--- /dev/null
+#ifndef GGML_WEBGPU_SHADER_LIB_HPP
+#define GGML_WEBGPU_SHADER_LIB_HPP
+
+#include "ggml.h"
+#include "pre_wgsl.hpp"
+
+#include <string>
+#include <vector>
+
+#define GGML_WEBGPU_F16_SIZE_BYTES 2
+#define GGML_WEBGPU_F32_SIZE_BYTES 4
+#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES 8u
+#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE 128u
+// Matches GGML_PAD(..., 256) in src/llama-context.cpp for KV cache sizing.
+#define GGML_WEBGPU_KV_SEQ_PAD 256u
+
+struct ggml_webgpu_flash_attn_shader_lib_context {
+ ggml_type kv_type;
+ uint32_t head_dim_qk;
+ uint32_t head_dim_v;
+ bool kv_direct;
+ bool has_mask;
+ bool has_sinks;
+ bool uses_logit_softcap;
+ uint32_t sg_mat_m;
+ uint32_t sg_mat_n;
+ uint32_t sg_mat_k;
+ size_t wg_mem_limit_bytes;
+ uint32_t max_subgroup_size;
+};
+
+struct ggml_webgpu_flash_attn_shader_decisions {
+ uint32_t q_tile = 0;
+ uint32_t kv_tile = 0;
+ uint32_t wg_size = 0;
+};
+
+struct ggml_webgpu_processed_shader {
+ std::string wgsl;
+ std::string variant;
+ ggml_webgpu_flash_attn_shader_decisions decisions;
+};
+
+// This is exposed because it's necessary in supports_op
+inline size_t ggml_webgpu_flash_attn_wg_mem_bytes(uint32_t q_tile,
+ uint32_t kv_tile,
+ uint32_t head_dim_qk,
+ uint32_t head_dim_v,
+ bool has_mask,
+ bool kv_direct) {
+ const uint32_t max_head_dim = std::max(head_dim_qk, head_dim_v);
+ size_t f16_elems = 0;
+ size_t f32_elems = 0;
+ f16_elems += q_tile * head_dim_qk; // q_shmem
+ if (!kv_direct) {
+ f16_elems += kv_tile * max_head_dim; // kv_shmem
+ }
+ f16_elems += q_tile * head_dim_v; // o_shmem
+ if (has_mask) {
+ f16_elems += q_tile * kv_tile; // mask_shmem
+ }
+ f16_elems += q_tile * kv_tile; // inter_shmem
+ f32_elems += q_tile; // row_max_shmem
+ f32_elems += q_tile; // exp_sum_shmem
+ return f16_elems * GGML_WEBGPU_F16_SIZE_BYTES + f32_elems * GGML_WEBGPU_F32_SIZE_BYTES;
+}
+
+static uint32_t ggml_webgpu_flash_attn_max_kv_tile(const ggml_webgpu_flash_attn_shader_lib_context & context) {
+ const size_t limit_bytes = context.wg_mem_limit_bytes;
+ const size_t q_tile = context.sg_mat_m;
+ const size_t base_q_bytes = (context.head_dim_qk + context.head_dim_v) * q_tile * GGML_WEBGPU_F16_SIZE_BYTES +
+ 2 * q_tile * GGML_WEBGPU_F32_SIZE_BYTES;
+ size_t bytes_per_kv = 0;
+ if (!context.kv_direct) {
+ bytes_per_kv += std::max(context.head_dim_qk, context.head_dim_v);
+ }
+ if (context.has_mask) {
+ bytes_per_kv += q_tile;
+ }
+ bytes_per_kv += q_tile;
+ bytes_per_kv *= GGML_WEBGPU_F16_SIZE_BYTES;
+ const uint32_t max_kv_tile = (limit_bytes - base_q_bytes) / bytes_per_kv;
+ return (max_kv_tile / context.sg_mat_n) * context.sg_mat_n;
+}
+
+inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
+ pre_wgsl::Preprocessor & preprocessor,
+ const char * shader_src,
+ const ggml_webgpu_flash_attn_shader_lib_context & context) {
+ std::vector<std::string> defines;
+ std::string variant = "flash_attn";
+
+ switch (context.kv_type) {
+ case GGML_TYPE_F32:
+ defines.push_back("KV_F32");
+ break;
+ case GGML_TYPE_F16:
+ defines.push_back("KV_F16");
+ break;
+ case GGML_TYPE_Q4_0:
+ defines.push_back("KV_Q4_0");
+ break;
+ case GGML_TYPE_Q8_0:
+ defines.push_back("KV_Q8_0");
+ break;
+ default:
+ GGML_ABORT("Unsupported KV type for flash attention shader");
+ }
+ variant += std::string("_") + ggml_type_name(context.kv_type);
+
+ if (context.has_mask) {
+ defines.push_back("MASK");
+ variant += "_mask";
+ }
+ if (context.has_sinks) {
+ defines.push_back("SINKS");
+ variant += "_sinks";
+ }
+ if (context.uses_logit_softcap) {
+ defines.push_back("LOGIT_SOFTCAP");
+ variant += "_lgsc";
+ }
+
+ if (context.kv_direct) {
+ defines.push_back("KV_DIRECT");
+ variant += "_kvdirect";
+ }
+
+ defines.push_back(std::string("HEAD_DIM_QK=") + std::to_string(context.head_dim_qk));
+ variant += std::string("_hsqk") + std::to_string(context.head_dim_qk);
+
+ defines.push_back(std::string("HEAD_DIM_V=") + std::to_string(context.head_dim_v));
