int ggml_cpu_has_wasm_simd(void) {
 }
 
 int ggml_cpu_has_blas(void) {
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
     return 1;
 #else
     return 0;
 #endif
 }
 
-int ggml_cpu_has_cublas(void) {
-#if defined(GGML_USE_CUBLAS)
+int ggml_cpu_has_cuda(void) {
+#if defined(GGML_USE_CUDA)
     return 1;
 #else
     return 0;
@@ -21577,7 +21762,7 @@ int ggml_cpu_has_sycl(void) {
 }
 
 int ggml_cpu_has_gpublas(void) {
-    return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
+    return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
            ggml_cpu_has_sycl();
 }
 
diff --git a/ggml.h b/ggml.h
index ab26c8f5908c72f4fe94336d6c55a44140731088..5d4a4ceb65c7e106bf2008ba82089fe8d4d7a83f 100644 (file)
--- a/ggml.h
+++ b/ggml.h
 #    define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
 #endif
 
-#include <stdint.h>
-#include <stddef.h>
 #include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
 
 #define GGML_FILE_MAGIC   0x67676d6c // "ggml"
 #define GGML_FILE_VERSION 1
@@ -366,6 +367,9 @@ extern "C" {
         GGML_TYPE_I8      = 24,
         GGML_TYPE_I16     = 25,
         GGML_TYPE_I32     = 26,
+        GGML_TYPE_I64     = 27,
+        GGML_TYPE_F64     = 28,
+        GGML_TYPE_IQ1_M   = 29,
         GGML_TYPE_COUNT,
     };
 
@@ -405,6 +409,7 @@ extern "C" {
         GGML_FTYPE_MOSTLY_IQ3_S   = 20, // except 1d tensors
         GGML_FTYPE_MOSTLY_IQ2_S   = 21, // except 1d tensors
         GGML_FTYPE_MOSTLY_IQ4_XS  = 22, // except 1d tensors
+        GGML_FTYPE_MOSTLY_IQ1_M   = 23, // except 1d tensors
     };
 
     // available tensor operations:
@@ -706,6 +711,9 @@ extern "C" {
 
     GGML_API void    ggml_print_backtrace(void);
 
+    // accepts a UTF-8 path, even on Windows
+    GGML_API FILE *  ggml_fopen(const char * fname, const char * mode);
+
     GGML_API void    ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
     GGML_API bool    ggml_is_numa(void); // true if init detected that system has >1 NUMA node
 
@@ -742,6 +750,7 @@ extern "C" {
     GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
     GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
     GGML_API GGML_CALL bool ggml_is_permuted  (const struct ggml_tensor * tensor);
+    GGML_API GGML_CALL bool ggml_is_empty     (const struct ggml_tensor * tensor);
     GGML_API           bool ggml_is_scalar    (const struct ggml_tensor * tensor);
     GGML_API           bool ggml_is_vector    (const struct ggml_tensor * tensor);
     GGML_API           bool ggml_is_matrix    (const struct ggml_tensor * tensor);
@@ -2348,7 +2357,7 @@ extern "C" {
     GGML_API int ggml_cpu_has_fp16_va    (void);
     GGML_API int ggml_cpu_has_wasm_simd  (void);
     GGML_API int ggml_cpu_has_blas       (void);
-    GGML_API int ggml_cpu_has_cublas     (void);
+    GGML_API int ggml_cpu_has_cuda       (void);
     GGML_API int ggml_cpu_has_clblast    (void);
     GGML_API int ggml_cpu_has_vulkan     (void);
     GGML_API int ggml_cpu_has_kompute    (void);
index 02800a318c66d1c0f6ce863700bcdd9c5c4dbcf7..d50c788b3c6a2dc9e696414cee56ecfd9aaa36b8 100644 (file)
@@ -8,7 +8,7 @@
 #include "ggml-metal.h"
 #endif
 
-#ifdef GGML_USE_CUBLAS
+#ifdef GGML_USE_CUDA
 #include "ggml-cuda.h"
 #endif
 
@@ -1198,8 +1198,8 @@ static ggml_backend_t whisper_backend_init(const whisper_context_params & params
     ggml_backend_t backend_gpu = NULL;
 
     // initialize the backends
-#ifdef GGML_USE_CUBLAS
-    if (params.use_gpu && ggml_cublas_loaded()) {
+#ifdef GGML_USE_CUDA
+    if (params.use_gpu) {
         WHISPER_LOG_INFO("%s: using CUDA backend\n", __func__);
         backend_gpu = ggml_backend_cuda_init(params.gpu_device);
         if (!backend_gpu) {
@@ -4079,7 +4079,7 @@ const char * whisper_print_system_info(void) {
     s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
     s += "SSSE3 = "     + std::to_string(ggml_cpu_has_ssse3())     + " | ";
     s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
-    s += "CUDA = "      + std::to_string(ggml_cpu_has_cublas())    + " | ";
+    s += "CUDA = "      + std::to_string(ggml_cpu_has_cuda())      + " | ";
     s += "COREML = "    + std::to_string(whisper_has_coreml())     + " | ";
     s += "OPENVINO = "  + std::to_string(whisper_has_openvino())          ;