}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
-
- return std::string(result.data(), result.size());
-}
-
-std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
- const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
-
std::string piece;
- std::string result;
-
- for (size_t i = 0; i < tokens.size(); ++i) {
- piece = llama_token_to_piece(ctx, tokens[i]);
-
- // remove the leading space of the first non-BOS token
- if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
- piece = piece.substr(1);
- }
-
- result += piece;
+ piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
+ const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
+ if (n_chars < 0) {
+ piece.resize(-n_chars);
+ int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
+ GGML_ASSERT(check == -n_chars);
+ }
+ else {
+ piece.resize(n_chars);
}
- return result;
+ return piece;
}
-std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
- std::string piece;
- std::string result;
-
- for (size_t i = 0; i < tokens.size(); ++i) {
- piece = llama_token_to_piece(ctx, tokens[i]);
-
- result += piece;
+std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
+ std::string text;
+ text.resize(std::max(text.capacity(), tokens.size()));
+ int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
+ if (n_chars < 0) {
+ text.resize(-n_chars);
+ n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
+ GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
}
+ text.resize(n_chars);
+
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
- return result;
+ return text;
}
bool llama_should_add_bos_token(const llama_model * model) {
llama_token token,
bool special = true);
-// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
-// that takes into account the tokenizer type and decides how to handle the leading space
-//
-// detokenizes a vector of tokens into a string
-// should work similar to Python's `tokenizer.decode`
-// removes the leading space from the first non-BOS token
-std::string llama_detokenize_spm(
- llama_context * ctx,
- const std::vector<llama_token> & tokens);
-
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
-std::string llama_detokenize_bpe(
+// optionally renders special/control tokens
+std::string llama_detokenize(
llama_context * ctx,
- const std::vector<llama_token> & tokens);
+ const std::vector<llama_token> & tokens,
+ bool special = true);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
- let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
+ let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
if nTokens < 0 {
let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount)
token,
&result,
Int32(result.count),
+ 0,
false
)
assert(check == actualTokensCount)
defer {
result.deallocate()
}
- let nTokens = llama_token_to_piece(model, token, result, 8, false)
+ let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
defer {
newResult.deallocate()
}
- let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
+ let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer)
} else {
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
/// @return Returns the number of tokens on success, no more than n_tokens_max
/// @return Returns a negative number on failure - the number of tokens that would have been returned
+ /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize(
// Token Id -> Piece.
// Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer.
- // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
+ // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
// @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int32_t length,
+ int32_t lstrip,
bool special);
+ /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
+ /// @param text The char pointer must be large enough to hold the resulting text.
+ /// @return Returns the number of chars/bytes on success, no more than text_len_max.
+ /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
+ /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
+ /// @param unparse_special If true, special tokens are rendered in the output.
+ LLAMA_API int32_t llama_detokenize(
+ const struct llama_model * model,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special);
+
/// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
// NOTE: avoid ever using this except for building the token_to_piece caches
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
- GGML_ASSERT(check == -n_tokens);
+ std::string piece;
+ piece.resize(piece.capacity()); // using string internal cache
+ const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
+ if (n_chars < 0) {
+ piece.resize(-n_chars);
+ int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
+ GGML_ASSERT(check == -n_chars);
}
else {
- result.resize(n_tokens);
+ piece.resize(n_chars);
}
- return std::string(result.data(), result.size());
+ return piece;
}
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
// tokenizer flags
- bool tokenizer_add_space_prefix = true;
+ bool tokenizer_add_space_prefix = false;
bool tokenizer_add_bos = false;
bool tokenizer_add_eos = false;
bool tokenizer_ignore_merges = false;
+ bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
bool tokenizer_remove_extra_whitespaces = false;
bool tokenizer_escape_whitespaces = true;
bool tokenizer_treat_whitespace_as_suffix = false;
vocab.special_pad_id = -1;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
-
- const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
- if (add_space_prefix_keyidx != -1) {
- vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
- } // The default value of add_space_prefix is true.