+ variant += std::string("_hsv") + std::to_string(context.head_dim_v);
+
+ // For now these are not part of the variant name
+ defines.push_back(std::string("SG_MAT_M=") + std::to_string(context.sg_mat_m));
+ defines.push_back(std::string("SG_MAT_N=") + std::to_string(context.sg_mat_n));
+ defines.push_back(std::string("SG_MAT_K=") + std::to_string(context.sg_mat_k));
+
+ // Add chosen Q/KV tile sizes
+ uint32_t q_tile = context.sg_mat_m;
+ uint32_t kv_tile = std::min(ggml_webgpu_flash_attn_max_kv_tile(context),
+ context.sg_mat_n * GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES);
+ if (context.kv_direct) {
+ GGML_ASSERT(kv_tile <= GGML_WEBGPU_KV_SEQ_PAD);
+ // Avoids having to use bounds-checks and decreasing performance for direct KV loads
+ while (GGML_WEBGPU_KV_SEQ_PAD % kv_tile != 0) {
+ kv_tile -= context.sg_mat_n;
+ }
+ }
+
+ defines.push_back(std::string("Q_TILE=") + std::to_string(q_tile));
+ defines.push_back(std::string("KV_TILE=") + std::to_string(kv_tile));
+
+ // workgroup size
+ uint32_t wg_size = std::max(context.max_subgroup_size, GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE);
+
+ defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
+
+ ggml_webgpu_processed_shader result;
+ result.wgsl = preprocessor.preprocess(shader_src, defines);
+ result.variant = variant;
+ result.decisions.q_tile = q_tile;
+ result.decisions.kv_tile = kv_tile;
+ result.decisions.wg_size = wg_size;
+ return result;
+}
+
+#endif // GGML_WEBGPU_SHADER_LIB_HPP
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
+#include "ggml-webgpu-shader-lib.hpp"
#include "ggml-wgsl-shaders.hpp"
+#include "pre_wgsl.hpp"
#ifdef __EMSCRIPTEN__
# include <emscripten/emscripten.h>
#ifdef GGML_WEBGPU_DEBUG
# define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
-# define WEBGPU_DEBUG_BUF_ELEMS 32
+# define WEBGPU_DEBUG_BUF_ELEMS 512
#else
# define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
struct webgpu_pipeline {
wgpu::ComputePipeline pipeline;
std::string name;
+ void * context = nullptr;
};
struct webgpu_command {
#endif
};
+struct flash_attn_pipeline_key {
+ int q_type;
+ int kv_type;
+ int dst_type;
+ uint32_t head_dim_qk;
+ uint32_t head_dim_v;
+ bool kv_direct;
+ bool has_mask;
+ bool has_sinks;
+ bool uses_logit_softcap;
+
+ bool operator==(const flash_attn_pipeline_key & other) const {
+ return q_type == other.q_type && kv_type == other.kv_type && dst_type == other.dst_type &&
+ head_dim_qk == other.head_dim_qk && head_dim_v == other.head_dim_v && kv_direct == other.kv_direct &&
+ has_mask == other.has_mask && has_sinks == other.has_sinks &&
+ uses_logit_softcap == other.uses_logit_softcap;
+ }
+};
+
+// Same hash combine function as in boost
+template <typename T> inline void ggml_webgpu_hash_combine(size_t & seed, const T & value) {
+ seed ^= std::hash<T>{}(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
+}
+
+struct flash_attn_pipeline_key_hash {
+ size_t operator()(const flash_attn_pipeline_key & key) const {
+ size_t seed = 0;
+ ggml_webgpu_hash_combine(seed, key.q_type);
+ ggml_webgpu_hash_combine(seed, key.kv_type);
+ ggml_webgpu_hash_combine(seed, key.dst_type);
+ ggml_webgpu_hash_combine(seed, key.head_dim_qk);
+ ggml_webgpu_hash_combine(seed, key.head_dim_v);
+ ggml_webgpu_hash_combine(seed, key.kv_direct);
+ ggml_webgpu_hash_combine(seed, key.has_mask);
+ ggml_webgpu_hash_combine(seed, key.has_sinks);
+ ggml_webgpu_hash_combine(seed, key.uses_logit_softcap);
+ return seed;
+ }
+};
+
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
wgpu::Queue queue;
wgpu::Limits limits;
- uint32_t subgroup_size;
+ uint32_t max_subgroup_size;
-#ifndef __EMSCRIPTEN__
- bool supports_subgroup_matrix = false;
- wgpu::SubgroupMatrixConfig subgroup_matrix_config;
-#endif
+ bool supports_subgroup_matrix = false;
+ uint32_t sg_mat_m;
+ uint32_t sg_mat_n;
+ uint32_t sg_mat_k;
std::recursive_mutex mutex;
std::atomic_uint inflight_threads = 0;
webgpu_buf_pool param_buf_pool;
webgpu_buf_pool set_rows_error_buf_pool;
