option(GGML_OPENBLAS "ggml: use OpenBLAS" OFF)
option(GGML_CLBLAST "ggml: use clBLAST" OFF)
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
-option(GGML_CUBLAS "ggml: use cuBLAS" OFF)
+option(GGML_CUDA "ggml: use CUDA" OFF)
+option(GGML_CUBLAS "ggml: use CUDA (deprecated)" OFF)
option(GGML_METAL "ggml: use Metal" OFF)
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
case GGML_FTYPE_MOSTLY_IQ1_S:
case GGML_FTYPE_MOSTLY_IQ4_NL:
case GGML_FTYPE_MOSTLY_IQ4_XS:
+ case GGML_FTYPE_MOSTLY_IQ1_M:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
+ case GGML_TYPE_I64:
+ case GGML_TYPE_F64:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ1_M:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
#include "ggml-metal.h"
#endif
-#ifdef GGML_USE_CUBLAS
+#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
ggml_backend_t backend_gpu = NULL;
// initialize the backends
-#ifdef GGML_USE_CUBLAS
- if (params.use_gpu && ggml_cublas_loaded()) {
+#ifdef GGML_USE_CUDA
+ if (params.use_gpu) {
WHISPER_LOG_INFO("%s: using CUDA backend\n", __func__);
backend_gpu = ggml_backend_cuda_init(params.gpu_device);
if (!backend_gpu) {
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- s += "CUDA = " + std::to_string(ggml_cpu_has_cublas()) + " | ";
+ s += "CUDA = " + std::to_string(ggml_cpu_has_cuda()) + " | ";
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) ;
# ggml-backend-impl.h -> src/ggml-backend-impl.h
# ggml-backend.c -> src/ggml-backend.c
# ggml-common.h -> src/ggml-common.h
+ # ggml-cuda/* -> src/ggml-cuda/*
# ggml-cuda.cu -> src/ggml-cuda.cu
# ggml-cuda.h -> src/ggml-cuda.h
# ggml-impl.h -> src/ggml-impl.h
-e 's/\/ggml-backend-impl\.h/\/src\/ggml-backend-impl.h/g' \
-e 's/\/ggml-backend\.c/\/src\/ggml-backend.c/g' \
-e 's/\/ggml-common\.h/\/src\/ggml-common.h/g' \
+ -e 's/\/ggml-cuda\//\/src\/ggml-cuda\//g' \
-e 's/\/ggml-cuda\.cu/\/src\/ggml-cuda.cu/g' \
-e 's/\/ggml-cuda\.h/\/src\/ggml-cuda.h/g' \
-e 's/\/ggml-impl\.h/\/src\/ggml-impl.h/g' \
cp -rpv ../llama.cpp/ggml-backend-impl.h src/ggml-backend-impl.h
cp -rpv ../llama.cpp/ggml-backend.c src/ggml-backend.c
cp -rpv ../llama.cpp/ggml-common.h src/ggml-common.h
+cp -rpv ../llama.cpp/ggml-cuda/* src/ggml-cuda/
cp -rpv ../llama.cpp/ggml-cuda.cu src/ggml-cuda.cu
cp -rpv ../llama.cpp/ggml-cuda.h src/ggml-cuda.h
cp -rpv ../llama.cpp/ggml-impl.h src/ggml-impl.h
endif()
if (GGML_CUBLAS)
+ message(WARNING "GGML_CUBLAS is deprecated and will be removed in the future.\nUse GGML_CUDA instead")
+ set(GGML_CUDA ON)
+endif()
+
+if (GGML_CUDA)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
enable_language(CUDA)
- set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
+ file(GLOB GGML_CUDA_SOURCES "ggml-cuda/*.cu")
+ list(APPEND GGML_CUDA_SOURCES ggml-cuda.h)
+ list(APPEND GGML_CUDA_SOURCES ggml-cuda.cu)
- set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CUBLAS)
+ set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CUDA)
if (GGML_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
- add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
+ add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
+
if (BUILD_SHARED_LIBS)
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
--- /dev/null
+#include "acc.cuh"
+
+static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
+ const int ne10, const int ne11, const int ne12,
+ const int nb1, const int nb2, int offset) {
+ const int i = blockDim.x * blockIdx.x + threadIdx.x;
+ if (i >= ne) {
+ return;
+ }
+ int src1_idx = i - offset;
+ int oz = src1_idx / nb2;
+ int oy = (src1_idx - (oz * nb2)) / nb1;
+ int ox = src1_idx % nb1;
+ if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
+ dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
+ } else {
+ dst[i] = x[i];
+ }
+}
+
+static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
+ const int ne10, const int ne11, const int ne12,
+ const int nb1, const int nb2, const int offset, cudaStream_t stream) {
+ int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
+ acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
+}
+
+void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
+
+ int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
+ int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
+ // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
+ int offset = dst->op_params[3] / 4; // offset in bytes
+
+ acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_ACC_BLOCK_SIZE 256
+
+void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "alibi.cuh"
+
+static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
+ const int n_heads_log2_floor, const float m0, const float m1) {
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (col >= ncols) {
+ return;
+ }
+
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i = row*ncols + col;
+
+ const int k = row/k_rows;
+
+ float m_k;
+ if (k < n_heads_log2_floor) {
+ m_k = powf(m0, k + 1);
+ } else {
+ m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
+ }
+
+ dst[i] = col * m_k + x[i];
+}
+
+static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
+ const int k_rows, const int n_heads_log2_floor, const float m0,
+ const float m1, cudaStream_t stream) {
+ const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
+ const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
+ const dim3 block_nums(num_blocks_x, nrows, 1);
+ alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
+}
+
+void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t nrows = ggml_nrows(src0);
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_head = ((int32_t *) dst->op_params)[1];
+ float max_bias;
+ memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
+
+ //GGML_ASSERT(ne01 + n_past == ne00);
+ GGML_ASSERT(n_head == ne02);
+
+ const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
+
+ alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_ALIBI_BLOCK_SIZE 32
+
+void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "arange.cuh"
+
+static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ dst[nidx] = start + step * nidx;
+}
+
+static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
+ arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
+}
+
+void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ float start;
+ float stop;
+ float step;
+ memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
+ memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
+ memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
+
+ int64_t steps = (int64_t)ceil((stop - start) / step);
+ GGML_ASSERT(ggml_nelements(dst) == steps);
+
+ arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_ARANGE_BLOCK_SIZE 256
+
+void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "argsort.cuh"
+
+template<typename T>
+static inline __device__ void ggml_cuda_swap(T & a, T & b) {
+ T tmp = a;
+ a = b;
+ b = tmp;
+}
+
+template<ggml_sort_order order>
+static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
+ // bitonic sort
+ int col = threadIdx.x;
+ int row = blockIdx.y;
+
+ if (col >= ncols) return;
+
+ const float * x_row = x + row * ncols;
+ int * dst_row = dst + row * ncols;
+
+ // initialize indices
+ if (col < ncols) {
+ dst_row[col] = col;
+ }
+ __syncthreads();
+
+ for (int k = 2; k <= ncols; k *= 2) {
+ for (int j = k / 2; j > 0; j /= 2) {
+ int ixj = col ^ j;
+ if (ixj > col) {
+ if ((col & k) == 0) {
+ if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
+ ggml_cuda_swap(dst_row[col], dst_row[ixj]);
+ }
+ } else {
+ if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
+ ggml_cuda_swap(dst_row[col], dst_row[ixj]);
+ }
+ }
+ }
+ __syncthreads();
+ }
+ }
+}
+
+static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
+ // bitonic sort requires ncols to be power of 2
+ GGML_ASSERT((ncols & (ncols - 1)) == 0);
+
+ const dim3 block_dims(ncols, 1, 1);
+ const dim3 block_nums(1, nrows, 1);
+ if (order == GGML_SORT_ORDER_ASC) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+ } else if (order == GGML_SORT_ORDER_DESC) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+ } else {
+ GGML_ASSERT(false);
+ }
+}
+
+void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
+
+ argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "binbcast.cuh"
+
+static __device__ __forceinline__ float op_repeat(const float a, const float b) {
+ return b;
+ GGML_UNUSED(a);
+}
+
+static __device__ __forceinline__ float op_add(const float a, const float b) {
+ return a + b;
+}
+
+static __device__ __forceinline__ float op_mul(const float a, const float b) {
+ return a * b;
+}
+
+static __device__ __forceinline__ float op_div(const float a, const float b) {
+ return a / b;
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13) {
+ const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
+ const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
+ const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
+ const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
+
+ if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+ }
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13) {
+
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ const int i3 = i/(ne2*ne1*ne0);
+ const int i2 = (i/(ne1*ne0)) % ne2;
+ const int i1 = (i/ne0) % ne1;
+ const int i0 = i % ne0;
+
+ if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+}
+
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_cuda {
+ template<typename src0_t, typename src1_t, typename dst_t>
+ void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
+ const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
+ cudaStream_t stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ int nr0 = ne10/ne0;
+ int nr1 = ne11/ne1;
+ int nr2 = ne12/ne2;
+ int nr3 = ne13/ne3;
+
+ int nr[4] = { nr0, nr1, nr2, nr3 };
+
+ // collapse dimensions until first broadcast dimension
+ int64_t cne0[] = {ne0, ne1, ne2, ne3};
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
+ size_t cnb0[] = {nb0, nb1, nb2, nb3};
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
+ auto collapse = [](int64_t cne[]) {
+ cne[0] *= cne[1];
+ cne[1] = cne[2];
+ cne[2] = cne[3];
+ cne[3] = 1;
+ };
+
+ auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
+ cnb[1] *= cne[1];
+ cnb[2] *= cne[2];
+ cnb[3] *= cne[3];
+ };
+
+ for (int i = 0; i < 4; i++) {
+ if (nr[i] != 1) {
+ break;
+ }
+ if (i > 0) {
+ collapse_nb(cnb0, cne0);
+ collapse_nb(cnb1, cne1);
+ collapse(cne0);
+ collapse(cne1);
+ }
+ }
+ {
+ int64_t ne0 = cne0[0];
+ int64_t ne1 = cne0[1];
+ int64_t ne2 = cne0[2];
+ int64_t ne3 = cne0[3];
+
+ int64_t ne10 = cne1[0];
+ int64_t ne11 = cne1[1];
+ int64_t ne12 = cne1[2];
+ int64_t ne13 = cne1[3];
+
+ size_t nb0 = cnb0[0];
+ size_t nb1 = cnb0[1];
+ size_t nb2 = cnb0[2];
+ size_t nb3 = cnb0[3];
+
+ size_t nb10 = cnb1[0];
+ size_t nb11 = cnb1[1];
+ size_t nb12 = cnb1[2];
+ size_t nb13 = cnb1[3];
+
+ size_t s0 = nb0 / sizeof(dst_t);
+ size_t s1 = nb1 / sizeof(dst_t);
+ size_t s2 = nb2 / sizeof(dst_t);
+ size_t s3 = nb3 / sizeof(dst_t);
+
+ size_t s10 = nb10 / sizeof(src1_t);
+ size_t s11 = nb11 / sizeof(src1_t);
+ size_t s12 = nb12 / sizeof(src1_t);
+ size_t s13 = nb13 / sizeof(src1_t);
+
+ GGML_ASSERT(s0 == 1);
+ GGML_ASSERT(s10 == 1);
+
+ const int block_size = 128;
+
+ int64_t hne0 = std::max(ne0/2LL, 1LL);
+
+ dim3 block_dims;
+ block_dims.x = std::min<unsigned int>(hne0, block_size);
+ block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
+ block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
+
+ dim3 block_nums(
+ (hne0 + block_dims.x - 1) / block_dims.x,
+ (ne1 + block_dims.y - 1) / block_dims.y,
+ (ne2*ne3 + block_dims.z - 1) / block_dims.z
+ );
+
+ if (block_nums.z > 65535) {
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+ k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13,
+ /* s0, */ s1, s2, s3,
+ /* s10, */ s11, s12, s13);
+ } else {
+ k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13,
+ /* s0, */ s1, s2, s3,
+ /* s10, */ s11, s12, s13);
+ }
+ }
+ }
+};
+
+template<class op>
+static void ggml_cuda_op_bin_bcast(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
+
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+ op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+ op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
+ op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
+ } else {
+ fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
+ ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
+ }
+}
+
+void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
+
+void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "clamp.cuh"
+
+static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
+
+static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
+ clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
+}
+
+
+void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float min;
+ float max;
+ memcpy(&min, dst->op_params, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+ clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
+ CUDA_CHECK(cudaGetLastError());
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_CLAMP_BLOCK_SIZE 256
+
+void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#pragma once
+
+#include "ggml.h"
+#include "ggml-cuda.h"
+
+#include <memory>
+
+#if defined(GGML_USE_HIPBLAS)
+#define GGML_COMMON_DECL_HIP
+#define GGML_COMMON_IMPL_HIP
+#else
+#define GGML_COMMON_DECL_CUDA
+#define GGML_COMMON_IMPL_CUDA
+#endif
+#include "ggml-common.h"
+
+#include <cstdio>
+#include <array>
+#include <cassert>
+#include <cfloat>
+#include <string>
+
+#if defined(GGML_USE_HIPBLAS)
+#include <hip/hip_runtime.h>
+#include <hipblas/hipblas.h>
+#include <hip/hip_fp16.h>
+#ifdef __HIP_PLATFORM_AMD__
+// for rocblas_initialize()
+#include "rocblas/rocblas.h"
+#endif // __HIP_PLATFORM_AMD__
+#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
+#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
+#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
+#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
+#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
+#define CUBLAS_OP_N HIPBLAS_OP_N
+#define CUBLAS_OP_T HIPBLAS_OP_T
+#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
+#define CUBLAS_TF32_TENSOR_OP_MATH 0
+#define CUDA_R_16F HIPBLAS_R_16F
+#define CUDA_R_32F HIPBLAS_R_32F
+#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
+#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
+#define cublasCreate hipblasCreate
+#define cublasDestroy hipblasDestroy
+#define cublasGemmEx hipblasGemmEx
+#define cublasGemmBatchedEx hipblasGemmBatchedEx
+#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
+#define cublasHandle_t hipblasHandle_t
+#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
+#define cublasSetStream hipblasSetStream
+#define cublasSgemm hipblasSgemm
+#define cublasStatus_t hipblasStatus_t
+#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
+#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
+#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
+#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
+#define cudaDeviceProp hipDeviceProp_t
+#define cudaDeviceSynchronize hipDeviceSynchronize
+#define cudaError_t hipError_t
+#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
+#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
+#define cudaEventCreateWithFlags hipEventCreateWithFlags
+#define cudaEventDisableTiming hipEventDisableTiming
+#define cudaEventRecord hipEventRecord
+#define cudaEventSynchronize hipEventSynchronize
+#define cudaEvent_t hipEvent_t
+#define cudaEventDestroy hipEventDestroy
+#define cudaFree hipFree
+#define cudaFreeHost hipHostFree
+#define cudaGetDevice hipGetDevice
+#define cudaGetDeviceCount hipGetDeviceCount
+#define cudaGetDeviceProperties hipGetDeviceProperties
+#define cudaGetErrorString hipGetErrorString
+#define cudaGetLastError hipGetLastError
+#define cudaHostRegister hipHostRegister
+#define cudaHostRegisterPortable hipHostRegisterPortable
+#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
+#define cudaHostUnregister hipHostUnregister
+#define cudaLaunchHostFunc hipLaunchHostFunc
+#ifdef GGML_HIP_UMA
+#define cudaMalloc hipMallocManaged
+#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
+#else
+#define cudaMalloc hipMalloc
+#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
+#endif
+#define cudaMemcpy hipMemcpy
+#define cudaMemcpyAsync hipMemcpyAsync
+#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
+#define cudaMemcpy2DAsync hipMemcpy2DAsync
+#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
+#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
+#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
+#define cudaMemcpyKind hipMemcpyKind
+#define cudaMemset hipMemset
+#define cudaMemsetAsync hipMemsetAsync
+#define cudaMemGetInfo hipMemGetInfo
+#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
+#define cudaSetDevice hipSetDevice
+#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
+#define cudaStreamDestroy hipStreamDestroy
+#define cudaStreamFireAndForget hipStreamFireAndForget
+#define cudaStreamNonBlocking hipStreamNonBlocking
+#define cudaStreamPerThread hipStreamPerThread
+#define cudaStreamSynchronize hipStreamSynchronize
+#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
+#define cudaStream_t hipStream_t
+#define cudaSuccess hipSuccess
+#define __trap abort
+#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
+#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
+#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
+#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
+#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
+#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
+#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
+#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
+#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
+#else
+#include <cuda_runtime.h>
+#include <cuda.h>
+#include <cublas_v2.h>
+#include <cuda_fp16.h>
+
+#if CUDART_VERSION < 11020
+#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
+#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
+#define CUBLAS_COMPUTE_16F CUDA_R_16F
+#define CUBLAS_COMPUTE_32F CUDA_R_32F
+#define cublasComputeType_t cudaDataType_t
+#endif // CUDART_VERSION < 11020
+
+#endif // defined(GGML_USE_HIPBLAS)
+
+#define STRINGIZE_IMPL(...) #__VA_ARGS__
+#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
+
+#define WARP_SIZE 32
+#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
+
+#define CC_PASCAL 600
+#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
+#define CC_VOLTA 700
+#define CC_OFFSET_AMD 1000000
+#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
+#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
+#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
+
+// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
+// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
+// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
+// - 7B quantum model: +100-200 MB
+// - 13B quantum model: +200-400 MB
+//
+//#define GGML_CUDA_FORCE_MMQ
+
+// TODO: improve this to be correct for more hardware
+// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
+#if !defined(GGML_CUDA_FORCE_MMQ)
+#define CUDA_USE_TENSOR_CORES
+#endif
+
+#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
+#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
+
+#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+#define GGML_CUDA_MAX_STREAMS 8
+
+[[noreturn]]
+void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
+
+#define CUDA_CHECK_GEN(err, success, error_fn) \
+ do { \
+ auto err_ = (err); \
+ if (err_ != (success)) { \
+ ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
+ } \
+ } while (0)
+
+#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
+
+#if CUDART_VERSION >= 12000
+ static const char * cublas_get_error_str(const cublasStatus_t err) {
+ return cublasGetStatusString(err);
+ }
+#else
+ static const char * cublas_get_error_str(const cublasStatus_t err) {
+ switch (err) {
+ case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
+ case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
+ case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
+ case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
+ case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
+ case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
+ case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
+ case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
+ case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
+ default: return "unknown error";
+ }
+ }
+#endif // CUDART_VERSION >= 12000
+
+#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
+
+#if !defined(GGML_USE_HIPBLAS)
+static const char * cu_get_error_str(CUresult err) {
+ const char * err_str;
+ cuGetErrorString(err, &err_str);
+ return err_str;
+}
+#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
+#endif
+
+#if CUDART_VERSION >= 11100
+#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
+#else
+#define GGML_CUDA_ASSUME(x)
+#endif // CUDART_VERSION >= 11100
+
+#ifdef GGML_CUDA_F16
+typedef half dfloat; // dequantize float
+typedef half2 dfloat2;
+#else
+typedef float dfloat; // dequantize float
+typedef float2 dfloat2;
+#endif //GGML_CUDA_F16
+
+// dmmv = dequantize_mul_mat_vec
+// TODO: remove this?