} else if (tokenizer_model == "bert") {
vocab.type = LLAMA_VOCAB_TYPE_WPM;
vocab.special_pad_id = 0;
vocab.special_cls_id = 101;
vocab.special_mask_id = 103;
- vocab.tokenizer_add_space_prefix = false;
} else if (tokenizer_model == "gpt2") {
vocab.type = LLAMA_VOCAB_TYPE_BPE;
- const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
- if (add_space_prefix_keyidx != -1) {
- vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
- }
-
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
if (merges_keyidx == -1) {
// for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
+ vocab.tokenizer_add_space_prefix = false;
+ vocab.tokenizer_clean_spaces = true;
if (tokenizer_pre.empty()) {
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
LLAMA_LOG_WARN("%s: \n", __func__);
} else if (
tokenizer_pre == "deepseek-llm") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "deepseek-coder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
} else if (
tokenizer_pre == "gpt-2" ||
+ tokenizer_pre == "phi-2" ||
tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de" ||
tokenizer_pre == "jina-v2-es" ||
} else if (
tokenizer_pre == "qwen2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "stablelm2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
} else if (
tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "viking") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
}
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ vocab.tokenizer_add_space_prefix = true;
+ vocab.tokenizer_clean_spaces = false;
vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false;
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ vocab.tokenizer_add_space_prefix = false;
+ vocab.tokenizer_clean_spaces = true;
vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false;
} else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
} else {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
}
+
+ const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
+ if (add_space_prefix_keyidx != -1) {
+ vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
+ }
}
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
}
}
- std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
+ std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
[&] (const llama_vocab::id a, const llama_vocab::id b) {
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
}
// tokenizer.encode('', add_special_tokens=True) returns [1]
// tokenizer.encode('', add_special_tokens=False) returns []
- bool is_prev_special = false;
+ bool is_prev_special = true; // prefix with space if first token
if (add_special && vocab.tokenizer_add_bos) {
GGML_ASSERT(vocab.special_bos_id != -1);
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- if (vocab.tokenizer_add_space_prefix) {
- if (!output.size() || is_prev_special) { // prefix with space if first token
- raw_text = " " + raw_text;
- }
+ // prefix with space if previous is special
+ if (vocab.tokenizer_add_space_prefix && is_prev_special) {
+ raw_text = " " + raw_text;
}
#ifdef PRETOKENIZERDEBUG
llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text);
tokenizer.tokenize(raw_text, output);
+ is_prev_special = false;
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token);
is_prev_special = true;
}
// does not write null-terminator to buf
-int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
+int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
// ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
- if (!special && llama_is_control_token(model->vocab, token)) {
+ static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
+ const llama_token_attr attr = llama_token_get_attr(model, token);
+ if (!special && (attr & attr_special)) {
return 0;
}
+ // copy piece chars to output text buffer
+ // skip up to 'lstrip' leading spaces before copying
+ auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
+ for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
+ token++;
+ size--;
+ }
+ if (length < (int32_t)size) {
+ return (int32_t) -size;
+ }
+ memcpy(buf, token, size);
+ return (int32_t) size;
+ };
+
// if we have a cache - use it
{
const auto & cache = model->vocab.cache_token_to_piece;
if (!cache.empty()) {
- const auto & res = cache.at(token);
- if (length < (int) res.size()) {
- return -(int) res.size();
- }
- memcpy(buf, res.c_str(), res.size());
- return res.size();
+ const auto & result = cache.at(token);
+ return _try_copy(result.data(), result.size());
}
}
if (0 <= token && token < llama_n_vocab(model)) {
+ const std::string & token_text = model->vocab.id_to_token[token].text;
switch (llama_vocab_get_type(model->vocab)) {
case LLAMA_VOCAB_TYPE_WPM:
case LLAMA_VOCAB_TYPE_SPM:
case LLAMA_VOCAB_TYPE_UGM: {
// NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = token_text;
llama_unescape_whitespace(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- memcpy(buf, "\xe2\x96\x85", 3);
- return 3;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
+ return _try_copy(result.data(), result.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
+ char byte = (char) llama_token_to_byte(model->vocab, token);
+ return _try_copy((char*) &byte, 1);
}
break;
}
case LLAMA_VOCAB_TYPE_BPE: {
// NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- result = llama_decode_text(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = llama_decode_text(token_text);
+ return _try_copy(result.data(), result.size());
}
break;
}
return 0;
}
+int32_t llama_detokenize(
+ const struct llama_model * model,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special) {
+ int32_t avail = text_len_max;
+ int32_t total = 0;
+
+ // remove the leading space
+ bool remove_space = model->vocab.tokenizer_add_space_prefix;
+
+ if (remove_special && model->vocab.tokenizer_add_bos) {
+ if (n_tokens > 0 && tokens[0] == model->vocab.special_bos_id) {
+ remove_space = false;
+ n_tokens--;
+ tokens++;
+ }
+ }
+
+ if (remove_special && model->vocab.tokenizer_add_eos) {
+ if (n_tokens > 0 && tokens[n_tokens-1] == model->vocab.special_eos_id) {
+ n_tokens--;
+ }
+ }
+
+ for (int32_t i = 0; i < n_tokens; ++i) {
+ GGML_ASSERT(avail >= 0);
+ int32_t n_chars = llama_token_to_piece(model, tokens[i], text, avail, remove_space, unparse_special);
+ remove_space = false;
+ if (n_chars < 0) {
+ avail = 0;
+ total -= n_chars;
+ } else if (n_chars > 0) {
+ avail -= n_chars;
+ text += n_chars;
+ total += n_chars;
+ }
+ }
+
+ if (total > text_len_max) {
+ return -total;
+ }
+
+ if (model->vocab.tokenizer_clean_spaces) {
+ text -= total; // restart text
+
+ // first pass: characters ?!., //TODO: where do these characters come from?
