]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
examples : add batched.swift + improve CI for swift (#3562)
authorZane Shannon <redacted>
Wed, 11 Oct 2023 11:14:05 +0000 (04:14 -0700)
committerGitHub <redacted>
Wed, 11 Oct 2023 11:14:05 +0000 (06:14 -0500)
.github/workflows/build.yml
Makefile
examples/batched.swift/.gitignore [new file with mode: 0644]
examples/batched.swift/Makefile [new file with mode: 0755]
examples/batched.swift/Package.swift [new file with mode: 0644]
examples/batched.swift/README.md [new file with mode: 0644]
examples/batched.swift/Sources/main.swift [new file with mode: 0644]

index e41be76db0820d0fe710f0c44fe7a78d695be371..5af497a3ce3214769db4e8f3bf8de9be62928586 100644 (file)
@@ -276,6 +276,11 @@ jobs:
         run: |
           xcodebuild -scheme llama -destination "${{ matrix.destination }}"
 
+      - name: Build Swift Example
+        id: make_build_swift_example
+        run: |
+            make swift
+
   windows-latest-cmake:
     runs-on: windows-latest
 
index 40187c4a25e62114f5b087b55ddb253b29731ebf..87e7bb604c0c8c54e158c480585345aa8cd03512 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -617,6 +617,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS)
        $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
 endif
 
+ifeq ($(UNAME_S),Darwin)
+swift: examples/batched.swift
+       (cd examples/batched.swift; make build)
+endif
+
 build-info.h: $(wildcard .git/index) scripts/build-info.sh
        @sh scripts/build-info.sh $(CC) > $@.tmp
        @if ! cmp -s $@.tmp $@; then \
@@ -637,7 +642,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
 run-benchmark-matmult: benchmark-matmult
        ./$@
 