+#ifndef GGML_CUDA_DMMV_X
+#define GGML_CUDA_DMMV_X 32
+#endif
+
+[[noreturn]]
+static __device__ void no_device_code(
+ const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
+ file_name, line, function_name, arch);
+ GGML_UNUSED(arch_list);
+#else
+ printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
+ file_name, line, function_name, arch, arch_list);
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ __trap();
+
+ GGML_UNUSED(no_device_code); // suppress unused function warning
+}
+
+#ifdef __CUDA_ARCH__
+#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
+#else
+#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
+#endif // __CUDA_ARCH__
+
+static __device__ __forceinline__ float warp_reduce_sum(float x) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ x += __shfl_xor_sync(0xffffffff, x, mask, 32);
+ }
+ return x;
+}
+
+static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
+ a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
+ }
+ return a;
+}
+
+#ifdef GGML_CUDA_F16
+static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
+ }
+ return a;
+#else
+ GGML_UNUSED(a);
+ NO_DEVICE_CODE;
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+}
+#endif // GGML_CUDA_F16
+
+static __device__ __forceinline__ float warp_reduce_max(float x) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+ }
+ return x;
+}
+
+//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
+//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//#pragma unroll
+// for (int mask = 16; mask > 0; mask >>= 1) {
+// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+// }
+// return x;
+//#else
+// GGML_UNUSED(x);
+// NO_DEVICE_CODE;
+//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//}
+
+
+#if defined(GGML_USE_HIPBLAS)
+#define __CUDA_ARCH__ 1300
+
+#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
+ defined(__gfx1150__) || defined(__gfx1151__)
+#define RDNA3
+#endif
+
+#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
+ defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
+#define RDNA2
+#endif
+
+#ifndef __has_builtin
+ #define __has_builtin(x) 0
+#endif
+
+typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
+typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
+static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+#if __has_builtin(__builtin_elementwise_sub_sat)
+ const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
+ return reinterpret_cast<const int &>(c);
+#else
+ int8x4_t c;
+ int16_t tmp;
+#pragma unroll
+ for (int i = 0; i < 4; i++) {
+ tmp = va[i] - vb[i];
+ if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
+ if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
+ c[i] = tmp;
+ }
+ return reinterpret_cast<int &>(c);
+#endif // __has_builtin(__builtin_elementwise_sub_sat)
+}
+
+static __device__ __forceinline__ int __vsub4(const int a, const int b) {
+ return __vsubss4(a, b);
+}
+
+static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
+ const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
+ const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
+ unsigned int c;
+ uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
+#pragma unroll
+ for (int i = 0; i < 4; ++i) {
+ vc[i] = va[i] == vb[i] ? 0xff : 0x00;
+ }
+ return c;
+}
+
+static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
+#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
+ c = __builtin_amdgcn_sdot4(a, b, c, false);
+#elif defined(RDNA3)
+ c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
+#elif defined(__gfx1010__) || defined(__gfx900__)
+ int tmp1;
+ int tmp2;
+ asm("\n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ "
+ : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
+ : "v"(a), "v"(b)
+ );
+#else
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+ c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
+#endif
+ return c;
+}
+#endif // defined(GGML_USE_HIPBLAS)
+
+// TODO: move to ggml-common.h
+static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
+
+typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
+
+
+//////////////////////
+
+struct ggml_cuda_device_info {
+ int device_count;
+
+ struct cuda_device_info {
+ int cc; // compute capability
+ size_t smpb; // max. shared memory per block
+ bool vmm; // virtual memory support
+ size_t vmm_granularity; // granularity of virtual memory
+ size_t total_vram;
+ };
+
+ cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
+
+ std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
+};
+
+const ggml_cuda_device_info & ggml_cuda_info();
+
+void ggml_cuda_set_device(int device);
+int ggml_cuda_get_device();
+
+struct ggml_cuda_pool {
+ virtual ~ggml_cuda_pool() = default;
+
+ virtual void * alloc(size_t size, size_t * actual_size) = 0;
+ virtual void free(void * ptr, size_t size) = 0;
+};
+
+template<typename T>
+struct ggml_cuda_pool_alloc {
+ ggml_cuda_pool * pool = nullptr;
+ T * ptr = nullptr;
+ size_t actual_size = 0;
+
+ ggml_cuda_pool_alloc() = default;
+
+ explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
+ }
+
+ ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
+ alloc(size);
+ }
+
+ ~ggml_cuda_pool_alloc() {
+ if (ptr != nullptr) {
+ pool->free(ptr, actual_size);
+ }
+ }
+
+ // size is in number of elements
+ T * alloc(size_t size) {
+ GGML_ASSERT(pool != nullptr);
+ GGML_ASSERT(ptr == nullptr);
+ ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
+ return ptr;
+ }
+
+ T * alloc(ggml_cuda_pool & pool, size_t size) {
+ this->pool = &pool;
+ return alloc(size);
+ }
+
+ T * get() {
+ return ptr;
+ }
+
+ ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
+ ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
+ ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
+ ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
+};
+
+
+// backend interface
+
+struct ggml_tensor_extra_gpu {
+ void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
+ cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
+};
+
+struct ggml_backend_cuda_context {
+ int device;
+ std::string name;
+ cudaEvent_t copy_event = nullptr;
+
+ cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
+ cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+
+ explicit ggml_backend_cuda_context(int device) :
+ device(device),
+ name(GGML_CUDA_NAME + std::to_string(device)) {
+ }
+
+ ~ggml_backend_cuda_context() {
+ if (copy_event != nullptr) {
+ CUDA_CHECK(cudaEventDestroy(copy_event));
+ }
+ for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
+ for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
+ if (streams[i][j] != nullptr) {
+ CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
+ }
+ }
+ if (cublas_handles[i] != nullptr) {
+ CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
+ }
+ }
+ }
+
+ cudaStream_t stream(int device, int stream) {
+ if (streams[device][stream] == nullptr) {
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
+ }
+ return streams[device][stream];
+ }
+
+ cudaStream_t stream() {
+ return stream(device, 0);
+ }
+
+ cublasHandle_t cublas_handle(int device) {
+ if (cublas_handles[device] == nullptr) {
+ ggml_cuda_set_device(device);
+ CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
+ CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
+ }
+ return cublas_handles[device];
+ }
+
+ cublasHandle_t cublas_handle() {
+ return cublas_handle(device);
+ }
+
+ // pool
+ std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
+
+ static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
+
+ ggml_cuda_pool & pool(int device) {
+ if (pools[device] == nullptr) {
+ pools[device] = new_pool_for_device(device);
+ }
+ return *pools[device];
+ }
+
+ ggml_cuda_pool & pool() {
+ return pool(device);
+ }
+};
--- /dev/null
+#include "concat.cuh"
+
+static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ // operation
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ if (blockIdx.z < ne02) { // src0
+ int offset_src =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ int offset_src =
+ nidx +
+ blockIdx.y * ne0 +
+ (blockIdx.z - ne02) * ne0 * gridDim.y;
+ dst[offset_dst] = y[offset_src];
+ }
+}
+
+static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne1, ne2);
+ concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
+}
+
+void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ for (int i3 = 0; i3 < dst->ne[3]; i3++) {
+ concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_CONCAT_BLOCK_SIZE 256
+
+void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "convert.cuh"
+#include "dequantize.cuh"
+
+#define CUDA_Q8_0_NE_ALIGN 2048
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+ const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
+
+ if (i >= k) {
+ return;
+ }
+
+ const int ib = i/qk; // block index
+ const int iqs = (i%qk)/qr; // quant index
+ const int iybs = i - i%qk; // y block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
+
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(vx, ib, iqs, v);
+
+ y[iybs + iqs + 0] = v.x;
+ y[iybs + iqs + y_offset] = v.y;
+}
+
+template <bool need_check>
+static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
+#if __CUDA_ARCH__ >= CC_PASCAL
+ constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
+
+ const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
+ const int * x0 = ((int *) vx) + blockIdx.x * nint;
+ half2 * y2 = (half2 *) (y + i0);
+
+ __shared__ int vals[nint];
+
+#pragma unroll
+ for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
+ if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
+ break;
+ }
+
+ const int ix = ix0 + threadIdx.x;
+ vals[ix] = x0[ix];
+ }
+
+#pragma unroll
+ for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
+ if (need_check && i0 + iy + 2*threadIdx.x >= k) {
+ return;
+ }
+
+ const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
+ const half d = *b0;
+ const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
+
+ y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
+ }
+#else
+ GGML_UNUSED(vx);
+ GGML_UNUSED(y);
+ GGML_UNUSED(k);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_PASCAL
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+
+ const int i = blockIdx.x;
+
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int ib = 8*i + ir;
+ if (ib >= nb32) {
+ return;
+ }
+
+ dst_t * y = yy + 256*i + 32*ir + 4*il;
+
+ const block_q4_0 * x = (const block_q4_0 *)vx + ib;
+ const float d = __half2float(x->d);
+ const float dm = -8*d;
+
+ const uint8_t * q = x->qs + 4*il;
+
+ for (int l = 0; l < 4; ++l) {
+ y[l+ 0] = d * (q[l] & 0xF) + dm;
+ y[l+16] = d * (q[l] >> 4) + dm;
+ }
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+
+ const int i = blockIdx.x;
+
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int ib = 8*i + ir;
+ if (ib >= nb32) {
+ return;
+ }
+
+ dst_t * y = yy + 256*i + 32*ir + 4*il;
+
+ const block_q4_1 * x = (const block_q4_1 *)vx + ib;
+ const float2 d = __half22float2(x->dm);
+
+ const uint8_t * q = x->qs + 4*il;
+
+ for (int l = 0; l < 4; ++l) {
+ y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
+ y[l+16] = d.x * (q[l] >> 4) + d.y;
+ }
+}
+
+//================================== k-quants
+
+template<typename dst_t>
+static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_q2_K * x = (const block_q2_K *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int n = tid/32;
+ const int l = tid - 32*n;
+ const int is = 8*n + l/16;
+
+ const uint8_t q = x[i].qs[32*n + l];
+ dst_t * y = yy + i*QK_K + 128*n;
+
+ float dall = __low2half(x[i].dm);
+ float dmin = __high2half(x[i].dm);
+ y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+ y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
+ y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
+ y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
+#else
+ const int is = tid/16; // 0 or 1
+ const int il = tid%16; // 0...15
+ const uint8_t q = x[i].qs[il] >> (2*is);
+ dst_t * y = yy + i*QK_K + 16*is + il;
+ float dall = __low2half(x[i].dm);
+ float dmin = __high2half(x[i].dm);
+ y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+ y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_q3_K * x = (const block_q3_K *) vx;
+
+#if QK_K == 256
+ const int r = threadIdx.x/4;
+ const int tid = r/2;
+ const int is0 = r%2;
+ const int l0 = 16*is0 + 4*(threadIdx.x%4);
+ const int n = tid / 4;
+ const int j = tid - 4*n;
+
+ uint8_t m = 1 << (4*n + j);
+ int is = 8*n + 2*j + is0;
+ int shift = 2*j;
+
+ int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
+ is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
+ is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
+ (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
+ float d_all = x[i].d;
+ float dl = d_all * (us - 32);
+
+ dst_t * y = yy + i*QK_K + 128*n + 32*j;
+ const uint8_t * q = x[i].qs + 32*n;
+ const uint8_t * hm = x[i].hmask;
+
+ for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
+#else
+ const int tid = threadIdx.x;
+ const int is = tid/16; // 0 or 1
+ const int il = tid%16; // 0...15
+ const int im = il/8; // 0...1
+ const int in = il%8; // 0...7
+
+ dst_t * y = yy + i*QK_K + 16*is + il;
+
+ const uint8_t q = x[i].qs[il] >> (2*is);
+ const uint8_t h = x[i].hmask[in] >> (2*is + im);
+ const float d = (float)x[i].d;
+
+ if (is == 0) {
+ y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+ y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+ } else {
+ y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+ y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+ }
+#endif
+
+}
+
+#if QK_K == 256
+static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
+ if (j < 4) {
+ d = q[j] & 63; m = q[j + 4] & 63;
+ } else {
+ d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+ m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
+ }
+}
+#endif
+
+template<typename dst_t>
+static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q4_K * x = (const block_q4_K *) vx;
+
+ const int i = blockIdx.x;
+
+#if QK_K == 256
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int is = 2*il;
+ const int n = 4;
+
+ dst_t * y = yy + i*QK_K + 64*il + n*ir;
+
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
+
+ const uint8_t * q = x[i].qs + 32*il + n*ir;
+
+ uint8_t sc, m;
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
+ const float d1 = dall * sc; const float m1 = dmin * m;
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
+ const float d2 = dall * sc; const float m2 = dmin * m;
+ for (int l = 0; l < n; ++l) {
+ y[l + 0] = d1 * (q[l] & 0xF) - m1;
+ y[l +32] = d2 * (q[l] >> 4) - m2;
+ }
+#else
+ const int tid = threadIdx.x;
+ const uint8_t * q = x[i].qs;
+ dst_t * y = yy + i*QK_K;
+ const float d = (float)x[i].dm[0];
+ const float m = (float)x[i].dm[1];
+ y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
+ y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q5_K * x = (const block_q5_K *) vx;
+
+ const int i = blockIdx.x;
+
+#if QK_K == 256
+ // assume 64 threads - this is very slightly better than the one below
+ const int tid = threadIdx.x;
+ const int il = tid/16; // il is in 0...3
+ const int ir = tid%16; // ir is in 0...15
+ const int is = 2*il; // is is in 0...6
+
+ dst_t * y = yy + i*QK_K + 64*il + 2*ir;
+
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
+
+ const uint8_t * ql = x[i].qs + 32*il + 2*ir;
+ const uint8_t * qh = x[i].qh + 2*ir;
+
+ uint8_t sc, m;
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
+ const float d1 = dall * sc; const float m1 = dmin * m;
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
+ const float d2 = dall * sc; const float m2 = dmin * m;
+
+ uint8_t hm = 1 << (2*il);
+ y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
+ y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
+ hm <<= 1;
+ y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
+ y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
+#else
+ const int tid = threadIdx.x;
+ const uint8_t q = x[i].qs[tid];
+ const int im = tid/8; // 0...3
+ const int in = tid%8; // 0...7
+ const int is = tid/16; // 0 or 1
+ const uint8_t h = x[i].qh[in] >> im;
+ const float d = x[i].d;
+ dst_t * y = yy + i*QK_K + tid;
+ y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
+ y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q6_K * x = (const block_q6_K *) vx;
+
+ const int i = blockIdx.x;
+#if QK_K == 256
+
+ // assume 64 threads - this is very slightly better than the one below
+ const int tid = threadIdx.x;
+ const int ip = tid/32; // ip is 0 or 1
+ const int il = tid - 32*ip; // 0...32
+ const int is = 8*ip + il/16;
+
+ dst_t * y = yy + i*QK_K + 128*ip + il;
+
+ const float d = x[i].d;
+
+ const uint8_t * ql = x[i].ql + 64*ip + il;
+ const uint8_t qh = x[i].qh[32*ip + il];
+ const int8_t * sc = x[i].scales + is;
+
+ y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+ y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
+ y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+ y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
+#else
+
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int ip = tid/16; // 0 or 1
+ const int il = tid - 16*ip; // 0...15
+
+ dst_t * y = yy + i*QK_K + 16*ip + il;
+
+ const float d = x[i].d;
+
+ const uint8_t ql = x[i].ql[16*ip + il];
+ const uint8_t qh = x[i].qh[il] >> (2*ip);
+ const int8_t * sc = x[i].scales;
+
+ y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+ y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+#endif
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint16_t * q2 = x[i].qs + 4*ib;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
+ const uint32_t aux32 = q2[2] | (q2[3] << 16);
+ const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
+ const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq2_xs * x = (const block_iq2_xs *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint16_t * q2 = x[i].qs + 4*ib;
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
+ const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+ const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq2_s * x = (const block_iq2_s *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
+ const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+ const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * q3 = x[i].qs + 8*ib;
+ const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
+ const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
+ const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
+ const uint32_t aux32 = gas[0] | (gas[1] << 16);
+ const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
+ const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+ for (int j = 0; j < 4; ++j) {
+ y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+ y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq3_s * x = (const block_iq3_s *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * qs = x[i].qs + 8*ib;
+ const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
+ const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
+ const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
+ const uint8_t signs = x[i].signs[4*ib + il];
+ for (int j = 0; j < 4; ++j) {
+ y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+ y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq1_s * x = (const block_iq1_s *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
+ const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
+ uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
+ grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
+ grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
+ grid32[0] &= 0x0f0f0f0f;
+ for (int j = 0; j < 8; ++j) {
+ y[j] = d * (q[j] + delta);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq1_m * x = (const block_iq1_m *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint16_t * sc = (const uint16_t *)x[i].scales;
+ iq1m_scale_t scale;
+ scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+ const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
+ const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
+ const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
+ uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
+ grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
+ grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
+ grid32[0] &= 0x0f0f0f0f;
+ for (int j = 0; j < 8; ++j) {
+ y[j] = d * (q[j] + delta);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif
+
+}
+
+
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+
+ const int i = blockIdx.x;
+ const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
+
+ const int tid = threadIdx.x;
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+ const uint8_t * q4 = x[ib].qs + 4*il;
+ const float d = (float)x[ib].d;
+ for (int j = 0; j < 4; ++j) {
+ y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+ y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+ }
+
+}
+
+#if QK_K != 64
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const int i = blockIdx.x;
+ const block_iq4_xs * x = (const block_iq4_xs *)vx;
+
+ const int tid = threadIdx.x;
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+ const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
+ const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
+ for (int j = 0; j < 4; ++j) {
+ y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+ y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+ }
+}
+#endif
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
+ dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
+
+static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
+ if (k % CUDA_Q8_0_NE_ALIGN == 0) {
+ const bool need_check = false;
+ dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+ } else {
+ const bool need_check = true;
+ dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+ }
+}
+
+template<typename dst_t>
+static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+ dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+ dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb32 = k / 32;
+ const int nb = (k + 255) / 256;
+ dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb32 = k / 32;
+ const int nb = (k + 255) / 256;
+ dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
+
+template<typename dst_t>
+static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+ dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+ dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = (k + QK_K - 1) / QK_K;
+ dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
+}
+
+template<typename dst_t>
+static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = (k + QK_K - 1) / QK_K;
+#if QK_K == 64
+ dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+#else
+ dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template <typename src_t, typename dst_t>
+static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ const src_t * x = (src_t *) vx;
+
+ y[i] = x[i];
+}
+
+template <typename src_t, typename dst_t>
+static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
+
+to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
+ int id;
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ return dequantize_row_q4_0_cuda;
+ case GGML_TYPE_Q4_1:
+ return dequantize_row_q4_1_cuda;
+ case GGML_TYPE_Q5_0:
+ return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
+ case GGML_TYPE_Q5_1:
+ return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
+ case GGML_TYPE_Q8_0:
+ CUDA_CHECK(cudaGetDevice(&id));
+ if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
+ return dequantize_block_q8_0_f16_cuda;
+ }
+ return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+ case GGML_TYPE_Q2_K:
+ return dequantize_row_q2_K_cuda;
+ case GGML_TYPE_Q3_K:
+ return dequantize_row_q3_K_cuda;
+ case GGML_TYPE_Q4_K:
+ return dequantize_row_q4_K_cuda;
+ case GGML_TYPE_Q5_K:
+ return dequantize_row_q5_K_cuda;
+ case GGML_TYPE_Q6_K:
+ return dequantize_row_q6_K_cuda;
+ case GGML_TYPE_IQ2_XXS:
+ return dequantize_row_iq2_xxs_cuda;
+ case GGML_TYPE_IQ2_XS:
+ return dequantize_row_iq2_xs_cuda;
+ case GGML_TYPE_IQ2_S:
+ return dequantize_row_iq2_s_cuda;
+ case GGML_TYPE_IQ3_XXS:
+ return dequantize_row_iq3_xxs_cuda;
+ case GGML_TYPE_IQ1_S:
+ return dequantize_row_iq1_s_cuda;
+ case GGML_TYPE_IQ1_M:
+ return dequantize_row_iq1_m_cuda;
+ case GGML_TYPE_IQ4_NL:
+ return dequantize_row_iq4_nl_cuda;
+ case GGML_TYPE_IQ4_XS:
+ return dequantize_row_iq4_xs_cuda;
+ case GGML_TYPE_IQ3_S:
+ return dequantize_row_iq3_s_cuda;
+ case GGML_TYPE_F32:
+ return convert_unary_cuda<float>;
+ default:
+ return nullptr;
+ }
+}
+
+to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ return dequantize_row_q4_0_cuda;
+ case GGML_TYPE_Q4_1:
+ return dequantize_row_q4_1_cuda;
+ case GGML_TYPE_Q5_0:
+ return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
+ case GGML_TYPE_Q5_1:
+ return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
+ case GGML_TYPE_Q8_0:
+ return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+ case GGML_TYPE_Q2_K:
+ return dequantize_row_q2_K_cuda;
+ case GGML_TYPE_Q3_K:
+ return dequantize_row_q3_K_cuda;
+ case GGML_TYPE_Q4_K:
+ return dequantize_row_q4_K_cuda;
+ case GGML_TYPE_Q5_K:
+ return dequantize_row_q5_K_cuda;
+ case GGML_TYPE_Q6_K:
+ return dequantize_row_q6_K_cuda;
+ case GGML_TYPE_IQ2_XXS:
+ return dequantize_row_iq2_xxs_cuda;
+ case GGML_TYPE_IQ2_XS:
+ return dequantize_row_iq2_xs_cuda;
+ case GGML_TYPE_IQ2_S:
+ return dequantize_row_iq2_s_cuda;
+ case GGML_TYPE_IQ3_XXS:
+ return dequantize_row_iq3_xxs_cuda;
+ case GGML_TYPE_IQ1_S:
+ return dequantize_row_iq1_s_cuda;
+ case GGML_TYPE_IQ1_M:
+ return dequantize_row_iq1_m_cuda;
+ case GGML_TYPE_IQ4_NL:
+ return dequantize_row_iq4_nl_cuda;
+ case GGML_TYPE_IQ4_XS:
+ return dequantize_row_iq4_xs_cuda;
+ case GGML_TYPE_IQ3_S:
+ return dequantize_row_iq3_s_cuda;
+ case GGML_TYPE_F16:
+ return convert_unary_cuda<half>;
+ default:
+ return nullptr;
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
+
+template<typename T>
+using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
+
+typedef to_t_cuda_t<float> to_fp32_cuda_t;
+typedef to_t_cuda_t<half> to_fp16_cuda_t;
+
+to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
+
+to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
--- /dev/null
+#include "cpy.cuh"
+
+typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
+
+static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ float * dsti = (float *) cdsti;
+
+ *dsti = *xi;
+}
+
+static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ half * dsti = (half *) cdsti;
+
+ *dsti = __float2half(*xi);
+}
+
+static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+ const half * xi = (const half *) cxi;
+ half * dsti = (half *) cdsti;
+
+ *dsti = *xi;
+}
+
+static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+ const half * xi = (const half *) cxi;
+ float * dsti = (float *) cdsti;
+
+ *dsti = *xi;
+}
+
+template <cpy_kernel_t cpy_1>
+static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13) {
+ const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= ne) {
+ return;
+ }
+
+ // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+ // then combine those indices with the corresponding byte offsets to get the total offsets
+ const int64_t i03 = i/(ne00 * ne01 * ne02);
+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int64_t i13 = i/(ne10 * ne11 * ne12);
+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+ cpy_1(cx + x_offset, cdst + dst_offset);
+}
+
+static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q8_0 * dsti = (block_q8_0 *) cdsti;
+
+ float amax = 0.0f; // absolute max
+
+ for (int j = 0; j < QK8_0; j++) {
+ const float v = xi[j];
+ amax = fmaxf(amax, fabsf(v));
+ }
+
+ const float d = amax / ((1 << 7) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ for (int j = 0; j < QK8_0; ++j) {
+ const float x0 = xi[j]*id;
+
+ dsti->qs[j] = roundf(x0);
+ }
+}
+
+static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_0 * dsti = (block_q4_0 *) cdsti;
+
+ float amax = 0.0f;
+ float vmax = 0.0f;
+
+ for (int j = 0; j < QK4_0; ++j) {
+ const float v = xi[j];
+ if (amax < fabsf(v)) {
+ amax = fabsf(v);
+ vmax = v;
+ }
+ }
+
+ const float d = vmax / -8;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ for (int j = 0; j < QK4_0/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK4_0/2 + j]*id;
+
+ const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
+ const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
+ }
+}
+
+static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_1 * dsti = (block_q4_1 *) cdsti;
+
+ float vmin = FLT_MAX;
+ float vmax = -FLT_MAX;
+
+ for (int j = 0; j < QK4_1; ++j) {
+ const float v = xi[j];
+
+ if (v < vmin) vmin = v;
+ if (v > vmax) vmax = v;
+ }
+
+ const float d = (vmax - vmin) / ((1 << 4) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->dm.x = d;
+ dsti->dm.y = vmin;
+
+ for (int j = 0; j < QK4_1/2; ++j) {
+ const float x0 = (xi[0 + j] - vmin)*id;
+ const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
+
+ const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
+ const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
+ }
+}
+
+static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q5_0 * dsti = (block_q5_0 *) cdsti;
+
+ float amax = 0.0f;
+ float vmax = 0.0f;
+
+ for (int j = 0; j < QK5_0; ++j) {
+ const float v = xi[j];
+ if (amax < fabsf(v)) {
+ amax = fabsf(v);
+ vmax = v;
+ }
+ }
+
+ const float d = vmax / -16;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ uint32_t qh = 0;
+ for (int j = 0; j < QK5_0/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK5_0/2 + j]*id;
+
+ const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
+ const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
+
+ dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+ qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+ qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
+ }
+ memcpy(dsti->qh, &qh, sizeof(qh));
+}
+
+static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q5_1 * dsti = (block_q5_1 *) cdsti;
+
+ float min = xi[0];
+ float max = xi[0];
+
+ for (int j = 1; j < QK5_1; ++j) {
+ const float v = xi[j];
+ min = v < min ? v : min;
+ max = v > max ? v : max;
+ }
+
+ const float d = (max - min) / 31;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->dm.x = d;
+ dsti->dm.y = min;
+
+ uint32_t qh = 0;
+ for (int j = 0; j < QK5_1/2; ++j) {
+ const float x0 = (xi[0 + j] - min)*id;
+ const float x1 = (xi[QK5_1/2 + j] - min)*id;
+
+ const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
+ const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
+
+ dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
+ qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+ qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
+ }
+ memcpy(dsti->qh, &qh, sizeof(qh));
+}
+
+
+static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
+ if (x <= val[0]) return 0;
+ if (x >= val[n-1]) return n-1;
+ int ml = 0, mu = n-1;
+ while (mu-ml > 1) {
+ int mav = (ml+mu)/2;
+ if (x < val[mav]) mu = mav; else ml = mav;
+ }
+ return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
+}
+
+static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
+
+ float amax = 0.0f;
+ float vmax = 0.0f;
+
+ for (int j = 0; j < QK4_NL; ++j) {
+ const float v = xi[j];
+ if (amax < fabsf(v)) {
+ amax = fabsf(v);
+ vmax = v;
+ }
+ }
+
+ float d = vmax / kvalues_iq4nl[0];
+ const float id = d ? 1.0f/d : 0.0f;
+
+ float sumqx = 0, sumq2 = 0;
+ for (int j = 0; j < QK4_NL/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK4_NL/2 + j]*id;
+ const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
+ const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
+ dsti->qs[j] = xi0 | (xi1 << 4);
+ const float v0 = kvalues_iq4nl[xi0];
+ const float v1 = kvalues_iq4nl[xi1];
+ const float w0 = xi[0 + j]*xi[0 + j];
+ const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
+ sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
+ sumq2 += w0*v0*v0 + w1*v1*v1;
+ }
+
+ dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
+}
+
+template <cpy_kernel_t cpy_blck, int qk>
+static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13) {
+ const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
+
+ if (i >= ne) {
+ return;
+ }
+
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+ cpy_blck(cx + x_offset, cdst + dst_offset);
+}
+
+static void ggml_cpy_f16_f32_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_f32_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_f16_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q8_0_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK8_0 == 0);
+ const int num_blocks = ne / QK8_0;
+ cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q4_0_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK4_0 == 0);
+ const int num_blocks = ne / QK4_0;
+ cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q4_1_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK4_1 == 0);
+ const int num_blocks = ne / QK4_1;
+ cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q5_0_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK5_0 == 0);
+ const int num_blocks = ne / QK5_0;
+ cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q5_1_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK5_1 == 0);
+ const int num_blocks = ne / QK5_1;
+ cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_iq4_nl_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK4_NL == 0);
+ const int num_blocks = ne / QK4_NL;
+ cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f16_f16_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
+ const int64_t ne = ggml_nelements(src0);
+ GGML_ASSERT(ne == ggml_nelements(src1));
+
+ GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
+ GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+
+ //GGML_ASSERT(src0->ne[3] == 1);
+
+ const int64_t nb00 = src0->nb[0];
+ const int64_t nb01 = src0->nb[1];
+ const int64_t nb02 = src0->nb[2];
+ const int64_t nb03 = src0->nb[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+
+ //GGML_ASSERT(src1->ne[3] == 1);
+
+ const int64_t nb10 = src1->nb[0];
+ const int64_t nb11 = src1->nb[1];
+ const int64_t nb12 = src1->nb[2];
+ const int64_t nb13 = src1->nb[3];
+
+ cudaStream_t main_stream = ctx.stream();
+
+ char * src0_ddc = (char *) src0->data;
+ char * src1_ddc = (char *) src1->data;
+
+ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
+ ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
+ ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
+ ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
+ ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
+ ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
+ ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else {
+ fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
+ ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
+ }
+}
+
+void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ ggml_cuda_cpy(ctx, src0, dst);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_CPY_BLOCK_SIZE 32
+
+void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
+
+void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "common.cuh"
+
+static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q4_0 * x = (const block_q4_0 *) vx;
+
+ const dfloat d = x[ib].d;
+
+ const int vui = x[ib].qs[iqs];
+
+ v.x = vui & 0xF;
+ v.y = vui >> 4;
+
+#ifdef GGML_CUDA_F16
+ v = __hsub2(v, {8.0f, 8.0f});
+ v = __hmul2(v, {d, d});
+#else
+ v.x = (v.x - 8.0f) * d;
+ v.y = (v.y - 8.0f) * d;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q4_1 * x = (const block_q4_1 *) vx;
+
+ const dfloat d = __low2half(x[ib].dm);
+ const dfloat m = __high2half(x[ib].dm);
+
+ const int vui = x[ib].qs[iqs];
+
+ v.x = vui & 0xF;
+ v.y = vui >> 4;
+
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+ v = __hadd2(v, {m, m});
+#else
+ v.x = (v.x * d) + m;
+ v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q5_0 * x = (const block_q5_0 *) vx;
+
+ const dfloat d = x[ib].d;
+
+ uint32_t qh;
+ memcpy(&qh, x[ib].qh, sizeof(qh));
+
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+
+ v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+ v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
+
+#ifdef GGML_CUDA_F16
+ v = __hsub2(v, {16.0f, 16.0f});
+ v = __hmul2(v, {d, d});
+#else
+ v.x = (v.x - 16.0f) * d;
+ v.y = (v.y - 16.0f) * d;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q5_1 * x = (const block_q5_1 *) vx;
+
+ const dfloat d = __low2half(x[ib].dm);
+ const dfloat m = __high2half(x[ib].dm);
+
+ uint32_t qh;
+ memcpy(&qh, x[ib].qh, sizeof(qh));
+
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+
+ v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+ v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
+
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+ v = __hadd2(v, {m, m});
+#else
+ v.x = (v.x * d) + m;
+ v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
+
+static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q8_0 * x = (const block_q8_0 *) vx;
+
+ const dfloat d = x[ib].d;
+
+ v.x = x[ib].qs[iqs + 0];
+ v.y = x[ib].qs[iqs + 1];
+
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+#else
+ v.x *= d;
+ v.y *= d;
+#endif // GGML_CUDA_F16
+}
--- /dev/null
+#include "diagmask.cuh"
+
+static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
+ const int col = blockDim.y*blockIdx.y + threadIdx.y;
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (col >= ncols) {
+ return;
+ }
+
+ const int i = row*ncols + col;
+ //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+ //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+ dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
+}
+
+static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
+ const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
+ const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
+ const dim3 block_nums(nrows_x, block_num_x, 1);
+ diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
+}
+
+void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int nrows0 = ggml_nrows(src0);
+
+ const int n_past = ((int32_t *) dst->op_params)[0];
+
+ diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
+
+void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "dmmv.cuh"
+#include "dequantize.cuh"
+#include "convert.cuh"
+
+#ifndef GGML_CUDA_MMV_Y
+#define GGML_CUDA_MMV_Y 1
+#endif
+
+#ifndef K_QUANTS_PER_ITERATION
+#define K_QUANTS_PER_ITERATION 2
+#else
+static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+#endif
+
+static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
+
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
+
+ const block_q2_K * x = (const block_q2_K *)vx + ib0;
+
+ float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+ const int step = 16/K_QUANTS_PER_ITERATION;
+
