]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
server : improve infill context reuse (#9894)
authorGeorgi Gerganov <redacted>
Tue, 15 Oct 2024 13:28:55 +0000 (16:28 +0300)
committerGitHub <redacted>
Tue, 15 Oct 2024 13:28:55 +0000 (16:28 +0300)
ggml-ci

examples/server/README.md
examples/server/server.cpp

index eb0a7b32ef8890dc644f75f192fcec21bc2b31f4..fcdb02afd3b93f60b447195cdb3cabcaf38007c3 100644 (file)
@@ -524,10 +524,12 @@ Takes a prefix and a suffix and returns the predicted completion as stream.
 
 - `input_prefix`: Set the prefix of the code to infill.
 - `input_suffix`: Set the suffix of the code to infill.
-- `prompt`: Added after the `FIM_MID` token
-- `extra_context`: Additional context inserted before the FIM prefix. See https://github.com/ggerganov/llama.cpp/pull/9874
+- `input_extra`:  Additional context inserted before the FIM prefix.
+- `prompt`:       Added after the `FIM_MID` token
 
-It also accepts all the options of `/completion`.
+`input_extra` is array of `{"filename": string, "text": string}` objects.
+
+The endpoint also accepts all the options of `/completion`.
 
 If the model has `FIM_REPO` and `FIM_FILE_SEP` tokens, the [repo-level pattern](https://arxiv.org/pdf/2409.12186) is used:
 
@@ -545,7 +547,7 @@ If the model has `FIM_REPO` and `FIM_FILE_SEP` tokens, the [repo-level pattern](
 If the tokens are missing, then the extra context is simply prefixed at the start:
 
 ```txt
-[extra_context]<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
+[input_extra]<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
 ```
 
 ### **GET** `/props`: Get server global properties.
index 8d4380e12f35af78248fbc3147e7345c5d1db261..d53cca84ce362d5c22386f3d13d58b6e1a6c4a51 100644 (file)
@@ -136,10 +136,6 @@ struct slot_params {
     int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
 
     std::vector<std::string> antiprompt;
-
-    json input_prefix;
-    json input_suffix;
-    json extra_context;
 };
 
 struct server_slot {
@@ -169,6 +165,10 @@ struct server_slot {
 
     json prompt; // can be either a string, array of strings or array of token ids
 
+    json input_prefix;
+    json input_suffix;
+    json input_extra;
+
     // when a task is submitted, we first tokenize the prompt and store it here
     std::vector<llama_token> prompt_tokens;
     std::vector<llama_token> extra_tokens;
@@ -910,12 +910,12 @@ struct server_context {
         }
 
         // infill
-        slot.params.input_prefix  = json_value(data, "input_prefix",  default_params.input_prefix);
-        slot.params.input_suffix  = json_value(data, "input_suffix",  default_params.input_suffix);
-        slot.params.extra_context = json_value(data, "extra_context", default_params.extra_context);
+        slot.input_prefix = json_value(data, "input_prefix", json());
+        slot.input_suffix = json_value(data, "input_suffix", json());
+        slot.input_extra  = json_value(data, "input_extra",  json());
 
-        SLT_DBG(slot, "extra_context chunks: %d\n", (int) slot.params.extra_context.size());
-        for (const auto & chunk : slot.params.extra_context) {
+        SLT_DBG(slot, "extra_context chunks: %d\n", (int) slot.input_extra.size());
+        for (const auto & chunk : slot.input_extra) {
             // { "text": string, "filename": string }
             if (!chunk.contains("text") || !chunk["text"].is_string()) {
                 send_error(task, "extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST);
@@ -932,7 +932,7 @@ struct server_context {
         }
 
         // get prompt
-        if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
+        {
             const auto & prompt = data.find("prompt");
             if (prompt == data.end()) {
                 send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
@@ -1958,6 +1958,8 @@ struct server_context {
                                 } break;
                             case SERVER_TASK_CMPL_TYPE_INFILL:
                                 {
+                                    // TODO: optimize this block by reducing memory allocations and movement
+
                                     // use FIM repo-level pattern:
                                     // ref: https://arxiv.org/pdf/2409.12186
                                     //
@@ -1968,10 +1970,11 @@ struct server_context {
                                     // extra chunk 1
                                     // ...
                                     // [FIM_SEP]filename
-                                    // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]
+                                    // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
                                     //
-                                    auto prefix_tokens = tokenize(slot.params.input_prefix, false, false);
-                                    auto suffix_tokens = tokenize(slot.params.input_suffix, false, false);
+                                    auto tokens_prefix = tokenize(slot.input_prefix, false, false);
+                                    auto tokens_suffix = tokenize(slot.input_suffix, false, false);
+                                    auto tokens_prompt = tokenize(slot.prompt,       false, false);
 