-.PHONY: run-benchmark-matmult
+.PHONY: run-benchmark-matmult swift
 
 vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
        $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
diff --git a/examples/batched.swift/.gitignore b/examples/batched.swift/.gitignore
new file mode 100644 (file)
index 0000000..e1e863b
--- /dev/null
@@ -0,0 +1,9 @@
+.DS_Store
+/.build
+/Packages
+xcuserdata/
+DerivedData/
+.swiftpm/configuration/registries.json
+.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
+.netrc
+batched_swift
diff --git a/examples/batched.swift/Makefile b/examples/batched.swift/Makefile
new file mode 100755 (executable)
index 0000000..2afb24f
--- /dev/null
@@ -0,0 +1,6 @@
+.PHONY: build
+
+build:
+       xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
+       rm -f ./batched_swift
+       ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
diff --git a/examples/batched.swift/Package.swift b/examples/batched.swift/Package.swift
new file mode 100644 (file)
index 0000000..826491d
--- /dev/null
@@ -0,0 +1,22 @@
+// swift-tools-version: 5.5
+// The swift-tools-version declares the minimum version of Swift required to build this package.
+
+import PackageDescription
+
+let package = Package(
+    name: "batched_swift",
+    platforms: [.macOS(.v12)],
+    dependencies: [
+        .package(name: "llama", path: "../../"),
+    ],
+    targets: [
+        // Targets are the basic building blocks of a package, defining a module or a test suite.
+        // Targets can depend on other targets in this package and products from dependencies.
+        .executableTarget(
+            name: "batched_swift",
+            dependencies: ["llama"],
+            path: "Sources",
+            linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
+        ),
+    ]
+)
diff --git a/examples/batched.swift/README.md b/examples/batched.swift/README.md
new file mode 100644 (file)
index 0000000..464c907
--- /dev/null
@@ -0,0 +1,4 @@
+This is a swift clone of `examples/batched`.
+
+$ `make`
+$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
diff --git a/examples/batched.swift/Sources/main.swift b/examples/batched.swift/Sources/main.swift
new file mode 100644 (file)
index 0000000..938f305
--- /dev/null
@@ -0,0 +1,255 @@
+import Foundation
+import llama
+
+let arguments = CommandLine.arguments
+
+// Check that we have at least one argument (the model path)
+guard arguments.count > 1 else {
+    print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
+    exit(1)
+}
+
+let modelPath: String = arguments[1]
+let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
+let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
+
+// total length of the sequences including the prompt
+let n_len: Int = 32
+
+// init LLM
+llama_backend_init(false)
+defer {
+    llama_backend_free()
+}
+
+let model_params = llama_model_default_params()
+guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
+    print("Failed to load model")
+    exit(1)
+}
+
+defer {
+    llama_free_model(model)
+}
+
+var tokens = tokenize(text: prompt, add_bos: true)
+
+let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
+
+var context_params = llama_context_default_params()
+context_params.seed = 1234
+context_params.n_ctx = n_kv_req
+context_params.n_batch = UInt32(max(n_len, n_parallel))
+context_params.n_threads = 8
+context_params.n_threads_batch = 8
+
+let context = llama_new_context_with_model(model, context_params)
+guard context != nil else {
+    print("Failed to initialize context")
+    exit(1)
+}
+
+defer {
+    llama_free(context)
+}
+
+let n_ctx = llama_n_ctx(context)
+
+print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
+
+if n_kv_req > n_ctx {
+    print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
+    exit(1)
+}
+
+var buffer: [CChar] = []
+for id: llama_token in tokens {
+    print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
+}
+
+print("\n")
+
+var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
+defer {
+    llama_batch_free(batch)
+}
+
+// evaluate the initial prompt
+batch.n_tokens = Int32(tokens.count)
+
+for (i, token) in tokens.enumerated() {
+    batch.token[i] = token
+    batch.pos[i] = Int32(i)
+    batch.seq_id[i] = 0
+    batch.logits[i] = 0
+}
+
+// llama_decode will output logits only for the last token of the prompt
+batch.logits[Int(batch.n_tokens) - 1] = 1
+
+if llama_decode(context, batch) != 0 {
+    print("llama_decode() failed")
+    exit(1)
+}
+
+for i in 1 ..< n_parallel {
+    llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
+}
+
+if n_parallel > 1 {
+    print("generating \(n_parallel) sequences ...\n")
+}
+
+var streams: [String] = .init(repeating: "", count: n_parallel)
+var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
+var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
+
+var n_cur = batch.n_tokens
+var n_decode = 0
+
+let t_main_start = ggml_time_us()
+
+while n_cur <= n_len {
+    // prepare the next batch
+    batch.n_tokens = 0
+
+    // sample the next token for each parallel sequence / stream
+    for i in 0 ..< n_parallel {
+        if i_batch[i] < 0 {
+            // the stream has already finished
+            continue
+        }
+
+        var n_vocab = llama_n_vocab(model)
+        var logits = llama_get_logits_ith(context, i_batch[i])
+
+        var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
+
+        for token_id in 0 ..< n_vocab {
+            candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
+        }
+
+        var candidates_p: llama_token_data_array = .init(
+            data: &candidates,
+            size: candidates.count,
+            sorted: false
+        )
+
+        let top_k: Int32 = 40
+        let top_p: Float = 0.9
+        let temp: Float = 0.4
+
+        llama_sample_top_k(context, &candidates_p, top_k, 1)
+        llama_sample_top_p(context, &candidates_p, top_p, 1)
+        llama_sample_temp(context, &candidates_p, temp)
+
+        let new_token_id = llama_sample_token(context, &candidates_p)
+
+        // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
+
+        // is it an end of stream? -> mark the stream as finished
+        if new_token_id == llama_token_eos(context) || n_cur == n_len {
+            i_batch[i] = -1
+            // print("")
+            if n_parallel > 1 {
+                print("stream \(i) finished at n_cur = \(n_cur)")
+            }
+
+            continue
+        }
+
+        let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
+
+        // if there is only one stream, we print immediately to stdout
+        if n_parallel == 1 {
+            print(nextStringPiece, terminator: "")
+        }
+        streams[i] += nextStringPiece
+
+        // push this new token for next evaluation
+        batch.token[Int(batch.n_tokens)] = new_token_id
+        batch.pos[Int(batch.n_tokens)] = n_cur
+        batch.seq_id[Int(batch.n_tokens)] = Int32(i)
+        batch.logits[Int(batch.n_tokens)] = 1
+
+        i_batch[i] = batch.n_tokens
+
+        batch.n_tokens += 1
+
+        n_decode += 1
+    }
+
+    // all streams are finished
+    if batch.n_tokens == 0 {
+        break
+    }
+
+    n_cur += 1
+
+    // evaluate the current batch with the transformer model
+    if llama_decode(context, batch) != 0 {
+        print("llama_decode() failed")
+        exit(1)
+    }
+}
+
+if n_parallel > 1 {
+    print("\n")
+    for (i, stream) in streams.enumerated() {
+        print("sequence \(i):\n\n\(prompt)\(stream)\n")
+    }
+}
+
+let t_main_end = ggml_time_us()
+
+print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
+
+llama_print_timings(context)
+
+private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
+    let n_tokens = text.count + (add_bos ? 1 : 0)
+    let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
+    let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos)
+    var swiftTokens: [llama_token] = []
+    for i in 0 ..< tokenCount {
+        swiftTokens.append(tokens[Int(i)])
+    }
+    tokens.deallocate()
+    return swiftTokens
+}
+
+private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
+    var result = [CChar](repeating: 0, count: 8)
+    let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
+    if nTokens < 0 {
+        if result.count >= -Int(nTokens) {
+            result.removeLast(-Int(nTokens))
+        } else {
+            result.removeAll()
+        }
+        let check = llama_token_to_piece(
+            model,
+            token,
+            &result,
+            Int32(result.count)
+        )
+        assert(check == nTokens)
+    } else {
+        result.removeLast(result.count - Int(nTokens))
+    }
+    if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
+        return utfString
+    } else {
+        buffer.append(contentsOf: result)
+        let data = Data(buffer.map { UInt8(bitPattern: $0) })
+        if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
+            buffer = []
+        }
+        guard let bufferString = String(data: data, encoding: .utf8) else {
+            return nil
+        }
+        buffer = []
+        return bufferString
+    }
+    return nil
+}