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0...15 or 0...7
+
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
+ const int q_offset = 32*im + l0;
+ const int s_offset = 8*im;
+ const int y_offset = 128*im + l0;
+
+ uint32_t aux[4];
+ const uint8_t * d = (const uint8_t *)aux;
+ const uint8_t * m = (const uint8_t *)(aux + 2);
+
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * q = x[i].qs + q_offset;
+
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
+
+ const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
+ aux[0] = a[0] & 0x0f0f0f0f;
+ aux[1] = a[1] & 0x0f0f0f0f;
+ aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
+ aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+
+ float sum1 = 0, sum2 = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+ + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+ + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+ + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+ + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+ + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+ + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+ +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
+ sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+ + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+
+ }
+ tmp += dall * sum1 - dmin * sum2;
+
+ }
+#else
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
+ const int offset = tid * K_QUANTS_PER_ITERATION;
+
+ uint32_t uaux[2];
+ const uint8_t * d = (const uint8_t *)uaux;
+
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + offset;
+ const uint8_t * q = x[i].qs + offset;
+ const uint32_t * s = (const uint32_t *)x[i].scales;
+
+ uaux[0] = s[0] & 0x0f0f0f0f;
+ uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
+
+ const float2 dall = __half22float2(x[i].dm);
+
+ float sum1 = 0, sum2 = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ const uint8_t ql = q[l];
+ sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+ + y[l+16] * d[1] * ((ql >> 2) & 3)
+ + y[l+32] * d[2] * ((ql >> 4) & 3)
+ + y[l+48] * d[3] * ((ql >> 6) & 3);
+ sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
+ }
+ tmp += dall.x * sum1 - dall.y * sum2;
+ }
+#endif
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
+ }
+}
+
+static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
+
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
+
+ const block_q3_K * x = (const block_q3_K *)vx + ib0;
+
+ float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+
+ const uint16_t kmask1 = 0x0303;
+ const uint16_t kmask2 = 0x0f0f;
+
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+ const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
+ const int step = 16/K_QUANTS_PER_ITERATION;
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0....15 or 0...7
+
+ const uint8_t m = 1 << (4*im);
+
+ const int l0 = n*in; // 0...15 or 0...14 in steps of 2
+ const int q_offset = 32*im + l0;
+ const int y_offset = 128*im + l0;
+
+ uint16_t utmp[4];
+ const int8_t * s = (const int8_t *)utmp;
+
+ const uint16_t s_shift = 4*im;
+
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * q = x[i].qs + q_offset;
+ const uint8_t * h = x[i].hmask + l0;
+
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
+ utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
+ utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
+ utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
+
+ const float d = x[i].d;
+
+ float sum = 0;
+ for (int l = 0; l < n; ++l) {
+ sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+ + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+ + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+ + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
+ sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+ + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+ + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+ + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
+ }
+ tmp += d * sum;
+
+ }
+#else
+
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
+ const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
+ const int in = offset/8; // 0 or 1
+ const int im = offset%8; // 0...7
+
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + offset;
+ const uint8_t * q = x[i].qs + offset;
+ const uint8_t * s = x[i].scales;
+
+ const float dall = (float)x[i].d;
+
+ float sum = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ const uint8_t hl = x[i].hmask[im+l] >> in;
+ const uint8_t ql = q[l];
+ sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+ + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+ + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+ + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
+ }
+ tmp += sum;
+ }
+#endif
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
+ }
+}
+
+static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
+
+ const block_q4_K * x = (const block_q4_K *)vx + ib0;
+
+#if QK_K == 256
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+ const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
+
+ const int il = tid/step; // 0...3
+ const int ir = tid - step*il; // 0...7 or 0...3
+ const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
+
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
+
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
+
+ uint16_t aux[4];
+ const uint8_t * sc = (const uint8_t *)aux;
+
+#if K_QUANTS_PER_ITERATION == 2
+ uint32_t q32[4];
+ const uint8_t * q4 = (const uint8_t *)q32;
+#else
+ uint16_t q16[4];
+ const uint8_t * q4 = (const uint8_t *)q16;
+#endif
+
+ float tmp = 0; // partial sum for thread in warp
+
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+ const float * y1 = yy + i*QK_K + y_offset;
+ const float * y2 = y1 + 128;
+
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
+
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux[0] = a[im+0] & kmask1;
+ aux[1] = a[im+2] & kmask1;
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+#if K_QUANTS_PER_ITERATION == 2
+ const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
+ const uint32_t * q2 = q1 + 16;
+
+ q32[0] = q1[0] & 0x0f0f0f0f;
+ q32[1] = q1[0] & 0xf0f0f0f0;
+ q32[2] = q2[0] & 0x0f0f0f0f;
+ q32[3] = q2[0] & 0xf0f0f0f0;
+
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < 4; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
+ s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ }
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#else
+ const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
+ const uint16_t * q2 = q1 + 32;
+
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[0] & 0xf0f0;
+ q16[2] = q2[0] & 0x0f0f;
+ q16[3] = q2[0] & 0xf0f0;
+
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < 2; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
+ s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ }
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#endif
+
+ }
+#else
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+
+ const int step = tid * K_QUANTS_PER_ITERATION;
+
+ uint16_t aux16[2];
+ const uint8_t * s = (const uint8_t *)aux16;
+
+ float tmp = 0;
+
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+ const uint8_t * q = x[i].qs + step;
+ const float * y = yy + i*QK_K + step;
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux16[0] = a[0] & 0x0f0f;
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
+ const float d = (float)x[i].dm[0];
+ const float m = (float)x[i].dm[1];
+ float sum = 0.f;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+ + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+ + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
+ + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
+ }
+ tmp += sum;
+ }
+
+#endif
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (tid == 0) {
+ dst[row] = tmp;
+ }
+}
+
+static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
+
+ const int row = blockIdx.x;
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
+
+ const block_q5_K * x = (const block_q5_K *)vx + ib0;
+
+ float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
+ const int tid = threadIdx.x/2; // 0...15
+ const int ix = threadIdx.x%2;
+
+ const int il = tid/4; // 0...3
+ const int ir = tid - 4*il;// 0...3
+ const int n = 2;
+
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
+
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
+
+ const uint8_t hm1 = 1 << (2*im);
+ const uint8_t hm2 = hm1 << 4;
+
+ uint16_t aux[4];
+ const uint8_t * sc = (const uint8_t *)aux;
+
+ uint16_t q16[8];
+ const uint8_t * q4 = (const uint8_t *)q16;
+
+ for (int i = ix; i < num_blocks_per_row; i += 2) {
+
+ const uint8_t * ql1 = x[i].qs + q_offset;
+ const uint8_t * qh = x[i].qh + l0;
+ const float * y1 = yy + i*QK_K + y_offset;
+ const float * y2 = y1 + 128;
+
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
+
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux[0] = a[im+0] & kmask1;
+ aux[1] = a[im+2] & kmask1;
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+ float4 sum = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ const uint16_t * q1 = (const uint16_t *)ql1;
+ const uint16_t * q2 = q1 + 32;
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[8] & 0x0f0f;
+ q16[2] = (q1[0] >> 4) & 0x0f0f;
+ q16[3] = (q1[8] >> 4) & 0x0f0f;
+ q16[4] = q2[0] & 0x0f0f;
+ q16[5] = q2[8] & 0x0f0f;
+ q16[6] = (q2[0] >> 4) & 0x0f0f;
+ q16[7] = (q2[8] >> 4) & 0x0f0f;
+ for (int l = 0; l < n; ++l) {
+ sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
+ sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
+ sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
+ sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
+ smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
+ }
+ tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
+ }
+
+#else
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+ const int step = tid * K_QUANTS_PER_ITERATION;
+ const int im = step/8;
+ const int in = step%8;
+
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+ const uint8_t * q = x[i].qs + step;
+ const int8_t * s = x[i].scales;
+ const float * y = yy + i*QK_K + step;
+ const float d = x[i].d;
+ float sum = 0.f;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ const uint8_t h = x[i].qh[in+j] >> im;
+ sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+ + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+ + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
+ + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
+ }
+ tmp += sum;
+ }
+#endif
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
+ }
+}
+
+static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
+
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
+
+ const block_q6_K * x = (const block_q6_K *)vx + ib0;
+
+#if QK_K == 256
+
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
+
+ const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
+
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0...15 or 0...7
+
+#if K_QUANTS_PER_ITERATION == 1
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
+ const int is = 0;
+#else
+ const int l0 = 4 * in; // 0, 4, 8, ..., 28
+ const int is = in / 4;
+#endif
+ const int ql_offset = 64*im + l0;
+ const int qh_offset = 32*im + l0;
+ const int s_offset = 8*im + is;
+ const int y_offset = 128*im + l0;
+
+ float tmp = 0; // partial sum for thread in warp
+
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * ql = x[i].ql + ql_offset;
+ const uint8_t * qh = x[i].qh + qh_offset;
+ const int8_t * s = x[i].scales + s_offset;
+
+ const float d = x[i].d;
+
+#if K_QUANTS_PER_ITERATION == 1
+ float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+ + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+ + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+ + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+ + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+ + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+ + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+ +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
+ tmp += sum;
+#else
+ float sum = 0;
+ for (int l = 0; l < 4; ++l) {
+ sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+ + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+ + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+ + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
+ }
+ tmp += sum;
+#endif
+
+ }
+
+#else
+
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
+
+ const int step = tid * K_QUANTS_PER_ITERATION;
+
+ float tmp = 0; // partial sum for thread in warp
+
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+ const float * y = yy + i * QK_K + step;
+ const uint8_t * ql = x[i].ql + step;
+ const uint8_t * qh = x[i].qh + step;
+ const int8_t * s = x[i].scales;
+
+ const float d = x[i+0].d;
+
+ float sum = 0;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+ + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+ + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
+ + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
+ }
+ tmp += sum;
+
+ }
+
+#endif
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (tid == 0) {
+ dst[row] = tmp;
+ }
+}
+
+static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const half * x = (const half *) vx;
+
+ // automatic half -> float type cast if dfloat == float
+ v.x = x[ib + iqs + 0];
+ v.y = x[ib + iqs + 1];
+}
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
+static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
+ // qk = quantized weights per x block
+ // qr = number of quantized weights per data value in x block
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+
+ if (row >= nrows) {
+ return;
+ }
+
+ const int tid = threadIdx.x;
+
+ const int iter_stride = 2*GGML_CUDA_DMMV_X;
+ const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
+ const int y_offset = qr == 1 ? 1 : qk/2;
+
+// partial sum for each thread
+#ifdef GGML_CUDA_F16
+ half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
+#else
+ float tmp = 0.0f;
+#endif // GGML_CUDA_F16
+
+ for (int i = 0; i < ncols; i += iter_stride) {
+ const int col = i + vals_per_iter*tid;
+ const int ib = (row*ncols + col)/qk; // x block index
+ const int iqs = (col%qk)/qr; // x quant index
+ const int iybs = col - col%qk; // y block start index
+
+// processing >2 values per i iter is faster for fast GPUs
+#pragma unroll
+ for (int j = 0; j < vals_per_iter; j += 2) {
+ // process 2 vals per j iter
+
+ // dequantize
+ // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
+ dfloat2 v;
+ dequantize_kernel(vx, ib, iqs + j/qr, v);
+
+ // matrix multiplication
+ // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
+#ifdef GGML_CUDA_F16
+ tmp += __hmul2(v, {
+ y[iybs + iqs + j/qr + 0],
+ y[iybs + iqs + j/qr + y_offset]
+ });
+#else
+ tmp += v.x * y[iybs + iqs + j/qr + 0];
+ tmp += v.y * y[iybs + iqs + j/qr + y_offset];
+#endif // GGML_CUDA_F16
+ }
+ }
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (tid == 0) {
+#ifdef GGML_CUDA_F16
+ dst[row] = tmp.x + tmp.y;
+#else
+ dst[row] = tmp;
+#endif // GGML_CUDA_F16
+ }
+}
+
+static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const dim3 block_dims(32, 1, 1);
+ dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
+}
+
+static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<1, 1, convert_f16>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+}
+
+void ggml_cuda_op_dequantize_mul_mat_vec(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
+ GGML_UNUSED(ctx);
+ const int64_t ne00 = src0->ne[0];
+ const int64_t row_diff = row_high - row_low;
+
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
+#ifdef GGML_CUDA_F16
+ ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
+ half * src1_dfloat = nullptr; // dfloat == half
+
+ bool src1_convert_f16 =
+ src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
+ src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
+ src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
+
+ if (src1_convert_f16) {
+ src1_dfloat = src1_dfloat_a.alloc(ne00);
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+ to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
+ }
+#else
+ const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
+#endif // GGML_CUDA_F16
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_F16:
+ convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddq_i);
+ GGML_UNUSED(src1_ncols);
+ GGML_UNUSED(src1_padded_row_size);
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_dequantize_mul_mat_vec(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream);
--- /dev/null
+#include "getrows.cuh"
+#include "dequantize.cuh"
+
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void k_get_rows(
+ const void * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+
+ const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+
+ if (i00 >= ne00) {
+ return;
+ }
+
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+
+ const int ib = i00/qk; // block index
+ const int iqs = (i00%qk)/qr; // quant index
+ const int iybs = i00 - i00%qk; // dst block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
+
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(src0_row, ib, iqs, v);
+
+ dst_row[iybs + iqs + 0] = v.x;
+ dst_row[iybs + iqs + y_offset] = v.y;
+}
+
+template<typename src0_t, typename dst_t>
+static __global__ void k_get_rows_float(
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+
+ const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+
+ if (i00 >= ne00) {
+ return;
+ }
+
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+
+ dst_row[i00] = src0_row[i00];
+}
+
+template<int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+ const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
+
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
+
+ GGML_ASSERT(ne00 % 2 == 0);
+
+ k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne00, /*ne01, ne02, ne03,*/
+ /*ne10, ne11,*/ ne12, /*ne13,*/
+ /* s0,*/ s1, s2, s3,
+ /* nb00,*/ nb01, nb02, nb03,
+ s10, s11, s12/*, s13*/);
+
+ GGML_UNUSED(dst);
+}
+
+template<typename src0_t>
+static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+ const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
+
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
+
+ k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne00, /*ne01, ne02, ne03,*/
+ /*ne10, ne11,*/ ne12, /*ne13,*/
+ /* s0,*/ s1, s2, s3,
+ /* nb00,*/ nb01, nb02, nb03,
+ s10, s11, s12/*, s13*/);
+
+ GGML_UNUSED(dst);
+}
+
+void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+ GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
+
+ const int32_t * src1_i32 = (const int32_t *) src1_d;
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_F32:
+ get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_0:
+ get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ default:
+ // TODO: k-quants
+ fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
+ GGML_ASSERT(false);
+ break;
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_GET_ROWS_BLOCK_SIZE 256
+
+void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "im2col.cuh"
+
+template <typename T>
+static __global__ void im2col_kernel(
+ const float * x, T * dst, int64_t batch_offset,
+ int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
+ int s0, int s1, int p0, int p1, int d0, int d1) {
+ const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
+ if (i >= pelements) {
+ return;
+ }
+