+ const int32_t total1 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total1; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
+ total--; // remove space
+ }
+ }
+ text[total++] = x;
+ }
+
+ // second pass: strip single apostrophe between spaces
+ const int32_t total2 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total2; ++i) {
+ const char x = text[i];
+ if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
+ total--; // remove prev space
+ text[++i] = '\0'; // remove next space
+ }
+ text[total++] = x;
+ }
+
+ // third pass: apostrophe contractions //NOTE: this makes sense?
+ const int32_t total3 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total3; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '\'' && i + 1 < total3) {
+ const char x1 = text[i + 1];
+ if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
+ //total--; // remove space
+ } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
+ total--; // remove space
+ } else if (i + 2 < total3) {
+ const char x2 = text[i + 2];
+ if ((x1 == 'l' && x2 == 'l')) { // " 'll"
+ //total--; // remove space
+ } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
+ total--; // remove space
+ } else {
+ //total--; // remove space
+ }
+ } else {
+ //total--; // remove space
+ }
+ }
+ }
+ text[total++] = x;
+ }
+ }
+
+ return total <= text_len_max ? total : -total;
+}
+
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
- static const codepoint_flags undef(codepoint_flags::UNDEFINED);
- return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
- if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
+ if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' ');
- while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
+ while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
- static const codepoint_flags undef(codepoint_flags::UNDEFINED);
- return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
}
}
- // regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct?
- if (!(cpt == '\r' || cpt == '\n' || /*flags.is_letter |*/ flags.is_number)) {
+ // regex: [^\r\n\p{L}\p{N}]?\p{L}+
+ if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
pos++;
while (_get_flags(pos).is_letter) {
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
- if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
+ if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
pos += (cpt == ' ');
- while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
+ while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
uint32_t cpt2 = _get_cpt(pos);
const bool add_special = false;
for (const auto & test_kv : k_tests) {
- const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special);
+ const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special, true);
printf("\n");
printf("src: '%s'\n", test_kv.first.c_str());
- printf("res: '%s'\n", llama_detokenize_bpe(ctx, res).c_str());
+ printf("res: '%s'\n", llama_detokenize(ctx, res).c_str());
printf("tok: ");
for (const auto & tok : res) {
printf("%d ", tok);
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
- llama_detokenize_bpe(ctx, res).c_str(),
- llama_detokenize_bpe(ctx, test_kv.second).c_str());
+ llama_detokenize(ctx, res).c_str(),
+ llama_detokenize(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str());
{
const auto t_start = ggml_time_us();
- res = llama_tokenize(ctx, text, add_special);
+ res = llama_tokenize(ctx, text, add_special, true);
const auto t_end = ggml_time_us();
}
for (const auto & tok : res) {
- //ofs << tok << " '" << string_strip(llama_detokenize_bpe(ctx, std::vector<int>{tok})) << "'" << std::endl;
+ //ofs << tok << " '" << string_strip(llama_detokenize(ctx, std::vector<int>{tok})) << "'" << std::endl;
ofs << tok << "\n";
}
}
#include <string>
#include <thread>
#include <vector>
+#include <atomic>
int main(int argc, char **argv) {
if (argc < 2 || argc > 3) {
}
}
- GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
+ //GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
+ if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
+ return 99;
+ }
#ifdef _WIN32
// We need this for unicode console support
const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) {
- std::string str = llama_detokenize_bpe(ctx, std::vector<int>(1, i));
+ std::string str = llama_detokenize(ctx, std::vector<int>(1, i));
try {
auto cps = unicode_cpts_from_utf8(str);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
fprintf(stderr, "]\n");
return 2;
}
- std::string check = llama_detokenize_bpe(ctx, tokens);
+ std::string check = llama_detokenize(ctx, tokens);
if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
std::vector<std::thread> threads(nthread);
+ std::atomic_int errcode = {};
+
for (int i = 0; i < nthread; ++i) {
- threads[i] = std::thread([i, nthread, ctx]() {
- for (uint32_t cp = i; cp < 0x0010ffff; cp += nthread) {
- if (!( // NOLINT
- (cp < 0x03 || cp > 0x05) && cp != 0x0b && cp != 0x11 &&
- (cp < 0x13 || cp > 0x17) && cp != 0x19 &&
- (cp < 0x1c || cp > 0x1e) &&
- (cp < 0xd800 || cp > 0xdfff) &&
- (cp < 0x00040000 || cp >= 0x000e0000)
- )) {
+ threads[i] = std::thread([i, nthread, ctx, &errcode]() {
