self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
- self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1000000.0))
+ self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
# Mamba parameters
self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
self.gguf_writer.add_ssm_group_count(0)
# MLP feed forward parameters (for attention layers)
- self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 16384))
+ self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
{
// PLaMo-2 uses combined QKV tensor
ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
- cb(qkv, "qkv", il);
+ cb(qkv, "wqkv", il);
// split QKV tensor into Q, K, V
const int64_t n_embd_head_q = hparams.n_embd_head_k;
ext_factor, attn_factor, beta_fast, beta_slow
);
- cur = build_attn(inp, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f, il);
+ cur = build_attn(inp, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head_v)), il);
}
cb(cur, "attn_out", il);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
- (d_conv - 1)*(d_inner)*(n_seqs),
- kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
+ (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
+ kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
+ cb(conv_states_all, "mamba_conv1d_state", il);
// 1D convolution
x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
// store last states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
- ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]*x->ne[3]),
- ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs,
- kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
+ ggml_view_1d(ctx0, y_ssm, n_heads*head_dim*d_state*n_seqs, n_heads*head_dim*n_seq_tokens*n_seqs*ggml_element_size(y_ssm)),
+ ggml_view_1d(ctx0, ssm_states_all, n_heads*head_dim*d_state*n_seqs, kv_head*n_seqs*n_heads*head_dim*d_state*ggml_element_size(ssm_states_all))));
+ cb(ssm_states_all, "mamba_ssm_states", il);
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x), head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
cb(y, "mamba_y_view", il);