+ const int64_t ksize = OW * (KH > 1 ? KW : 1);
+ const int64_t kx = i / ksize;
+ const int64_t kd = kx * ksize;
+ const int64_t ky = (i - kd) / OW;
+ const int64_t ix = i % OW;
+
+ const int64_t oh = blockIdx.y;
+ const int64_t batch = blockIdx.z / IC;
+ const int64_t ic = blockIdx.z % IC;
+
+ const int64_t iiw = ix * s0 + kx * d0 - p0;
+ const int64_t iih = oh * s1 + ky * d1 - p1;
+
+ const int64_t offset_dst =
+ ((batch * OH + oh) * OW + ix) * CHW +
+ (ic * (KW * KH) + ky * KW + kx);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
+ } else {
+ const int64_t offset_src = ic * offset_delta + batch * batch_offset;
+ dst[offset_dst] = x[offset_src + iih * IW + iiw];
+ }
+}
+
+template <typename T>
+static void im2col_cuda(const float * x, T* dst,
+ int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+ int64_t batch, int64_t batch_offset, int64_t offset_delta,
+ int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+ const int parallel_elements = OW * KW * KH;
+ const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
+ dim3 block_nums(num_blocks, OH, batch * IC);
+ im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+}
+
+static void im2col_cuda_f16(const float * x, half * dst,
+ int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+ int64_t batch, int64_t batch_offset, int64_t offset_delta,
+ int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+
+ im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
+}
+
+static void im2col_cuda_f32(const float * x, float * dst,
+ int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+ int64_t batch, int64_t batch_offset, int64_t offset_delta,
+ int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+
+ im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
+}
+
+void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+
+ const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+
+ const int64_t IC = src1->ne[is_2D ? 2 : 1];
+ const int64_t IH = is_2D ? src1->ne[1] : 1;
+ const int64_t IW = src1->ne[0];
+
+ const int64_t KH = is_2D ? src0->ne[1] : 1;
+ const int64_t KW = src0->ne[0];
+
+ const int64_t OH = is_2D ? dst->ne[2] : 1;
+ const int64_t OW = dst->ne[1];
+
+ const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+ const int64_t batch = src1->ne[3];
+ const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
+
+ if(dst->type == GGML_TYPE_F16) {
+ im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
+ } else {
+ im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_IM2COL_BLOCK_SIZE 256
+
+void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "mmq.cuh"
+#include "vecdotq.cuh"
+
+typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
+typedef void (*load_tiles_cuda_t)(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_cuda_t)(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
+typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+ GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
+
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_0;
+ const int kqsx = k % QI4_0;
+
+ const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+ int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const float * x_dmf = (const float *) x_dm;
+
+ int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
+
+ *x_ql = tile_x_qs;
+ *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_1;
+ const int kqsx = k % QI4_1;
+
+ const block_q4_1 * bx0 = (const block_q4_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+ int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+ int u[2*VDR_Q4_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
+
+ *x_ql = tile_x_ql;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_0;
+ const int kqsx = k % QI5_0;
+
+ const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+ qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+ qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+ int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ int u[2*VDR_Q5_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_1;
+ const int kqsx = k % QI5_1;
+
+ const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+ int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+ int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
+
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI8_0;
+ const int kqsx = k % QI8_0;
+ float * x_dmf = (float *) x_dm;
+
+ const block_q8_0 * bx0 = (const block_q8_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+ int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+ y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI2_K;
+ const int kqsx = k % QI2_K;
+
+ const block_q2_K * bx0 = (const block_q2_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+ int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
+
+ const int kbx = k / QI2_K;
+ const int ky = (k % QI2_K) * QR2_K;
+ const float * y_df = (const float *) y_ds;
+
+ int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+ const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+
+#pragma unroll
+ for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+ v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ }
+
+ const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+
+ const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+ return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
+ __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_qh = tile_x_qh;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI3_K;
+ const int kqsx = k % QI3_K;
+
+ const block_q3_K * bx0 = (const block_q3_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+ int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+ int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+
+ const int ksc = k % (QI3_K/4);
+
+ const int ksc_low = ksc % (QI3_K/8);
+ const int shift_low = 4 * (ksc / (QI3_K/8));
+ const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+
+ const int ksc_high = QI3_K/8;
+ const int shift_high = 2 * ksc;
+ const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+
+ const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kbx = k / QI3_K;
+ const int ky = (k % QI3_K) * QR3_K;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+
+ int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+ const int shift = 2 * ((ky % 32) / 8);
+ const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+ const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+ const int vlh = (vh << 2) & 0x04040404;
+
+ v[l] = __vsubss4(vll, vlh);
+ }
+
+ const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+ return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI4_K; // == k if QK_K == 256
+
+ const block_q4_K * bx0 = (const block_q4_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+ int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+#else
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
+#endif
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+
+ const int * scales = (const int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+
+ const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+ return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI5_K; // == k if QK_K == 256
+
+ const block_q5_K * bx0 = (const block_q5_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR5_K*kqsx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+ const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+ const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
+
+ const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+ const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+ int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+#endif
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
+
+ const int * scales = (const int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+
+ const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
+ const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
+ return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI6_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI6_K; // == k if QK_K == 256
+
+ const block_q6_K * bx0 = (const block_q6_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR6_K*kqsx;
+
+ const int ql = get_int_from_uint8(bxi->ql, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+ const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+ const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
+
+ const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+ const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+ int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+
+ const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
+ const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
+ return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+}
+
+#define MMQ_X_Q4_0_RDNA2 64
+#define MMQ_Y_Q4_0_RDNA2 128
+#define NWARPS_Q4_0_RDNA2 8
+#define MMQ_X_Q4_0_RDNA1 64
+#define MMQ_Y_Q4_0_RDNA1 64
+#define NWARPS_Q4_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_0_AMPERE 4
+#define MMQ_Y_Q4_0_AMPERE 32
+#define NWARPS_Q4_0_AMPERE 4
+#else
+#define MMQ_X_Q4_0_AMPERE 64
+#define MMQ_Y_Q4_0_AMPERE 128
+#define NWARPS_Q4_0_AMPERE 4
+#endif
+#define MMQ_X_Q4_0_PASCAL 64
+#define MMQ_Y_Q4_0_PASCAL 64
+#define NWARPS_Q4_0_PASCAL 8
+
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
+ allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
+static __device__ __forceinline__ void mul_mat_q(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
+
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ const int blocks_per_warp = WARP_SIZE / qi;
+
+ const int & ncols_dst = ncols_y;
+
+ const int row_dst_0 = blockIdx.x*mmq_y;
+ const int & row_x_0 = row_dst_0;
+
+ const int col_dst_0 = blockIdx.y*mmq_x;
+ const int & col_y_0 = col_dst_0;
+
+ int * tile_x_ql = nullptr;
+ half2 * tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+ allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
+
+ __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
+ __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
+
+ float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+
+ for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+ load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+ threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
+
+#pragma unroll
+ for (int ir = 0; ir < qr; ++ir) {
+ const int kqs = ir*WARP_SIZE + threadIdx.x;
+ const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+ for (int i = 0; i < mmq_x; i += nwarps) {
+ const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
+
+ const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+ const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
+ tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
+ }
+
+#pragma unroll
+ for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+ const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
+ const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
+ const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
+
+ // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+ const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
+ half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
+ if (need_sum) {
+ *dsi_dst = *dsi_src;
+ } else {
+ float * dfi_dst = (float *) dsi_dst;
+ *dfi_dst = __low2float(*dsi_src);
+ }
+ }
+
+ __syncthreads();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+ for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ sum[i/WARP_SIZE][j/nwarps] += vec_dot(
+ tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
+ threadIdx.x + i, threadIdx.y + j, k);
+ }
+ }
+ }
+
+ __syncthreads();
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+ const int col_dst = col_dst_0 + j + threadIdx.y;
+
+ if (col_dst >= ncols_dst) {
+ return;
+ }
+
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ const int row_dst = row_dst_0 + threadIdx.x + i;
+
+ if (row_dst >= nrows_dst) {
+ continue;
+ }
+
+ dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
+ }
+ }
+}
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q4_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_0_RDNA2;
+ const int nwarps = NWARPS_Q4_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_0_RDNA1;
+ const int nwarps = NWARPS_Q4_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_0_AMPERE;
+ const int nwarps = NWARPS_Q4_0_AMPERE;
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_0_PASCAL;
+ const int nwarps = NWARPS_Q4_0_PASCAL;
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q4_1_RDNA2 64
+#define MMQ_Y_Q4_1_RDNA2 128
+#define NWARPS_Q4_1_RDNA2 8
+#define MMQ_X_Q4_1_RDNA1 64
+#define MMQ_Y_Q4_1_RDNA1 64
+#define NWARPS_Q4_1_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_1_AMPERE 4
+#define MMQ_Y_Q4_1_AMPERE 32
+#define NWARPS_Q4_1_AMPERE 4
+#else
+#define MMQ_X_Q4_1_AMPERE 64
+#define MMQ_Y_Q4_1_AMPERE 128
+#define NWARPS_Q4_1_AMPERE 4
+#endif
+#define MMQ_X_Q4_1_PASCAL 64
+#define MMQ_Y_Q4_1_PASCAL 64
+#define NWARPS_Q4_1_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q4_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_1_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_1_RDNA2;
+ const int nwarps = NWARPS_Q4_1_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_1_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_1_RDNA1;
+ const int nwarps = NWARPS_Q4_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_1_AMPERE;
+ const int nwarps = NWARPS_Q4_1_AMPERE;
+
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_1_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_1_PASCAL;
+ const int nwarps = NWARPS_Q4_1_PASCAL;
+
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q5_0_RDNA2 64
+#define MMQ_Y_Q5_0_RDNA2 128
+#define NWARPS_Q5_0_RDNA2 8
+#define MMQ_X_Q5_0_RDNA1 64
+#define MMQ_Y_Q5_0_RDNA1 64
+#define NWARPS_Q5_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_0_AMPERE 4
+#define MMQ_Y_Q5_0_AMPERE 32
+#define NWARPS_Q5_0_AMPERE 4
+#else
+#define MMQ_X_Q5_0_AMPERE 128
+#define MMQ_Y_Q5_0_AMPERE 64
+#define NWARPS_Q5_0_AMPERE 4
+#endif
+#define MMQ_X_Q5_0_PASCAL 64
+#define MMQ_Y_Q5_0_PASCAL 64
+#define NWARPS_Q5_0_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q5_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_0_RDNA2;
+ const int nwarps = NWARPS_Q5_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_0_RDNA1;
+ const int nwarps = NWARPS_Q5_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_0_AMPERE;
+ const int nwarps = NWARPS_Q5_0_AMPERE;
+
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_0_PASCAL;
+ const int nwarps = NWARPS_Q5_0_PASCAL;
+
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q5_1_RDNA2 64
+#define MMQ_Y_Q5_1_RDNA2 128
+#define NWARPS_Q5_1_RDNA2 8
+#define MMQ_X_Q5_1_RDNA1 64
+#define MMQ_Y_Q5_1_RDNA1 64
+#define NWARPS_Q5_1_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_1_AMPERE 4
+#define MMQ_Y_Q5_1_AMPERE 32
+#define NWARPS_Q5_1_AMPERE 4
+#else
+#define MMQ_X_Q5_1_AMPERE 128
+#define MMQ_Y_Q5_1_AMPERE 64
+#define NWARPS_Q5_1_AMPERE 4
+#endif
+#define MMQ_X_Q5_1_PASCAL 64
+#define MMQ_Y_Q5_1_PASCAL 64
+#define NWARPS_Q5_1_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_1_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_1_RDNA2;
+ const int nwarps = NWARPS_Q5_1_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_1_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_1_RDNA1;
+ const int nwarps = NWARPS_Q5_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_1_AMPERE;
+ const int nwarps = NWARPS_Q5_1_AMPERE;
+
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_1_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_1_PASCAL;
+ const int nwarps = NWARPS_Q5_1_PASCAL;
+
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q8_0_RDNA2 64
+#define MMQ_Y_Q8_0_RDNA2 128
+#define NWARPS_Q8_0_RDNA2 8
+#define MMQ_X_Q8_0_RDNA1 64
+#define MMQ_Y_Q8_0_RDNA1 64
+#define NWARPS_Q8_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q8_0_AMPERE 4
+#define MMQ_Y_Q8_0_AMPERE 32
+#define NWARPS_Q8_0_AMPERE 4
+#else
+#define MMQ_X_Q8_0_AMPERE 128
+#define MMQ_Y_Q8_0_AMPERE 64
+#define NWARPS_Q8_0_AMPERE 4
+#endif
+#define MMQ_X_Q8_0_PASCAL 64
+#define MMQ_Y_Q8_0_PASCAL 64
+#define NWARPS_Q8_0_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q8_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q8_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q8_0_RDNA2;
+ const int nwarps = NWARPS_Q8_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q8_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q8_0_RDNA1;
+ const int nwarps = NWARPS_Q8_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q8_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q8_0_AMPERE;
+ const int nwarps = NWARPS_Q8_0_AMPERE;
+
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q8_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q8_0_PASCAL;
+ const int nwarps = NWARPS_Q8_0_PASCAL;
+
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q2_K_RDNA2 64
+#define MMQ_Y_Q2_K_RDNA2 128
+#define NWARPS_Q2_K_RDNA2 8
+#define MMQ_X_Q2_K_RDNA1 128
+#define MMQ_Y_Q2_K_RDNA1 32
+#define NWARPS_Q2_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q2_K_AMPERE 4
+#define MMQ_Y_Q2_K_AMPERE 32
+#define NWARPS_Q2_K_AMPERE 4
+#else
+#define MMQ_X_Q2_K_AMPERE 64
+#define MMQ_Y_Q2_K_AMPERE 128
+#define NWARPS_Q2_K_AMPERE 4
+#endif
+#define MMQ_X_Q2_K_PASCAL 64
+#define MMQ_Y_Q2_K_PASCAL 64
+#define NWARPS_Q2_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q2_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q2_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q2_K_RDNA2;
+ const int nwarps = NWARPS_Q2_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q2_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q2_K_RDNA1;
+ const int nwarps = NWARPS_Q2_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q2_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q2_K_AMPERE;
+ const int nwarps = NWARPS_Q2_K_AMPERE;
+
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q2_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q2_K_PASCAL;
+ const int nwarps = NWARPS_Q2_K_PASCAL;
+
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q3_K_RDNA2 128
+#define MMQ_Y_Q3_K_RDNA2 64
+#define NWARPS_Q3_K_RDNA2 8
+#define MMQ_X_Q3_K_RDNA1 32
+#define MMQ_Y_Q3_K_RDNA1 128
+#define NWARPS_Q3_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q3_K_AMPERE 4
+#define MMQ_Y_Q3_K_AMPERE 32
+#define NWARPS_Q3_K_AMPERE 4
+#else
+#define MMQ_X_Q3_K_AMPERE 128
+#define MMQ_Y_Q3_K_AMPERE 128
+#define NWARPS_Q3_K_AMPERE 4
+#endif
+#define MMQ_X_Q3_K_PASCAL 64
+#define MMQ_Y_Q3_K_PASCAL 64
+#define NWARPS_Q3_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q3_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q3_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q3_K_RDNA2;
+ const int nwarps = NWARPS_Q3_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q3_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q3_K_RDNA1;
+ const int nwarps = NWARPS_Q3_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q3_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q3_K_AMPERE;
+ const int nwarps = NWARPS_Q3_K_AMPERE;
+
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q3_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q3_K_PASCAL;
+ const int nwarps = NWARPS_Q3_K_PASCAL;
+
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q4_K_RDNA2 64
+#define MMQ_Y_Q4_K_RDNA2 128
+#define NWARPS_Q4_K_RDNA2 8
+#define MMQ_X_Q4_K_RDNA1 32
+#define MMQ_Y_Q4_K_RDNA1 64