+ pre_wgsl::Preprocessor p;
+
std::map<int, webgpu_pipeline> memset_pipelines; // variant or type index
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> mul_mat_pipelines; // src0_type, src1_type, vectorized
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>>
mul_mat_vec_pipelines; // src0_type, src1_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
+ std::unordered_map<flash_attn_pipeline_key, webgpu_pipeline, flash_attn_pipeline_key_hash> flash_attn_pipelines;
+
+ std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
+ std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
- std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
+ std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
+ std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
+ std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
+ std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
+ std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
label(std::move(lbl)) {}
};
-/* End struct definitions */
-
/* WebGPU object initializations */
// Process a WGSL shader string, replacing tokens of the form {{KEY}} with
encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize());
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
-
ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize());
- const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange();
- std::cout << "debug data:";
- for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) {
- std::cout << " " << i << ": " << debug_data[i];
- }
- std::cout << "\n";
+ const float * debug_data = (const float *) ctx->debug_host_buf.GetConstMappedRange();
+ std::cout << "debug[0]: " << debug_data[0] << "\n";
ctx->debug_host_buf.Unmap();
}
#endif
return ctx->name.c_str();
}
+// TODO: implement proper cleanup
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
return ctx->buffer;
}
-static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, ggml_tensor * t) {
+static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
}
-static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, ggml_tensor * t) {
+static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
}
#ifndef __EMSCRIPTEN__
if (ctx->supports_subgroup_matrix) {
// The total number of subgroups/workgroups needed per matrix.
- uint32_t wg_m_sg_tile =
- WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->subgroup_matrix_config.M;
- wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
- uint32_t wg_n_sg_tile =
- WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->subgroup_matrix_config.N;
- wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
+ uint32_t wg_m_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->sg_mat_m;
+ wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
+ uint32_t wg_n_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->sg_mat_n;
+ wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
} else {
#endif
uint32_t tile_m_s = WEBGPU_MUL_MAT_TILE_M * WEBGPU_MUL_MAT_WG_SIZE_M;
return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, wg_y);
}
+static webgpu_command ggml_webgpu_flash_attn(webgpu_context & ctx,
+ ggml_tensor * Q,
+ ggml_tensor * K,
+ ggml_tensor * V,
+ ggml_tensor * mask,
+ ggml_tensor * sinks,
+ ggml_tensor * dst) {
+ float scale = *(float *) dst->op_params;
+ float max_bias;
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+ float logit_softcap;
+ memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
+ if (logit_softcap != 0.0f) {
+ scale /= logit_softcap;
+ }
+ float n_head_log2 = float(1u << (uint32_t) floor(log2(Q->ne[2])));
+ float m0 = powf(2.0f, -(max_bias) / n_head_log2);
+ float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const int has_mask = (mask != nullptr);
+ const int has_sinks = (sinks != nullptr);
+
+ std::vector<uint32_t> params = {
+ (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, Q) / ggml_type_size(Q->type)),
+ (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, K) / ggml_type_size(K->type)),