+ for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
+ if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
+ (0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
continue;
}
std::string str = unicode_cpt_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
- std::string check = llama_detokenize_bpe(ctx, tokens);
+ std::string check = llama_detokenize(ctx, tokens);
if (cp != 9601 && str != check) {
- fprintf(stderr, "error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
+ fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length());
- std::exit(3);
+ errcode = 3;
}
}
});
for (auto & t : threads) {
t.join();
}
+
+ if (errcode) {
+ return errcode;
+ }
}
llama_free_model(model);
#include <string>
#include <thread>
#include <vector>
+#include <atomic>
int main(int argc, char ** argv) {
if (argc < 2) {
}
}
- GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
+ //GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
+ if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) {
+ return 99;
+ }
#ifdef _WIN32
// We need this for unicode console support
const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) {
- std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
- std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
- std::string check = llama_detokenize_spm(ctx, tokens);
+ std::string str = llama_detokenize(ctx, std::vector<int>(1, i), true);
+ std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
+ std::string check = llama_detokenize(ctx, tokens);
if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
std::vector<std::thread> threads(nthread);
+ std::atomic_int errcode = {};
+
for (int i = 0; i < nthread; ++i) {
- threads[i] = std::thread([i, nthread, ctx]() {
- for (uint32_t cp = i; cp < 0x0010ffff; cp += nthread) {
- if (cp >= 0xd800 && cp <= 0xdfff) {
+ threads[i] = std::thread([i, nthread, ctx, &errcode]() {
+ for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
+ if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
+ (0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
continue;
}
std::string str = unicode_cpt_to_utf8(cp);
- std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
- std::string check = llama_detokenize_spm(ctx, tokens);
+ std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
+ std::string check = llama_detokenize(ctx, tokens);
if (cp != 9601 && str != check) {
- fprintf(stderr, "error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
+ fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length());
- std::exit(3);
+ errcode = 3;
}
}
});
for (auto & t : threads) {
t.join();
}
+
+ if(errcode) {
+ return errcode;
+ }
}
llama_free_model(model);
import random
import unicodedata
-from typing import Callable, Iterator
+from typing import Iterator
import cffi
from transformers import AutoTokenizer
class LibLlama:
- DEFAULT_PATH_LLAMA_H = "./llama.h"
- DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
+ DEFAULT_PATH_LLAMA_H = "./include/llama.h"
+ DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
+ DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
- def __init__(self, path_llama_h: str = None, path_libllama: str = None):
+ def __init__(self, path_llama_h: str = None, path_includes: list[str] = [], path_libllama: str = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
+ path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
- (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
+ (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init()
- def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
- cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
+ def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str):
+ cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
+ cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
+ self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self):
if self.ctx:
self.model = None
self.lib = None
- def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
- n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
+ def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
text = text.encode("utf-8")
- num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
- if num < 0:
- return []
+ num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
+ while num < 0 and len(self.token_ids) < (16 << 20):
+ self.token_ids = self.ffi.new("llama_token[]", -2 * num)
+ num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
+ def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
+ if len(self.token_ids) < len(ids):
+ self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
+ for i, id in enumerate(ids):
+ self.token_ids[i] = id
+ num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
+ while num < 0 and len(self.text_buff) < (16 << 20):
+ self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
+ num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
+ return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
+
+
+class Tokenizer:
+
+ def encode(self, text: str) -> list[int]:
+ raise NotImplementedError
+
+ def decode(self, ids: list[int]) -> str:
+ raise NotImplementedError
+
+