+#define NWARPS_Q4_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_K_AMPERE 4
+#define MMQ_Y_Q4_K_AMPERE 32
+#define NWARPS_Q4_K_AMPERE 4
+#else
+#define MMQ_X_Q4_K_AMPERE 64
+#define MMQ_Y_Q4_K_AMPERE 128
+#define NWARPS_Q4_K_AMPERE 4
+#endif
+#define MMQ_X_Q4_K_PASCAL 64
+#define MMQ_Y_Q4_K_PASCAL 64
+#define NWARPS_Q4_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q4_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_K_RDNA2;
+ const int nwarps = NWARPS_Q4_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_K_RDNA1;
+ const int nwarps = NWARPS_Q4_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_K_AMPERE;
+ const int nwarps = NWARPS_Q4_K_AMPERE;
+
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_K_PASCAL;
+ const int nwarps = NWARPS_Q4_K_PASCAL;
+
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q5_K_RDNA2 64
+#define MMQ_Y_Q5_K_RDNA2 128
+#define NWARPS_Q5_K_RDNA2 8
+#define MMQ_X_Q5_K_RDNA1 32
+#define MMQ_Y_Q5_K_RDNA1 64
+#define NWARPS_Q5_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_K_AMPERE 4
+#define MMQ_Y_Q5_K_AMPERE 32
+#define NWARPS_Q5_K_AMPERE 4
+#else
+#define MMQ_X_Q5_K_AMPERE 64
+#define MMQ_Y_Q5_K_AMPERE 128
+#define NWARPS_Q5_K_AMPERE 4
+#endif
+#define MMQ_X_Q5_K_PASCAL 64
+#define MMQ_Y_Q5_K_PASCAL 64
+#define NWARPS_Q5_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_K_RDNA2;
+ const int nwarps = NWARPS_Q5_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_K_RDNA1;
+ const int nwarps = NWARPS_Q5_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_K_AMPERE;
+ const int nwarps = NWARPS_Q5_K_AMPERE;
+
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_K_PASCAL;
+ const int nwarps = NWARPS_Q5_K_PASCAL;
+
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q6_K_RDNA2 64
+#define MMQ_Y_Q6_K_RDNA2 128
+#define NWARPS_Q6_K_RDNA2 8
+#define MMQ_X_Q6_K_RDNA1 32
+#define MMQ_Y_Q6_K_RDNA1 64
+#define NWARPS_Q6_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q6_K_AMPERE 4
+#define MMQ_Y_Q6_K_AMPERE 32
+#define NWARPS_Q6_K_AMPERE 4
+#else
+#define MMQ_X_Q6_K_AMPERE 64
+#define MMQ_Y_Q6_K_AMPERE 64
+#define NWARPS_Q6_K_AMPERE 4
+#endif
+#define MMQ_X_Q6_K_PASCAL 64
+#define MMQ_Y_Q6_K_PASCAL 64
+#define NWARPS_Q6_K_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q6_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q6_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q6_K_RDNA2;
+ const int nwarps = NWARPS_Q6_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q6_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q6_K_RDNA1;
+ const int nwarps = NWARPS_Q6_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q6_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q6_K_AMPERE;
+ const int nwarps = NWARPS_Q6_K_AMPERE;
+
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q6_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q6_K_PASCAL;
+ const int nwarps = NWARPS_Q6_K_PASCAL;
+
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+static void ggml_mul_mat_q4_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_0_RDNA2;
+ mmq_y = MMQ_Y_Q4_0_RDNA2;
+ nwarps = NWARPS_Q4_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_0_RDNA1;
+ mmq_y = MMQ_Y_Q4_0_RDNA1;
+ nwarps = NWARPS_Q4_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_0_AMPERE;
+ mmq_y = MMQ_Y_Q4_0_AMPERE;
+ nwarps = NWARPS_Q4_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_0_PASCAL;
+ mmq_y = MMQ_Y_Q4_0_PASCAL;
+ nwarps = NWARPS_Q4_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q4_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_1_RDNA2;
+ mmq_y = MMQ_Y_Q4_1_RDNA2;
+ nwarps = NWARPS_Q4_1_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_1_RDNA1;
+ mmq_y = MMQ_Y_Q4_1_RDNA1;
+ nwarps = NWARPS_Q4_1_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_1_AMPERE;
+ mmq_y = MMQ_Y_Q4_1_AMPERE;
+ nwarps = NWARPS_Q4_1_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_1_PASCAL;
+ mmq_y = MMQ_Y_Q4_1_PASCAL;
+ nwarps = NWARPS_Q4_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q5_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_0_RDNA2;
+ mmq_y = MMQ_Y_Q5_0_RDNA2;
+ nwarps = NWARPS_Q5_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_0_RDNA1;
+ mmq_y = MMQ_Y_Q5_0_RDNA1;
+ nwarps = NWARPS_Q5_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_0_AMPERE;
+ mmq_y = MMQ_Y_Q5_0_AMPERE;
+ nwarps = NWARPS_Q5_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_0_PASCAL;
+ mmq_y = MMQ_Y_Q5_0_PASCAL;
+ nwarps = NWARPS_Q5_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q5_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_1_RDNA2;
+ mmq_y = MMQ_Y_Q5_1_RDNA2;
+ nwarps = NWARPS_Q5_1_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_1_RDNA1;
+ mmq_y = MMQ_Y_Q5_1_RDNA1;
+ nwarps = NWARPS_Q5_1_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_1_AMPERE;
+ mmq_y = MMQ_Y_Q5_1_AMPERE;
+ nwarps = NWARPS_Q5_1_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_1_PASCAL;
+ mmq_y = MMQ_Y_Q5_1_PASCAL;
+ nwarps = NWARPS_Q5_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q8_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q8_0_RDNA2;
+ mmq_y = MMQ_Y_Q8_0_RDNA2;
+ nwarps = NWARPS_Q8_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q8_0_RDNA1;
+ mmq_y = MMQ_Y_Q8_0_RDNA1;
+ nwarps = NWARPS_Q8_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q8_0_AMPERE;
+ mmq_y = MMQ_Y_Q8_0_AMPERE;
+ nwarps = NWARPS_Q8_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q8_0_PASCAL;
+ mmq_y = MMQ_Y_Q8_0_PASCAL;
+ nwarps = NWARPS_Q8_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q2_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q2_K_RDNA2;
+ mmq_y = MMQ_Y_Q2_K_RDNA2;
+ nwarps = NWARPS_Q2_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q2_K_RDNA1;
+ mmq_y = MMQ_Y_Q2_K_RDNA1;
+ nwarps = NWARPS_Q2_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q2_K_AMPERE;
+ mmq_y = MMQ_Y_Q2_K_AMPERE;
+ nwarps = NWARPS_Q2_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q2_K_PASCAL;
+ mmq_y = MMQ_Y_Q2_K_PASCAL;
+ nwarps = NWARPS_Q2_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q3_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+#if QK_K == 256
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q3_K_RDNA2;
+ mmq_y = MMQ_Y_Q3_K_RDNA2;
+ nwarps = NWARPS_Q3_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q3_K_RDNA1;
+ mmq_y = MMQ_Y_Q3_K_RDNA1;
+ nwarps = NWARPS_Q3_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q3_K_AMPERE;
+ mmq_y = MMQ_Y_Q3_K_AMPERE;
+ nwarps = NWARPS_Q3_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q3_K_PASCAL;
+ mmq_y = MMQ_Y_Q3_K_PASCAL;
+ nwarps = NWARPS_Q3_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+#endif
+}
+
+static void ggml_mul_mat_q4_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_K_RDNA2;
+ mmq_y = MMQ_Y_Q4_K_RDNA2;
+ nwarps = NWARPS_Q4_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_K_RDNA1;
+ mmq_y = MMQ_Y_Q4_K_RDNA1;
+ nwarps = NWARPS_Q4_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_K_AMPERE;
+ mmq_y = MMQ_Y_Q4_K_AMPERE;
+ nwarps = NWARPS_Q4_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_K_PASCAL;
+ mmq_y = MMQ_Y_Q4_K_PASCAL;
+ nwarps = NWARPS_Q4_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q5_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_K_RDNA2;
+ mmq_y = MMQ_Y_Q5_K_RDNA2;
+ nwarps = NWARPS_Q5_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_K_RDNA1;
+ mmq_y = MMQ_Y_Q5_K_RDNA1;
+ nwarps = NWARPS_Q5_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_K_AMPERE;
+ mmq_y = MMQ_Y_Q5_K_AMPERE;
+ nwarps = NWARPS_Q5_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_K_PASCAL;
+ mmq_y = MMQ_Y_Q5_K_PASCAL;
+ nwarps = NWARPS_Q5_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q6_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = ggml_cuda_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q6_K_RDNA2;
+ mmq_y = MMQ_Y_Q6_K_RDNA2;
+ nwarps = NWARPS_Q6_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q6_K_RDNA1;
+ mmq_y = MMQ_Y_Q6_K_RDNA1;
+ nwarps = NWARPS_Q6_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q6_K_AMPERE;
+ mmq_y = MMQ_Y_Q6_K_AMPERE;
+ nwarps = NWARPS_Q6_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q6_K_PASCAL;
+ mmq_y = MMQ_Y_Q6_K_PASCAL;
+ nwarps = NWARPS_Q6_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+void ggml_cuda_op_mul_mat_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+ const int64_t ne00 = src0->ne[0];
+
+ const int64_t ne10 = src1->ne[0];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
+
+ const int64_t ne0 = dst->ne[0];
+
+ const int64_t row_diff = row_high - row_low;
+
+ int id = ggml_cuda_get_device();
+
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the kernel writes into
+ const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddf_i);
+}
+
+bool ggml_cuda_supports_mmq(enum ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ return true;
+ default:
+ return false;
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_mul_mat_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream);
+
+bool ggml_cuda_supports_mmq(enum ggml_type type);
--- /dev/null
+#include "mmvq.cuh"
+#include "vecdotq.cuh"
+
+typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
+
+template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+// tell the compiler to use as many registers as it wants, see nwarps definition below
+__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void mul_mat_vec_q(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+ constexpr int nwarps = 1;
+ constexpr int rows_per_cuda_block = 1;
+#else
+ constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
+ constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ const int row0 = rows_per_cuda_block*blockIdx.x;
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
+
+// partial sum for each thread
+ float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
+
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
+
+ for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
+ const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
+
+ // x block quant index when casting the quants to int
+ const int kqs = vdr * (tid % (qi/vdr));
+
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+ tmp[j][i] += vec_dot_q_cuda(
+ &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
+ }
+ }
+ }
+
+ __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
+ if (threadIdx.y > 0) {
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+ tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
+ }
+ }
+ }
+ __syncthreads();
+ if (threadIdx.y > 0) {
+ return;
+ }
+
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+#pragma unroll
+ for (int l = 0; l < nwarps-1; ++l) {
+ tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
+ }
+ tmp[j][i] = warp_reduce_sum(tmp[j][i]);
+ }
+
+ if (threadIdx.x < rows_per_cuda_block) {
+ dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
+ }
+ }
+}
+
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
+static void mul_mat_vec_q_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ GGML_ASSERT(ncols_x % qk == 0);
+ GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+
+ int64_t nwarps = 1;
+ int64_t rows_per_cuda_block = 1;
+
+ if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
+ switch(ncols_y) {
+ case 1:
+ nwarps = 4;
+ rows_per_cuda_block = 1;
+ break;
+ case 2:
+ case 3:
+ case 4:
+ nwarps = 4;
+ rows_per_cuda_block = 2;
+ break;
+ case 5:
+ case 6:
+ case 7:
+ case 8:
+ nwarps = 2;
+ rows_per_cuda_block = 2;
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ }
+ const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
+ const dim3 block_nums(nblocks, 1, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ switch (ncols_y) {
+ case 1:
+ mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 2:
+ mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 3:
+ mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 4:
+ mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 5:
+ mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 6:
+ mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 7:
+ mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 8:
+ mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+}
+
+static void mul_mat_vec_q4_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q4_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q8_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q2_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q3_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q4_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q5_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_q6_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_xxs_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_xs_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq2_s_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq3_xxs_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq1_s_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq1_m_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq4_nl_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq4_xs_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+static void mul_mat_vec_iq3_s_q8_1_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+
+ mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
+ (vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
+}
+
+void ggml_cuda_op_mul_mat_vec_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t row_diff = row_high - row_low;
+
+ const int64_t ne10 = src1->ne[0];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
+
+ const int64_t ne0 = dst->ne[0];
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the kernel writes into
+ const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_XXS:
+ mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_XS:
+ mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_S:
+ mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ3_XXS:
+ mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ1_S:
+ mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ1_M:
+ mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ4_NL:
+ mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ4_XS:
+ mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ3_S:
+ mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddf_i);
+ GGML_UNUSED(src1_ncols);
+ GGML_UNUSED(src1_padded_row_size);
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_mul_mat_vec_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream);
--- /dev/null
+#include "norm.cuh"
+
+template <int block_size>
+static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ const int tid = threadIdx.x;
+
+ float2 mean_var = make_float2(0.f, 0.f);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row*ncols + col];
+ mean_var.x += xi;
+ mean_var.y += xi * xi;
+ }
+
+ // sum up partial sums
+ mean_var = warp_reduce_sum(mean_var);
+ if (block_size > WARP_SIZE) {
+ __shared__ float2 s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = mean_var;
+ }
+ __syncthreads();
+ mean_var = s_sum[lane_id];
+ mean_var = warp_reduce_sum(mean_var);
+ }
+
+ const float mean = mean_var.x / ncols;
+ const float var = mean_var.y / ncols - mean * mean;
+ const float inv_std = rsqrtf(var + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
+ }
+}
+
+template <int block_size>
+static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
+ // blockIdx.x: num_groups idx
+ // threadIdx.x: block_size idx
+ int start = blockIdx.x * group_size;
+ int end = start + group_size;
+
+ start += threadIdx.x;
+
+ if (end >= ne_elements) {
+ end = ne_elements;
+ }
+
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int j = start; j < end; j += block_size) {
+ tmp += x[j];
+ }
+
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ float mean = tmp / group_size;
+ tmp = 0.0f;
+
+ for (int j = start; j < end; j += block_size) {
+ float xi = x[j] - mean;
+ dst[j] = xi;
+ tmp += xi * xi;
+ }
+
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ float variance = tmp / group_size;
+ float scale = rsqrtf(variance + eps);
+ for (int j = start; j < end; j += block_size) {
+ dst[j] *= scale;
+ }
+}
+
+template <int block_size>
+static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ const int tid = threadIdx.x;
+
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row*ncols + col];
+ tmp += xi * xi;
+ }
+
+ // sum up partial sums
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ const float mean = tmp / ncols;
+ const float scale = rsqrtf(mean + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row*ncols + col] = scale * x[row*ncols + col];
+ }
+}
+
+static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ } else {
+ const dim3 block_dims(1024, 1, 1);
+ norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ }
+}
+
+static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
+ static const float eps = 1e-6f;
+ if (group_size < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
+ } else {
+ const dim3 block_dims(1024, 1, 1);
+ group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
+ }
+}
+
+static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ } else {
+ const dim3 block_dims(1024, 1, 1);
+ rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ }
+}
+
+void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
+}
+
+void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ int num_groups = dst->op_params[0];
+ int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+ group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "pad.cuh"
+
+static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
+ // blockIdx.y: idx of ne1
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+
+ // operation
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
+ int offset_src =
+ nidx +
+ blockIdx.y * ne00 +
+ blockIdx.z * ne00 * ne01;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ dst[offset_dst] = 0.0f;
+ }
+}
+
+static void pad_f32_cuda(const float * x, float * dst,
+ const int ne00, const int ne01, const int ne02, const int ne03,
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
+ pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
+}
+
+void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+ pad_f32_cuda(src0_d, dst_d,
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_PAD_BLOCK_SIZE 256
+
+void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "pool2d.cuh"
+
+template <typename Ti, typename To>
+static __global__ void pool2d_nchw_kernel(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const Ti* src, To* dst, const enum ggml_op_pool op) {
+ int idx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (idx >= parallel_elements) {
+ return;
+ }
+
+ const int I_HW = ih * iw;
+ const int O_HW = oh * ow;
+ const int nc = idx / O_HW;
+ const int cur_oh = idx % O_HW / ow;
+ const int cur_ow = idx % O_HW % ow;
+ const Ti* i_ptr = src + nc * I_HW;
+ To* o_ptr = dst + nc * O_HW;
+ const int start_h = cur_oh * sh - ph;
+ const int bh = max(0, start_h);
+ const int eh = min(ih, start_h + kh);
+ const int start_w = cur_ow * sw - pw;
+ const int bw = max(0, start_w);
+ const int ew = min(iw, start_w + kw);
+ const To scale = 1. / (kh * kw);
+ To res = 0;
+
+ switch (op) {
+ case GGML_OP_POOL_AVG: res = 0; break;
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+ default: assert(false);
+ }
+
+ for (int i = bh; i < eh; i += 1) {
+ for (int j = bw; j < ew; j += 1) {
