cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
- cl_kernel kernel_norm;
+ cl_kernel kernel_norm, kernel_norm_mul_add;
cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
- cl_kernel kernel_group_norm;
+ cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
backend_ctx->program_norm =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
+ CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
+ CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
GGML_LOG_CONT(".");
}
backend_ctx->program_group_norm =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
+ CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
+ CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
GGML_LOG_CONT(".");
}
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
return false;
}
+ } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
+ const ggml_tensor *norm = cgraph->nodes[node_idx];
+ const ggml_tensor *mul = cgraph->nodes[node_idx+1];
+ const ggml_tensor *add = cgraph->nodes[node_idx+2];
+ const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
+ const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
+
+ // norm fusion only supports F32
+ if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
+ return false;
+ }
+
+ if (norm->src[0]->ne[0] % 4 != 0) {
+ return false;
+ }
+
+ if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
+ return false;
+ }
+ } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
+ const ggml_tensor *gn = cgraph->nodes[node_idx];
+ const ggml_tensor *mul = cgraph->nodes[node_idx+1];
+ const ggml_tensor *add = cgraph->nodes[node_idx+2];
+ const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
+ const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
+
+ if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
+ return false;
+ }
+
+ if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
+ return false;
+ }
}
return true;
}
static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
+static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
+static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
continue;
}
+ if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
+ ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
+ i += 2;
+ continue;
+ }
+ if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
+ ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
+ i += 2;
+ continue;
+ }
if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
i++;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
+static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
+ GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
+
+ const ggml_tensor * src0 = norm_tensor->src[0];
+ const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
+ const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
+ const ggml_tensor * dst = add_tensor;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offset2 = extra2->offset + src2->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ float eps;
+ memcpy(&eps, norm_tensor->op_params, sizeof(float));
+
+ const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
+ const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
+ const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
+ const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
+ const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
+ const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
+ const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
+
+ size_t sgs;
+ if (backend_ctx->gpu_family == ADRENO) sgs = 64;
+ else if (backend_ctx->gpu_family == INTEL) sgs = 32;
+ else GGML_ASSERT(false && "Unsupported GPU");
+
+ cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
+
+ int nth = sgs;
+ int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
+ while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
+ nth = MIN(nth, max_workgroup_size);
+ nth = MIN(nth, ne00/4);
+
+ size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
+ size_t lws[] = {(size_t)nth, 1, 1};
+ size_t num_subgroups = (nth + sgs - 1) / sgs;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
+ CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
+ CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
+ CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
+ CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
+ CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
+ CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
+ CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
+ CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
+ CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
+ CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
+ CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
+}
+
+static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
+ GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
+
+ const ggml_tensor * src0 = gn_tensor->src[0];
+ const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
+ const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
+ const ggml_tensor * dst = add_tensor;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offset2 = extra2->offset + src2->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ int groups;
+ float eps;
+ memcpy(&groups, gn_tensor->op_params, sizeof(int));
+ memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
+
+ cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
+ int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
+ int ne = ggml_nelements(src0);