+class TokenizerGroundtruth (Tokenizer):
+
+ def __init__(self, dir_tokenizer: str):
+ self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
+ # guess BOS and EOS
+ ids = self.encode("a")
+ assert 1 <= len(ids) <= 3
+ add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
+ add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
+ self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
+ self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
+ # build vocab
+ tokens = list(self.model.get_vocab().values())
+ self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
+ self.vocab = list(sorted(self.vocab))
+ # tokens and lists
+ self.special_tokens = list(self.model.all_special_tokens)
+ self.added_tokens = list(self.model.added_tokens_encoder)
+ self.bos_token = self.model.bos_token
+ self.eos_token = self.model.eos_token
+
+ def encode(self, text: str) -> list[int]:
+ return self.model.encode(text, add_special_tokens=True)
+
+ def decode(self, ids: list[int]) -> str:
+ return self.model.decode(ids, skip_special_tokens=False)
+
+
+class TokenizerLlamaCpp (Tokenizer):
+
+ libllama: LibLlama = None
+
+ def __init__(self, vocab_file: str):
+ if not self.libllama:
+ self.libllama = LibLlama()
+ self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
+
+ def encode(self, text: str) -> list[int]:
+ return self.model.tokenize(text, add_special=True, parse_special=True)
+
+ def decode(self, ids: list[int]) -> str:
+ return self.model.detokenize(ids, remove_special=False, unparse_special=True)
+
def generator_custom_text() -> Iterator[str]:
"""General tests"""
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
+ '\u2029 \uA3E4', # deepseek-llm
+ "a ?",
+ 'å', # mpt
+ '\U000ac517', # utf-8 encode error, falcon
+ '\U000522f4', # utf-8 encode error, starcoder
+ "<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
+ "<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
]
-def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
+def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words"""
- yield from vocab
-
-
-def generator_added_lr_strip(tokenizer) -> Iterator[str]:
- WHITESPACES = ["", " ", " ", " "]
- special_tokens = list(tokenizer.all_special_tokens)
- added_tokens = list(tokenizer.added_tokens_encoder)
- all_tokens = list(sorted(set(special_tokens + added_tokens)))
+ yield from tokenizer.vocab
+
+
+def generator_ascii_lr_strip() -> Iterator[str]:
+ WHITESPACES = ["", " ", " "]
+ CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
+ for char1 in CHARACTERS:
+ for char2 in CHARACTERS:
+ for lstrip in WHITESPACES:
+ for rstrip in WHITESPACES:
+ yield lstrip + char1 + char2 + rstrip
+ yield lstrip + char1 + rstrip + char2
+ yield char1 + lstrip + char2 + rstrip
+
+
+def generator_apostrophe() -> Iterator[str]:
+ WHITESPACES = ["", " ", " "]
+ CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
+ for char1 in CHARACTERS:
+ for char2 in CHARACTERS:
+ for lstrip in WHITESPACES:
+ for rstrip in WHITESPACES:
+ yield char1 + lstrip + "'" + rstrip + char2
+ yield char1 + char2 + lstrip + "'" + rstrip + "z"
+ yield "a" + lstrip + "'" + rstrip + char1 + char2
+
+
+def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
+ WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
+ all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield "a" + lstrip + token + rstrip + "z"
-def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
- special_tokens = list(tokenizer.all_special_tokens)
- added_tokens = list(tokenizer.added_tokens_encoder)
- separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
- all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
+def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
+ separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
+ all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplementary
return False
- if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
- return False
- if unicodedata.category(chr(cpt)) == "Cn":
+ # if cpt == 0x2029: # deepseek-llm
+ # return False
+ if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
return False
return True
- characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
+ characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
yield "".join(text)
-def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
+def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
- for word in vocab:
+ for word in tokenizer.vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
yield "".join(text)
-def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
+def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
- vocab = [w.strip() for w in vocab]
+ vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab
rand = random.Random()
yield "".join(text)
-def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
+def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a, b) in enumerate(zip(ids1, ids2)):
return -1
return min(len(ids1), len(ids2))
- t_tokenizer1 = 0
- t_tokenizer2 = 0
+ def check_detokenizer(text: str, text1: str, text2: str) -> bool:
+ if text1 == text2: # equal to TokenizerGroundtruth?
+ return True
+ # equal to source text?