+#if __CUDA_ARCH__ >= 350
+ Ti cur = __ldg(i_ptr + i * iw + j);
+#else
+ Ti cur = i_ptr[i * iw + j];
+#endif
+ switch (op) {
+ case GGML_OP_POOL_AVG: res += cur * scale; break;
+ case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
+ default: assert(false);
+ }
+ }
+ }
+ o_ptr[cur_oh * ow + cur_ow] = res;
+}
+
+static void pool2d_nchw_kernel_f32_f32_cuda(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const float * src, float * dst, const enum ggml_op_pool op,
+ cudaStream_t stream) {
+
+ const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
+ dim3 block_nums(num_blocks);
+ pool2d_nchw_kernel<<<block_nums, CUDA_POOL2D_BLOCK_SIZE, 0, stream>>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op);
+}
+
+void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+
+ const int64_t IH = src0->ne[1];
+ const int64_t IW = src0->ne[0];
+
+ const int64_t N = dst->ne[3];
+ const int64_t OC = dst->ne[2];
+ const int64_t OH = dst->ne[1];
+ const int64_t OW = dst->ne[0];
+
+ const int parallel_elements = N * OC * OH * OW;
+
+ pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_POOL2D_BLOCK_SIZE 256
+
+void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "quantize.cuh"
+
+static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
+ const int ix = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (ix >= kx_padded) {
+ return;
+ }
+
+ const int iy = blockDim.y*blockIdx.y + threadIdx.y;
+
+ const int i_padded = iy*kx_padded + ix;
+
+ block_q8_1 * y = (block_q8_1 *) vy;
+
+ const int ib = i_padded / QK8_1; // block index
+ const int iqs = i_padded % QK8_1; // quant index
+
+ const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
+ float amax = fabsf(xi);
+ float sum = xi;
+
+ amax = warp_reduce_max(amax);
+ sum = warp_reduce_sum(sum);
+
+ const float d = amax / 127;
+ const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
+
+ y[ib].qs[iqs] = q;
+
+ if (iqs > 0) {
+ return;
+ }
+
+ reinterpret_cast<half&>(y[ib].ds.x) = d;
+ reinterpret_cast<half&>(y[ib].ds.y) = sum;
+}
+
+void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
+ const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
+ const dim3 num_blocks(block_num_x, ky, 1);
+ const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
+ quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
+}
+
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_QUANTIZE_BLOCK_SIZE 256
+
+void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream);
--- /dev/null
+#include "rope.cuh"
+
+struct rope_corr_dims {
+ float v[4];
+};
+
+static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / max(0.001f, high - low);
+ return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static __device__ void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
+ }
+ *cos_theta = cosf(theta) * mscale;
+ *sin_theta = sinf(theta) * mscale;
+}
+
+// rope == RoPE == rotary positional embedding
+template<typename T, bool has_pos>
+static __global__ void rope(
+ const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims
+) {
+ const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
+
+ if (col >= ncols) {
+ return;
+ }
+
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+ const int i = row*ncols + col;
+ const int i2 = row/p_delta_rows;
+
+ const int p = has_pos ? pos[i2] : 0;
+ const float theta_base = p*powf(freq_base, -float(col)/ncols);
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_pos>
+static __global__ void rope_neox(
+ const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
+) {
+ const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
+
+ if (col >= ncols) {
+ return;
+ }
+
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+ const int ib = col / n_dims;
+ const int ic = col % n_dims;
+
+ if (ib > 0) {
+ const int i = row*ncols + ib*n_dims + ic;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ncols + ib*n_dims + ic/2;
+ const int i2 = row/p_delta_rows;
+
+ float cur_rot = inv_ndims * ic - ib;
+
+ const int p = has_pos ? pos[i2] : 0;
+ const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+static __global__ void rope_glm_f32(
+ const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+ int n_ctx
+) {
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
+ const int half_n_dims = ncols/4;
+
+ if (col >= half_n_dims) {
+ return;
+ }
+
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i = row*ncols + col;
+ const int i2 = row/p_delta_rows;
+
+ const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
+ // FIXME: this is likely wrong
+ const int p = pos != nullptr ? pos[i2] : 0;
+
+ const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
+ const float sin_theta = sinf(theta);
+ const float cos_theta = cosf(theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + half_n_dims];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
+
+ const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
+ const float sin_block_theta = sinf(block_theta);
+ const float cos_block_theta = cosf(block_theta);
+
+ const float x2 = x[i + half_n_dims * 2];
+ const float x3 = x[i + half_n_dims * 3];
+
+ dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
+ dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
+}
+
+
+template<typename T>
+static void rope_cuda(
+ const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 2 == 0);
+ const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+ const dim3 block_nums(nrows, num_blocks_x, 1);
+ if (pos == nullptr) {
+ rope<T, false><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+ );
+ } else {
+ rope<T, true><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+ );
+ }
+}
+
+template<typename T>
+static void rope_neox_cuda(
+ const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 2 == 0);
+ const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+ const dim3 block_nums(nrows, num_blocks_x, 1);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+ const float inv_ndims = -1.0f / n_dims;
+
+ if (pos == nullptr) {
+ rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+ theta_scale, inv_ndims
+ );
+ } else {
+ rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+ theta_scale, inv_ndims
+ );
+ }
+}
+
+static void rope_glm_f32_cuda(
+ const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, int n_ctx, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 4 == 0);
+ const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
+ const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
+ const dim3 block_nums(num_blocks_x, nrows, 1);
+ rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
+}
+
+static void rope_cuda_f16(
+ const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+ rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_cuda_f32(
+ const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+ rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_neox_cuda_f16(
+ const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
+
+ rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+static void rope_neox_cuda_f32(
+ const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+
+ rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
+}
+
+void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne2 = dst->ne[2];
+ const int64_t nrows = ggml_nrows(src0);
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
+
+ // RoPE alteration for extended context
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ const int32_t * pos = nullptr;
+ if ((mode & 1) == 0) {
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(src1->ne[0] == ne2);
+ pos = (const int32_t *) src1_d;
+ }
+
+ const bool is_neox = mode & 2;
+ const bool is_glm = mode & 4;
+
+ rope_corr_dims corr_dims;
+ ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+ // compute
+ if (is_glm) {
+ GGML_ASSERT(false);
+ rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
+ } else if (is_neox) {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_neox_cuda_f32(
+ (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_neox_cuda_f16(
+ (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_cuda_f32(
+ (const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_cuda_f16(
+ (const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_ROPE_BLOCK_SIZE 256
+
+void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "scale.cuh"
+
+static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = scale * x[i];
+}
+
+static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
+ scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
+}
+
+void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float scale;
+ memcpy(&scale, dst->op_params, sizeof(float));
+
+ scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
+ CUDA_CHECK(cudaGetLastError());
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_SCALE_BLOCK_SIZE 256
+
+void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "softmax.cuh"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+ const int tid = threadIdx.x;
+ const int rowx = blockIdx.x;
+ const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
+
+ const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
+
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
+
+ float slope = 0.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const int h = rowx/nrows_y; // head index
+
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = powf(base, exp);
+ }
+
+ extern __shared__ float data_soft_max_f32[];
+ float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
+ // shared memory buffer to cache values between iterations:
+ float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
+
+ float max_val = -INFINITY;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
+
+ const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
+
+ vals[col] = val;
+ max_val = max(max_val, val);
+ }
+
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf_iw[lane_id] = -INFINITY;
+ }
+ __syncthreads();
+
+ if (lane_id == 0) {
+ buf_iw[warp_id] = max_val;
+ }
+ __syncthreads();
+
+ max_val = buf_iw[lane_id];
+ max_val = warp_reduce_max(max_val);
+ }
+
+ float tmp = 0.0f; // partial sum
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const float val = expf(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
+
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __syncthreads();
+ if (warp_id == 0) {
+ buf_iw[lane_id] = 0.0f;
+ }
+ __syncthreads();
+
+ if (lane_id == 0) {
+ buf_iw[warp_id] = tmp;
+ }
+ __syncthreads();
+
+ tmp = buf_iw[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ const float inv_sum = 1.0f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
+}
+
+static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
+ int nth = WARP_SIZE;
+ while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
+ const dim3 block_dims(nth, 1, 1);
+ const dim3 block_nums(nrows_x, 1, 1);
+ const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
+ static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
+
+ const uint32_t n_head_kv = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 64:
+ soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 128:
+ soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 256:
+ soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 512:
+ soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 1024:
+ soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 2048:
+ soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 4096:
+ soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ default:
+ soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ }
+ } else {
+ const size_t shmem_low = WARP_SIZE*sizeof(float);
+ soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ }
+}
+
+void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = src1 ? (const float *)src1->data : nullptr;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+ // positions tensor
+ float * src2_dd = nullptr;
+
+ ggml_tensor * src2 = dst->src[2];
+ const bool use_src2 = src2 != nullptr;
+
+ if (use_src2) {
+ src2_dd = (float *)src2->data;
+ }
+
+ soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
+
+void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "sumrows.cuh"
+
+static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
+ const int row = blockIdx.x;
+ const int col = threadIdx.x;
+
+ float sum = 0.0f;
+ for (int i = col; i < ncols; i += blockDim.x) {
+ sum += x[row * ncols + i];
+ }
+
+ sum = warp_reduce_sum(sum);
+
+ if (col == 0) {
+ dst[row] = sum;
+ }
+}
+
+static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ const dim3 block_nums(nrows, 1, 1);
+ k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+}
+
+void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "tsembd.cuh"
+
+static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
+ // blockIDx.y: idx of timesteps->ne[0]
+ // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
+ int i = blockIdx.y;
+ int j = threadIdx.x + blockIdx.x * blockDim.x;
+ float * embed_data = (float *)((char *)dst + i*nb1);
+
+ if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
+ embed_data[dim] = 0.f;
+ }
+
+ int half = dim / 2;
+ if (j >= half) {
+ return;
+ }
+
+ float timestep = timesteps[i];
+ float freq = (float)expf(-logf(max_period) * j / half);
+ float arg = timestep * freq;
+ embed_data[j] = cosf(arg);
+ embed_data[j + half] = sinf(arg);
+}
+
+static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
+ const int dim, const int max_period, cudaStream_t stream) {
+ int half_ceil = (dim + 1) / 2;
+ int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne00, 1);
+ timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
+}
+
+void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const int dim = dst->op_params[0];
+ const int max_period = dst->op_params[1];
+
+ timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
+
+void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "unary.cuh"
+
+static __global__ void gelu_f32(const float * x, float * dst, const int k) {
+ const float GELU_COEF_A = 0.044715f;
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ float xi = x[i];
+ dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
+}
+
+static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
+ const float GELU_QUICK_COEF = -1.702f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
+}
+
+static __global__ void silu_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] / (1.0f + expf(-x[i]));
+}
+
+static __global__ void tanh_f32(const float * x, float * dst, int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = tanhf(x[i]);
+}
+
+static __global__ void relu_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fmaxf(x[i], 0);
+}
+
+static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
+
+static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
+}
+
+static __global__ void sqr_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * x[i];
+}
+
+static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
+ silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
+ tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
+ hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
+ hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
+}
+
+static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
+ sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
+void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
+
+void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+ leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
+}
+
+void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_GELU_BLOCK_SIZE 256
+#define CUDA_SILU_BLOCK_SIZE 256
+#define CUDA_TANH_BLOCK_SIZE 256
+#define CUDA_RELU_BLOCK_SIZE 256
+#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
+#define CUDA_HARDSWISH_BLOCK_SIZE 256
+#define CUDA_SQR_BLOCK_SIZE 256
+
+void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "upscale.cuh"
+
+static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
+ // blockIdx.z: idx of ne02*ne03
+ // blockIdx.y: idx of ne01*scale_factor, aka ne1
+ // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
+ // ne00xne01: ne00 * ne01
+ int ne0 = ne00 * scale_factor;
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ // operation
+ int i00 = nidx / scale_factor;
+ int i01 = blockIdx.y / scale_factor;
+ int offset_src =
+ i00 +
+ i01 * ne00 +
+ blockIdx.z * ne00xne01;
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ dst[offset_dst] = x[offset_src];
+}
+
+static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
+ const int scale_factor, cudaStream_t stream) {
+ int ne0 = (ne00 * scale_factor);
+ int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
+ upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
+}
+
+void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+ const int scale_factor = dst->op_params[0];
+
+ upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_UPSCALE_BLOCK_SIZE 256
+
+void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
--- /dev/null
+#include "common.cuh"
+
+static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
+
+ return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
+
+ return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+
+// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
+// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+
+#define VDR_Q4_0_Q8_1_MMVQ 2
+#define VDR_Q4_0_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
+ const int * v, const int * u, const float & d4, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
+ }
+
+ const float2 ds8f = __half22float2(ds8);
+
+ // second part effectively subtracts 8 from each quant value
+ return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q4_1_Q8_1_MMVQ 2
+#define VDR_Q4_1_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
+ }
+
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm4, ds8));
+ const float d4d8 = tmp.x;
+ const float m4s8 = tmp.y;
+#else
+ const float2 dm4f = __half22float2(dm4);
+ const float2 ds8f = __half22float2(ds8);
+ const float d4d8 = dm4f.x * ds8f.x;
+ const float m4s8 = dm4f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
+ return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_0_Q8_1_MMVQ 2
+#define VDR_Q5_0_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ }
+
+ const float2 ds8f = __half22float2(ds8);
+
+ // second part effectively subtracts 16 from each quant value
+ return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_1_Q8_1_MMVQ 2
+#define VDR_Q5_1_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ }
+
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm5, ds8));
+ const float d5d8 = tmp.x;
+ const float m5s8 = tmp.y;
+#else
+ const float2 dm5f = __half22float2(dm5);
+ const float2 ds8f = __half22float2(ds8);
+ const float d5d8 = dm5f.x * ds8f.x;
+ const float m5s8 = dm5f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
+ return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q8_0_Q8_1_MMVQ 2
+#define VDR_Q8_0_Q8_1_MMQ 8
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
+ const int * v, const int * u, const float & d8_0, const float & d8_1) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
+ }
+
+ return d8_0*d8_1 * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
+ }
+
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm8, ds8));
+ const float d8d8 = tmp.x;
+ const float m8s8 = tmp.y;
+#else
+ const float2 dm8f = __half22float2(dm8);
+ const float2 ds8f = __half22float2(ds8);
+ const float d8d8 = dm8f.x * ds8f.x;