+ int group_size = ne / groups;
+
+ size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
+ size_t gws[] = { (size_t)groups * lws[0] };
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
+}
+
static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
y[i00] = y[i00] * scale;
}
}
+
+//------------------------------------------------------------------------------
+// norm_mul_add
+//------------------------------------------------------------------------------
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_32
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_norm_mul_add(
+ global char * src0_ptr, ulong src0_offset,
+ global char * src1_ptr, ulong src1_offset,
+ global char * src2_ptr, ulong src2_offset,
+ global char * dst_ptr, ulong dst_offset,
+ int ne00, int ne01, int ne02, int ne03,
+ ulong nb01, ulong nb02, ulong nb03,
+ int ne10, int ne11, int ne12, int ne13,
+ ulong nb11, ulong nb12, ulong nb13,
+ int ne20, int ne21, int ne22, int ne23,
+ ulong nb21, ulong nb22, ulong nb23,
+ ulong nbd1, ulong nbd2, ulong nbd3,
+ float eps,
+ local float2 * sums
+) {
+ const int i03 = get_group_id(2);
+ const int i02 = get_group_id(1);
+ const int i01 = get_group_id(0);
+
+ global float4 * x = (global float4 *)(src0_ptr + src0_offset + i01*nb01 + i02*nb02 + i03*nb03);
+ global float4 * w = (global float4 *)(src1_ptr + src1_offset + (i01%ne11)*nb11 + (i02%ne12)*nb12 + (i03%ne13)*nb13);
+ global float4 * b = (global float4 *)(src2_ptr + src2_offset + (i01%ne21)*nb21 + (i02%ne22)*nb22 + (i03%ne23)*nb23);
+ global float4 * y = (global float4 *)(dst_ptr + dst_offset + i01*nbd1 + i02*nbd2 + i03*nbd3);
+
+ float p_sum = 0.0f;
+ float p_sum_sq = 0.0f;
+
+ const int n_chunks = ne00 / 4;
+ for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) {
+ float4 val = x[i00];
+ p_sum += val.x + val.y + val.z + val.w;
+ p_sum_sq += dot(val, val);
+ }
+
+ p_sum = sub_group_reduce_add(p_sum);
+ p_sum_sq = sub_group_reduce_add(p_sum_sq);
+
+ if (get_sub_group_local_id() == 0) {
+ sums[get_sub_group_id()] = (float2)(p_sum, p_sum_sq);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (get_local_id(0) == 0) {
+ float sum = 0.0f;
+ float sum_sq = 0.0f;
+ for (uint i = 0; i < get_num_sub_groups(); ++i) {
+ float2 s = sums[i];
+ sum += s.x;
+ sum_sq += s.y;
+ }
+
+ const float inv_ne00 = 1.0f / (float)ne00;
+ const float mean = sum * inv_ne00;
+ const float variance = mad(-mean, mean, sum_sq * inv_ne00);
+
+ sums[0] = (float2)(mean, rsqrt(variance + eps));
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ const float2 mean_scale = sums[0];
+ const float mean = mean_scale.x;
+ const float scale = mean_scale.y;
+ const float neg_mean_scale = -mean * scale;
+
+ for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) {
+ const int w_idx = ne10 > 1 ? i00 : 0;
+ const int b_idx = ne20 > 1 ? i00 : 0;
+ const float4 norm_x = mad(x[i00], (float4)scale, (float4)neg_mean_scale);
+ y[i00] = mad(norm_x, w[w_idx], b[b_idx]);
+ }
+}
}
};
+// GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
+struct test_norm_mul_add : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ float eps;
+ const bool broadcast;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "NORM_MUL_ADD";
+ }
+
+ bool run_whole_graph() override { return true; }
+
+ std::string vars() override {
+ return VARS_TO_STR4(type, ne, eps, broadcast);
+ }
+
+ test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {128, 2, 1, 1},
+ float eps = 1e-5f,
+ bool broadcast = false)
+ : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
+
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
+ ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
+ ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
+
+ // Use a, w and b early to avoid OP_NONE in graph
+ a = ggml_add(ctx, ggml_add(ctx, a, w), b);
+
+ ggml_tensor * n = ggml_norm(ctx, a, eps);
+ ggml_tensor * m = ggml_mul(ctx, n, w);
+ ggml_tensor * out = ggml_add(ctx, m, b);
+ ggml_set_name(out, "out");
+ return out;
+ }
+};
// GGML_OP_RMS_NORM
struct test_rms_norm : public test_case {
const ggml_type type;
}
};
+// GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
+struct test_group_norm_mul_add : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ int num_groups;
+ float eps;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "GROUP_NORM_MUL_ADD";
+ }
+
+ bool run_whole_graph() override { return true; }
+
+ std::string vars() override {
+ return VARS_TO_STR4(type, ne, num_groups, eps);
+ }
+
+ test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {128, 1, 1, 1},
+ int num_groups = 4,
+ float eps = 1e-5f)
+ : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
+ ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
+ ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
+ ggml_tensor * m = ggml_mul(ctx, n, w);
+ ggml_tensor * out = ggml_add(ctx, m, b);
+ ggml_set_name(out, "out");
+ return out;
+ }
+};
+
// GGML_OP_L2_NORM
struct test_l2_norm : public test_case {
const ggml_type type;
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
+ test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
+ test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
}
for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
for (bool multi_add : {false, true}) {
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
+ test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
+ test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_pad_reflect_1d());