+++ /dev/null
-#include "common.cuh"
-#include "wkv6.cuh"
-
-static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
- const int tid = threadIdx.x;
- const int bid = blockIdx.x;
-
- const int head_size = CUDA_WKV_BLOCK_SIZE;
- const int batch_i = bid / H;
- const int head_i = bid % H;
- const int state_size = C * head_size;
- const int n_seq_tokens = T / B;
-
- float state[head_size];
- __shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size];
-
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
- }
-
- __syncthreads();
- _tf[tid] = tf[head_i * head_size + tid];
- __syncthreads();
-
- for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
- __syncthreads();
- _k[tid] = k[t];
- _r[tid] = r[t];
- _td[tid] = td[t];
- __syncthreads();
-
- const float _v = v[t];
- float y = 0;
- for (int j = 0; j < head_size; j += 4) {
- const float4& k = (float4&)(_k[j]);
- const float4& r = (float4&)(_r[j]);
- const float4& tf = (float4&)(_tf[j]);
- const float4& td = (float4&)(_td[j]);
- float4& s = (float4&)(state[j]);
- float4 kv;
-
- kv.x = k.x * _v;
- kv.y = k.y * _v;
- kv.z = k.z * _v;
- kv.w = k.w * _v;
-
- y += r.x * (tf.x * kv.x + s.x);
- y += r.y * (tf.y * kv.y + s.y);
- y += r.z * (tf.z * kv.z + s.z);
- y += r.w * (tf.w * kv.w + s.w);
-
- s.x = s.x * td.x + kv.x;
- s.y = s.y * td.y + kv.y;
- s.z = s.z * td.z + kv.z;
- s.w = s.w * td.w + kv.w;
- }
- dst[t] = y;
- }
-
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
- }
-}
-
-void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const float * k_d = (const float *)dst->src[0]->data;
- const float * v_d = (const float *)dst->src[1]->data;
- const float * r_d = (const float *)dst->src[2]->data;
- const float * tf_d = (const float *)dst->src[3]->data;
- const float * td_d = (const float *)dst->src[4]->data;
- const float * s_d = (const float *)dst->src[5]->data;
-
- const int64_t B = dst->src[5]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
-
- float * dst_d = (float *)dst->data;
-
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); // The current cuda kernel is designed for RWKV6, HEAD_SIZE == 64
-
- rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
-}
+++ /dev/null
-#include <sycl/sycl.hpp>
-#include "wkv6.hpp"
-
-constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
-
-// Helper function for the main kernel
-static void rwkv_wkv_f32_kernel(
- const int B, const int T, const int C, const int H,
- const float* k, const float* v, const float* r,
- const float* tf, const float* td, const float* s,
- float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
-
- const int tid = item_ct1.get_local_id(2);
- const int bid = item_ct1.get_group(2);
-
- const int head_size = WKV_BLOCK_SIZE;
- const int batch_i = bid / H;
- const int head_i = bid % H;
- const int state_size = C * head_size;
- const int n_seq_tokens = T / B;
-
- // Set up shared memory pointers
- float* _k = shared_mem;
- float* _r = _k + head_size;
- float* _tf = _r + head_size;
- float* _td = _tf + head_size;
-
- // Local state array
- float state[WKV_BLOCK_SIZE];
-
- // Load initial state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
- }
-
- // Sync threads before shared memory operations
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- // Load time-mixing parameters
- _tf[tid] = tf[head_i * head_size + tid];
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- // Main sequence processing loop
- for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
- t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
- t += C) {
-
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- // Load current timestep data to shared memory
- _k[tid] = k[t];
- _r[tid] = r[t];
- _td[tid] = td[t];
-
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- const float _v = v[t];
- float y = 0;
-
- // Process in chunks of 4 for better vectorization
- sycl::float4 k4, r4, tf4, td4, s4;
- #pragma unroll
- for (int j = 0; j < head_size; j += 4) {
- // Load data in vec4 chunks
- k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
- r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
- tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
- td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
- s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
-
- // Compute key-value product
- sycl::float4 kv4 = k4 * _v;
-
- // Accumulate weighted sum
- y += sycl::dot(r4, tf4 * kv4 + s4);
-
- // Update state
- s4 = s4 * td4 + kv4;
-
- // Store updated state
- state[j] = s4.x();
- state[j+1] = s4.y();
- state[j+2] = s4.z();
- state[j+3] = s4.w();
- }
-
- dst[t] = y;
- }
-
- // Save final state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
- }
-}
-
-void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
-
- const ggml_tensor *src0 = dst->src[0];
- const ggml_tensor *src1 = dst->src[1];
-
- const float* k_d = (const float*)dst->src[0]->data;
- const float* v_d = (const float*)dst->src[1]->data;
- const float* r_d = (const float*)dst->src[2]->data;
- const float* tf_d = (const float*)dst->src[3]->data;
- const float* td_d = (const float*)dst->src[4]->data;
- const float* s_d = (const float*)dst->src[5]->data;
- float* dst_d = (float*)dst->data;
-
- const int64_t B = dst->src[5]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
-
- GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
-
- dpct::queue_ptr stream = ctx.stream();
-
- // Calculate execution configuration
- const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
- sycl::range<3> block_dims(1, 1, C / H);
- sycl::range<3> grid_dims(1, 1, B * H);
-
- // Submit kernel
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv_f32_kernel(
- B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
- item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
- );
- });
- });
-
- GGML_UNUSED(src0);
- GGML_UNUSED(src1);
-}