]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert : handle compressed-tensors quant method (#17069)
authorcompilade <redacted>
Sun, 9 Nov 2025 14:45:50 +0000 (09:45 -0500)
committerGitHub <redacted>
Sun, 9 Nov 2025 14:45:50 +0000 (09:45 -0500)
* convert : handle compressed-tensors quant method

* convert : handle int-quantized models

* convert : handle naive-quantized models

* gguf-py : __pos__ is also unary

* convert : fix flake8 lint

* convert : use F32 for dequant of pack-quantized tensors

convert_hf_to_gguf.py
gguf-py/gguf/lazy.py

index 222f6ed6dc40f92f954dc512185865ccb93c5e53..b155d112b1ace5d2743129e572fc5783d48c9c5b 100755 (executable)
@@ -278,15 +278,14 @@ class ModelBase:
                 # The scale is inverted
                 return data / scale.float()
 
-            def dequant_simple(weight: Tensor, scale: Tensor) -> Tensor:
+            def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
                 scale = scale.float()
 
-                if (weight_block_size := quant_config.get("weight_block_size")):
-                    # TODO: make sure it's a list of integers
-                    for i, size in enumerate(weight_block_size):
+                if block_size is not None:
+                    for i, size in enumerate(block_size):
                         scale = scale.repeat_interleave(size, i)
-                # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
-                scale = scale[tuple(slice(0, size) for size in weight.shape)]
+                    # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
+                    scale = scale[tuple(slice(0, size) for size in weight.shape)]
 
                 return weight.float() * scale
 
@@ -333,6 +332,40 @@ class ModelBase:
 
                 return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
 
+            def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
+                assert w.dtype == torch.int32
+                shape = tuple(shape_tensor.tolist())
+                assert len(shape) == 2
+                mask = (1 << num_bits) - 1
+
+                shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
+                if self.lazy:
+                    shifts = LazyTorchTensor.from_eager(shifts)
+
+                if zero_point is None:
+                    offset = 1 << (num_bits - 1)
+                else:
+                    assert len(zero_point.shape) == 2
+                    offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
+                    offset = offset.reshape(-1, zero_point.shape[1])
+                    # trim padding, and prepare for broadcast
+                    # NOTE: the zero-point is packed along dim 0
+                    offset = offset[:shape[0], :].unsqueeze(-1)
+
+                # extract values
+                # NOTE: the weights are packed along dim 1
+                unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
+                unpacked = unpacked.reshape(shape[0], -1)
+
+                # trim padding
+                unpacked = unpacked[:, :shape[1]]
+
+                # prepare for broadcast of the scale
+                unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
+                unpacked = unpacked - offset
+
+                return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
+
             if quant_method == "bitnet":
                 for name in self.model_tensors.keys():
                     if name.endswith(".weight_scale"):
@@ -342,12 +375,13 @@ class ModelBase:
                         self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
                         tensors_to_remove.append(name)
             elif quant_method == "fp8":
+                block_size = quant_config.get("weight_block_size")
                 for name in self.model_tensors.keys():
                     if name.endswith(".weight_scale_inv"):
                         weight_name = name.removesuffix("_scale_inv")
                         w = self.model_tensors[weight_name]
                         s = self.model_tensors[name]
-                        self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s())
+                        self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
                         tensors_to_remove.append(name)
             elif quant_method == "gptq":
                 for name in self.model_tensors.keys():
@@ -371,6 +405,49 @@ class ModelBase:
                                 ".scales",
                             )
                         ]
+            elif quant_method == "compressed-tensors":
+                quant_format = quant_config["format"]
+                groups = quant_config["config_groups"]
+                if len(groups) > 1:
+                    raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
+                weight_config = tuple(groups.values())[0]["weights"]
+
+                if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
+                    block_size = weight_config.get("block_structure", None)
+                    strategy = weight_config.get("strategy")
+                    assert strategy == "channel" or strategy == "block"
+                    assert weight_config.get("group_size") is None  # didn't find a model using this yet
+                    for name in self.model_tensors.keys():
+                        if name.endswith(".weight_scale"):
+                            weight_name = name.removesuffix("_scale")
+                            w = self.model_tensors[weight_name]
+                            s = self.model_tensors[name]
+                            self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
+                            tensors_to_remove.append(name)
+                elif quant_format == "pack-quantized":
+                    assert weight_config.get("strategy") == "group"
+                    assert weight_config.get("type", "int") == "int"
+                    num_bits = weight_config.get("num_bits")
+                    group_size = weight_config.get("group_size")
+                    assert isinstance(num_bits, int)
+                    assert isinstance(group_size, int)
+                    for name in self.model_tensors.keys():
+                        if name.endswith(".weight_packed"):
+                            base_name = name.removesuffix("_packed")
+                            w = self.model_tensors[name]
+                            scale = self.model_tensors[base_name + "_scale"]
+                            shape = self.model_tensors[base_name + "_shape"]
+                            zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
+                            new_tensors[base_name] = (
+                                lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
+                                    w(), scale(), shape(), zero_point(), num_bits, group_size,
+                                )
+                            )
+                            tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
+                            if (base_name + "_zero_point") in self.model_tensors:
+                                tensors_to_remove.append(base_name + "_zero_point")
+                else:
+                    raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
             else:
                 raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
 
index f9bcadae0224bac5f922ce6565dd1e3883a923e1..c126f09c5091bf779d6be0c9cc92f2b333c131b3 100644 (file)
@@ -48,13 +48,18 @@ class LazyMeta(ABCMeta):
         # NOTE: doing this from a metaclass is very convenient
         # TODO: make this even more comprehensive
         for binary_op in (
-            "lt", "le", "eq", "ne", "ge", "gt", "not"
-            "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
-            "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
+            "lt", "le", "eq", "ne", "ge", "gt",
+            "add", "and", "floordiv", "lshift", "mod", "mul", "matmul",
+            "or", "pow", "rshift", "sub", "truediv", "xor",
             "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
             "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
         ):
             attr_name = f"__{binary_op}__"
+            # evaluation on the meta tensor is needed in case there's broadcasting
+            namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
+
+        for unary_op in ("not", "abs", "invert", "neg", "pos"):
+            attr_name = f"__{unary_op}__"
             # the result of these operators usually has the same shape and dtype as the input,
             # so evaluation on the meta tensor can be skipped.
             namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)