                                     slot.extra_tokens.clear();
                                     if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
@@ -1981,7 +1984,7 @@ struct server_context {
                                         slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
                                     }
 
-                                    for (const auto & chunk : slot.params.extra_context) {
+                                    for (const auto & chunk : slot.input_extra) {
                                         // { "text": string, "filename": string }
                                         const std::string text     = chunk.value("text", "");
                                         const std::string filename = chunk.value("filename", "tmp");
@@ -2012,20 +2015,21 @@ struct server_context {
                                     }
 
                                     // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
-                                    const int n_suffix_take = std::min<int>(suffix_tokens.size(), (n_batch)/4);
-                                    const int n_prefix_take = std::min<int>(prefix_tokens.size(), (n_batch - 3) - n_suffix_take);
+                                    const int n_suffix_take = std::min<int>(tokens_suffix.size(),   (n_batch/4));
+                                    const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4) - 3);
 
                                     // fill the rest of the context with extra chunks
                                     const int n_extra_take = std::min<int>(std::max<int>(0, slot.n_ctx - (n_batch) - 2*slot.n_predict), slot.extra_tokens.size());
 
-                                    prefix_tokens.erase(prefix_tokens.begin(), prefix_tokens.begin() + prefix_tokens.size() - n_prefix_take);
-                                    suffix_tokens.resize(n_suffix_take);
+                                    tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
+                                    tokens_suffix.resize(n_suffix_take);
 
-                                    prefix_tokens.insert(prefix_tokens.begin(), llama_token_fim_pre(model));
-                                    suffix_tokens.insert(suffix_tokens.begin(), llama_token_fim_suf(model));
+                                    tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
+                                    tokens_prefix.insert(tokens_prefix.end(),   tokens_prompt.begin(), tokens_prompt.end());
+                                    tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
 
-                                    auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
-                                    auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
+                                    auto embd_inp = params.spm_infill ? tokens_suffix : tokens_prefix;
+                                    auto embd_end = params.spm_infill ? tokens_prefix : tokens_suffix;
 
                                     if (llama_add_bos_token(model)) {
                                         embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
@@ -2140,40 +2144,17 @@ struct server_context {
 
                                     while (head_c < slot.cache_tokens.size() &&
                                            head_p < prompt_tokens.size()) {
-                                        if (llama_token_is_control(model, slot.cache_tokens[head_c]) &&
-                                            slot.cache_tokens[head_c] != llama_token_fim_rep(model) &&
-                                            slot.cache_tokens[head_c] != llama_token_fim_sep(model)) {
-                                            break;
-                                        }
-
-                                        if (llama_token_is_control(model, prompt_tokens[head_p]) &&
-                                            prompt_tokens[head_p] != llama_token_fim_rep(model) &&
-                                            prompt_tokens[head_p] != llama_token_fim_sep(model)) {
-                                            break;
-                                        }
 
                                         size_t n_match = 0;
-
                                         while (head_c + n_match < slot.cache_tokens.size() &&
                                                head_p + n_match < prompt_tokens.size()     &&
                                                slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
-                                            if (llama_token_is_control(model, slot.cache_tokens[head_c + n_match]) &&
-                                                slot.cache_tokens[head_c + n_match] != llama_token_fim_rep(model) &&
-                                                slot.cache_tokens[head_c + n_match] != llama_token_fim_sep(model)) {
-                                                break;
-                                            }
-
-                                            if (llama_token_is_control(model, prompt_tokens[head_p + n_match]) &&
-                                                prompt_tokens[head_p + n_match] != llama_token_fim_rep(model) &&
-                                                prompt_tokens[head_p + n_match] != llama_token_fim_sep(model)) {
-                                                break;
-                                            }
 
                                             n_match++;
                                         }
 
                                         if (n_match >= (size_t) params.n_cache_reuse) {
-                                            SLT_DBG(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
+                                            SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
                                             //for (size_t i = head_p; i < head_p + n_match; i++) {
                                             //    SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
                                             //}