+ const float m8s8 = dm8f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
+ return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q2_K_Q8_1_MMVQ 1
+#define VDR_Q2_K_Q8_1_MMQ 2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
+ const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR2_K; ++i) {
+ const int sc = scales[2*i];
+
+ const int vi = (v >> (2*i)) & 0x03030303;
+
+ sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+ sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
+ }
+
+ const float2 dm2f = __half22float2(dm2);
+
+ return dm2f.x*sumf_d - dm2f.y*sumf_m;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi_d = 0;
+ int sumi_m = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+ int sumi_d_sc = 0;
+
+ const int sc = scales[i0 / (QI8_1/2)];
+
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+
+#pragma unroll
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+ sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
+ }
+
+ sumi_d += sumi_d_sc * (sc & 0xF);
+ }
+
+ const float2 dm2f = __half22float2(dm2);
+
+ return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q3_K_Q8_1_MMVQ 1
+#define VDR_Q3_K_Q8_1_MMQ 2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const int & scale_offset, const float & d3, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ const int isc = scale_offset + 2*i;
+
+ const int isc_low = isc % (QK_K/32);
+ const int sc_shift_low = 4 * (isc / (QK_K/32));
+ const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
+
+ const int isc_high = isc % (QK_K/64);
+ const int sc_shift_high = 2 * (isc / (QK_K/64));
+ const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+
+ const int sc = (sc_low | sc_high) - 32;
+
+ const int vil = (vl >> (2*i)) & 0x03030303;
+
+ const int vih = ((vh >> i) << 2) & 0x04040404;
+
+ const int vi = __vsubss4(vil, vih);
+
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+ }
+
+ return d3 * sumf;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d3, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+ int sumi_sc = 0;
+
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+ }
+
+ sumi += sumi_sc * scales[i0 / (QI8_1/2)];
+ }
+
+ return d3*d8 * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q4_K_Q8_1_MMVQ 2
+#define VDR_Q4_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR4_K; ++i) {
+ const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
+ const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
+
+ const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
+
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
+ }
+
+ const float2 dm4f = __half22float2(dm4);
+
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
+
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
+ }
+
+ const float2 ds8f = __half22float2(ds8[i]);
+
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
+ }
+
+ const float2 dm4f = __half22float2(dm4);
+
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_K_Q8_1_MMVQ 2
+#define VDR_Q5_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
+ const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
+ const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+
+ const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
+ const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+
+ const int v0i = vl0i | vh0i;
+ const int v1i = vl1i | vh1i;
+
+ const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
+
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]);
+
+ }
+
+ const float2 dm5f = __half22float2(dm5);
+
+ return dm5f.x*sumf_d - dm5f.y*sumf_m;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
+
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
+ }
+
+ const float2 ds8f = __half22float2(ds8[i]);
+
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
+ }
+
+ const float2 dm4f = __half22float2(dm4);
+
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q6_K_Q8_1_MMVQ 1
+#define VDR_Q6_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ const int sc = scales[4*i];
+
+ const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+
+ const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+
+ const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
+
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+ }
+
+ return d*sumf;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
+ const float & d6, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+
+#pragma unroll
+ for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+ int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+ for (int i = i0; i < i0 + 2; ++i) {
+ sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
+ sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+
+ sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
+ sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
+ }
+
+ sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
+ }
+
+ return d6 * sumf_d;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+
+ int v[VDR_Q4_0_Q8_1_MMVQ];
+ int u[2*VDR_Q4_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
+}
+
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+
+ int v[VDR_Q4_1_Q8_1_MMVQ];
+ int u[2*VDR_Q4_1_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+
+ int vl[VDR_Q5_0_Q8_1_MMVQ];
+ int vh[VDR_Q5_0_Q8_1_MMVQ];
+ int u[2*VDR_Q5_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
+ vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
+ }
+
+ return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+
+ int vl[VDR_Q5_1_Q8_1_MMVQ];
+ int vh[VDR_Q5_1_Q8_1_MMVQ];
+ int u[2*VDR_Q5_1_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
+ vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
+ }
+
+ return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
+
+ int v[VDR_Q8_0_Q8_1_MMVQ];
+ int u[VDR_Q8_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
+ u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ }
+
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q2_K * bq2_K = (const block_q2_K *) vbq;
+
+ const int bq8_offset = QR2_K * (iqs / QI8_1);
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+ const uint8_t * scales = bq2_K->scales + scale_offset;
+
+ const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
+ int u[QR2_K];
+ float d8[QR2_K];
+
+#pragma unroll
+ for (int i = 0; i < QR2_K; ++ i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+ }
+
+ return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q3_K * bq3_K = (const block_q3_K *) vbq;
+
+ const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+ const float d = bq3_K->d;
+
+ const int vl = get_int_from_uint8(bq3_K->qs, iqs);
+
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
+
+ int u[QR3_K];
+ float d8[QR3_K];
+
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+ }
+
+ return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+ int v[2];
+ int u[2*QR4_K];
+ float d8[QR4_K];
+
+ // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
+ const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
+
+ // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
+ // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
+ // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
+ // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
+
+ const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ v[0] = q4[0];
+ v[1] = q4[4];
+
+ const uint16_t * scales = (const uint16_t *)bq4_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ }
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
+
+ for (int i = 0; i < QR4_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = __low2float(bq8i->ds);
+
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
+ }
+
+ return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+ uint16_t aux16[2];
+ const uint8_t * s = (const uint8_t *)aux16;
+
+ const uint16_t * a = (const uint16_t *)bq4_K->scales;
+ aux16[0] = a[0] & 0x0f0f;
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+ const float dall = bq4_K->dm[0];
+ const float dmin = bq4_K->dm[1];
+
+ const float d8_1 = __low2float(bq8_1[0].ds);
+ const float d8_2 = __low2float(bq8_1[1].ds);
+
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+ const int * q4 = (const int *)bq4_K->qs + (iqs/2);
+ const int v1 = q4[0];
+ const int v2 = q4[4];
+
+ const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
+ const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
+ const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
+ const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+
+ sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
+ sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+
+ return dall * sumf_d - dmin * sumf_m;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+ int vl[2];
+ int vh[2];
+ int u[2*QR5_K];
+ float d8[QR5_K];
+
+ const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
+ const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
+
+ vl[0] = ql[0];
+ vl[1] = ql[4];
+
+ vh[0] = qh[0] >> bq8_offset;
+ vh[1] = qh[4] >> bq8_offset;
+
+ const uint16_t * scales = (const uint16_t *)bq5_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ }
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = __low2float(bq8i->ds);
+
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
+ }
+
+ return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+ const int8_t * s = bq5_K->scales;
+
+ const float d = bq5_K->d;
+
+ const float d8_1 = __low2half(bq8_1[0].ds);
+ const float d8_2 = __low2half(bq8_1[1].ds);
+
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+ const int * ql = (const int *)bq5_K->qs + (iqs/2);
+ const int vl1 = ql[0];
+ const int vl2 = ql[4];
+
+ const int step = 4 * (iqs/2); // 0, 4, 8, 12
+ const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
+ const int in = step%8; // 0, 4, 0, 4
+ const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
+
+ const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
+ const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
+ const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
+ const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
+
+ const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
+
+ return d * sumf_d;
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q6_K * bq6_K = (const block_q6_K *) vbq;
+
+ const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
+ const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
+ const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
+
+ const int vl = get_int_from_uint8(bq6_K->ql, iqs);
+ const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
+
+ const int8_t * scales = bq6_K->scales + scale_offset;
+
+ int u[QR6_K];
+ float d8[QR6_K];
+
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
+ }
+
+ return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
+}
+
+static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+ const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
+
+#if QR2_XXS == 8
+ const int ib32 = iqs;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ uint32_t aux32 = q2[2] | (q2[3] << 16);
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
+ const uint8_t signs = ksigns_iq2xs[aux32 & 127];
+ for (int j = 0; j < 8; ++j) {
+ sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
+ }
+ q8 += 8;
+ aux32 >>= 7;
+ }
+ const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * sumi;
+#else
+ // iqs is 0...15
+ const int ib32 = iqs/2;
+ const int il = iqs%2;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
+ const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
+ const uint32_t aux32 = q2[2] | (q2[3] << 16);
+ const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
+ const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
+ const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
+ const int8_t * q8 = bq8_1[ib32].qs + 16*il;
+ int sumi1 = 0, sumi2 = 0;
+ for (int j = 0; j < 8; ++j) {
+ sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
+ sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
+ }
+ return d * (sumi1 + sumi2);
+#endif
+#else
+ NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
+
+ const int ib32 = iqs;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+ const uint8_t ls2 = bq2->scales[ib32] >> 4;
+ int sumi1 = 0;
+ for (int l = 0; l < 2; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+ const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+ sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+ sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+ q8 += 8;
+ }
+ int sumi2 = 0;
+ for (int l = 2; l < 4; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+ const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+ sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+ sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+ GGML_UNUSED(ksigns64);
+ NO_DEVICE_CODE;
+#endif
+#else
+ GGML_UNUSED(ksigns64);
+ NO_DEVICE_CODE;
+#endif
+}
+
+// TODO
+static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
+
+ const int ib32 = iqs;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
+ const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+ const uint8_t ls2 = bq2->scales[ib32] >> 4;
+ int sumi1 = 0;
+ for (int l = 0; l < 2; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+ const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+ sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+ sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+ q8 += 8;
+ }
+ int sumi2 = 0;
+ for (int l = 2; l < 4; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+ const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+ sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+ sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+ GGML_UNUSED(ksigns64);
+ NO_DEVICE_CODE;
+#endif
+#else
+ GGML_UNUSED(ksigns64);
+ NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
+
+ const int ib32 = iqs;
+ const uint8_t * q3 = bq2->qs + 8*ib32;
+ const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ uint32_t aux32 = gas[0] | (gas[1] << 16);
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
+ const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
+ const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
+ sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+ sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+ q8 += 8;
+ aux32 >>= 7;
+ }
+ const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
+ return d * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif
+#else
+ NO_DEVICE_CODE;
+#endif
+}
+
+// TODO: don't use lookup table for signs
+static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
+
+ const int ib32 = iqs;
+ const uint8_t * qs = bq2->qs + 8*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
+ const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
+ uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
+ sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+ sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
+ return d * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif
+#else
+ NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+ const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
+
+ const int ib32 = iqs;
+ int sumi = 0;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const int * q8 = (const int *)bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+ int grid0 = grid[0] & 0x0f0f0f0f;
+ int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
+ sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
+ }
+#else
+ const int8_t * q8 = bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+ for (int j = 0; j < 4; ++j) {
+ sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+ }
+ q8 += 8;
+ }
+#endif
+ const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
+ const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
+ const float d = d1q * __low2float (bq8_1[ib32].ds);
+ const float m = d1q * __high2float(bq8_1[ib32].ds);
+ return d * sumi + m * delta;
+#else
+ NO_DEVICE_CODE;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+ const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
+
+ const int ib32 = iqs;
+ int sumi[2] = {0, 0};
+ float sumf[2] = {0.f, 0.f};
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const int * q8 = (const int *)bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
+ int grid0 = grid[0] & 0x0f0f0f0f;
+ int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
+ sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2]));
+ const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
+ const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0));
+ sumf[l/2] += delta*sumy;
+ }
+#else
+ const int8_t * q8 = bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+ int sumy = 0;
+ for (int j = 0; j < 4; ++j) {
+ sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+ sumy += q8[j] + q8[j+4];
+ }
+ const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
+ sumf[l/2] += delta*sumy;
+ q8 += 8;
+ }
+#endif
+ iq1m_scale_t scale;
+ const uint16_t * sc = (const uint16_t *)bq1->scales;
+ scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+ const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
+ return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
+#else
+ NO_DEVICE_CODE;
+#endif
+}
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
+ int & val1, int & val2) {
+
+ uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
+ aux32 = q4 & 0x0f0f0f0f;
+ uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
+ uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
+ val1 = v1 | (v2 << 16);
+ aux32 = (q4 >> 4) & 0x0f0f0f0f;
+ v1 = values[q8[0]] | (values[q8[1]] << 8);
+ v2 = values[q8[2]] | (values[q8[3]] << 8);
+ val2 = v1 | (v2 << 16);
+}
+#endif
+
+static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
+ const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
+
+ const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+ int v1, v2;
+ int sumi1 = 0, sumi2 = 0;
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
+ const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
+ get_int_from_table_16(aux, values, v1, v2);
+ sumi1 = __dp4a(v1, q8[l+0], sumi1);
+ sumi2 = __dp4a(v2, q8[l+4], sumi2);
+ }
+
+#else
+ const uint8_t * q4 = bq->qs + 4*iqs;
+ const int8_t * q8 = bq8_1->qs + 4*iqs;
+
+ int sumi1 = 0, sumi2 = 0;
+ for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
+ sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
+ sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
+ }
+#endif
+ const float d = (float)bq->d * __low2float(bq8_1->ds);
+ return d * (sumi1 + sumi2);
+}
+
+static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#if QK_K == 256
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+
+ const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
+ const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+ // iqs is 0...7
+ const int ib32 = iqs;
+ const int32_t * q8 = (const int *)bq8_1[ib32].qs;
+ const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
+ const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
+ const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
+ int v1, v2;
+ int sumi1 = 0, sumi2 = 0;
+ for (int j = 0; j < 4; ++j) {
+ get_int_from_table_16(q4[j], values, v1, v2);
+ sumi1 = __dp4a(v1, q8[j+0], sumi1);
+ sumi2 = __dp4a(v2, q8[j+4], sumi2);
+ }
+ return d * (sumi1 + sumi2);
+
+#else
+ NO_DEVICE_CODE;
+#endif
+#else
+ return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
+#endif
+}