+ if tokenizer1.add_bos_token: # remove BOS
+ if text2.startswith(tokenizer1.bos_token):
+ text2 = text2[len(tokenizer1.bos_token):]
+ if tokenizer1.add_eos_token: # remove EOS
+ if text2.endswith(tokenizer1.eos_token):
+ text2 = text2[:-len(tokenizer1.eos_token)]
+ return text == text2
+
+ t_encode1 = 0
+ t_encode2 = 0
+ t_decode1 = 0
+ t_decode2 = 0
t_start = time.perf_counter()
- num_errors = 10
+ encode_errors = 0
+ decode_errors = 0
+ MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator:
+ # print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
- ids1 = func_tokenize1(text)
+ ids1 = tokenizer1.encode(text)
t1 = time.perf_counter()
- ids2 = func_tokenize2(text)
+ ids2 = tokenizer2.encode(text)
t2 = time.perf_counter()
- t_tokenizer1 += t1 - t0
- t_tokenizer2 += t2 - t1
- if ids1 != ids2:
+ text1 = tokenizer1.decode(ids1)
+ t3 = time.perf_counter()
+ text2 = tokenizer2.decode(ids1)
+ t4 = time.perf_counter()
+ t_encode1 += t1 - t0
+ t_encode2 += t2 - t1
+ t_decode1 += t3 - t2
+ t_decode2 += t4 - t3
+ if encode_errors < MAX_ERRORS and ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
- logger.error(" TokenIDs: " + str(ids1))
- logger.error(" Expected: " + str(ids2))
+ logger.error(" Expected: " + str(ids1))
+ logger.error(" Result: " + str(ids2))
+ encode_errors += 1
+ logger.error(f" {encode_errors=}")
+ if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
+ i = find_first_mismatch(text1, text2)
+ text1 = list(text1[max(0, i - 2) : i + 5 + 1])
+ text2 = list(text2[max(0, i - 2) : i + 5 + 1])
+ logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
+ logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
+ decode_errors += 1
+ logger.error(f" {decode_errors=}")
+ if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
+ logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
# raise Exception()
- num_errors += 1
- if num_errors > 10:
- break
+ break
t_total = time.perf_counter() - t_start
- logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
+ logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] = None):
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
- model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
- tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
-
- def func_tokenize1(text: str):
- return model.tokenize(text, add_special=True, parse_special=True)
-
- def func_tokenize2(text: str):
- return tokenizer.encode(text, add_special_tokens=True)
+ tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
+ tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
- ids = func_tokenize2("a")
- assert 1 <= len(ids) <= 3
- add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
- add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
- tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
- tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
+ compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
- vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
-
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
-
- model.free()
+ tokenizer2.model.free()
if __name__ == "__main__":
# main()
+ if True:
+ logging.basicConfig(
+ level = logging.DEBUG,
+ format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
+ datefmt = "%Y-%m-%d %H:%M:%S",
+ filename = logger.name + ".log",
+ filemode = "a"
+ )
logging.basicConfig(
level = logging.DEBUG,
- format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
- datefmt = "%Y-%m-%d %H:%M:%S",
- filename = logger.name + ".log",
- filemode = "a"
+ format = "%(levelname)s %(message)s",
)
path_tokenizers = "./models/tokenizers/"
path_vocab_format = "./models/ggml-vocab-%s.gguf"
- # import os
- # tokenizers = os.listdir(path_tokenizers)
tokenizers = [
- # "llama-spm", # SPM
- # "phi-3", # SPM
- # "bert-bge", # WPM
- # "jina-v2-en", # WPM
- "gpt-2", # BPE
+ "llama-spm", # SPM
+ "phi-3", # SPM
+ "gemma", # SPM
+ "gemma-2", # SPM
+ "baichuan", # SPM
+ "bert-bge", # WPM
+ "jina-v2-en", # WPM
"llama-bpe", # BPE
+ "phi-2", # BPE
+ "deepseek-llm", # BPE
+ "deepseek-coder", # BPE
"falcon", # BPE
+ "mpt", # BPE
"starcoder", # BPE
+ "gpt-2", # BPE
+ "stablelm2", # BPE
+ "refact", # BPE
+ "qwen2", # BPE
+ "olmo", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
- "jina-v2-code", # BPE
"smaug-bpe", # BPE
- "phi-2", # BPE
- "deepseek-coder", # BPE
- "deepseek-llm", # BPE
+ "poro-chat", # BPE
+ "jina-v2-code", # BPE
+ "viking", # BPE
+ "jais", # BPE
]
+ logger.info("=" * 50)
for tokenizer in tokenizers:
- logger.info("=" * 50)
+ logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer
dir_tokenizer = path_tokenizers + "/" + tokenizer