+ (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, V) / ggml_type_size(V->type)),
+ has_mask ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, mask) / ggml_type_size(mask->type)) : 0,
+ has_sinks ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, sinks) / ggml_type_size(sinks->type)) : 0,
+ (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
+ (uint32_t) Q->ne[2], // number of heads
+ (uint32_t) Q->ne[1], // sequence length (Q)
+ (uint32_t) K->ne[1], // sequence length (K/V)
+ (uint32_t) (Q->nb[1] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 1
+ (uint32_t) (Q->nb[2] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 2
+ (uint32_t) (Q->nb[3] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 3
+ (uint32_t) (K->nb[1] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 1
+ (uint32_t) (K->nb[2] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 2
+ (uint32_t) (K->nb[3] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 3
+ (uint32_t) (V->nb[1] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 1
+ (uint32_t) (V->nb[2] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 2
+ (uint32_t) (V->nb[3] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 3
+ has_mask ? (uint32_t) (mask->nb[3] / ggml_type_size(mask->type)) : 0, // stride of mask dim 3
+ (uint32_t) (Q->ne[2] / K->ne[2]), // repeat factor for K/V in dim 2 (MHA/MQA/GQA)
+ *(uint32_t *) &scale, // scale (possibly adjusted for logit softcap)
+ *(uint32_t *) &max_bias,
+ *(uint32_t *) &logit_softcap,
+ *(uint32_t *) &n_head_log2,
+ *(uint32_t *) &m0,
+ *(uint32_t *) &m1
+
+ };
+ std::vector<wgpu::BindGroupEntry> entries = {
+ { .binding = 0,
+ .buffer = ggml_webgpu_tensor_buf(Q),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, Q),
+ .size = ggml_webgpu_tensor_binding_size(ctx, Q) },
+ { .binding = 1,
+ .buffer = ggml_webgpu_tensor_buf(K),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, K),
+ .size = ggml_webgpu_tensor_binding_size(ctx, K) },
+ { .binding = 2,
+ .buffer = ggml_webgpu_tensor_buf(V),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, V),
+ .size = ggml_webgpu_tensor_binding_size(ctx, V) }
+ };
+ uint32_t binding_index = 3;
+ if (has_mask) {
+ entries.push_back({ .binding = binding_index++,
+ .buffer = ggml_webgpu_tensor_buf(mask),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, mask),
+ .size = ggml_webgpu_tensor_binding_size(ctx, mask) });
+ }
+ if (has_sinks) {
+ entries.push_back({ .binding = binding_index++,
+ .buffer = ggml_webgpu_tensor_buf(sinks),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, sinks),
+ .size = ggml_webgpu_tensor_binding_size(ctx, sinks) });
+ }
+ entries.push_back({ .binding = binding_index++,
+ .buffer = ggml_webgpu_tensor_buf(dst),
+ .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
+ .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
+
+ bool kv_direct =
+ (K->type == GGML_TYPE_F16) && (Q->ne[0] % ctx->sg_mat_k == 0) && (K->ne[1] % GGML_WEBGPU_KV_SEQ_PAD == 0);
+
+ flash_attn_pipeline_key key = {
+ .q_type = Q->type,
+ .kv_type = K->type,
+ .dst_type = dst->type,
+ .head_dim_qk = (uint32_t) Q->ne[0],
+ .head_dim_v = (uint32_t) V->ne[0],
+ .kv_direct = kv_direct,
+ .has_mask = static_cast<bool>(has_mask),
+ .has_sinks = static_cast<bool>(has_sinks),
+ .uses_logit_softcap = logit_softcap != 0.0f,
+ };
+
+ webgpu_pipeline pipeline;
+ ggml_webgpu_flash_attn_shader_decisions decisions = {};
+
+ auto it = ctx->flash_attn_pipelines.find(key);
+ if (it != ctx->flash_attn_pipelines.end()) {
+ pipeline = it->second;
+ decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
+ } else {
+ std::lock_guard<std::recursive_mutex> lock(ctx->mutex);
+ it = ctx->flash_attn_pipelines.find(key);
+ if (it != ctx->flash_attn_pipelines.end()) {
+ pipeline = it->second;
+ decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
+ } else {
+ ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = { .kv_type = K->type,
+ .head_dim_qk = (uint32_t) Q->ne[0],
+ .head_dim_v = (uint32_t) V->ne[0],
+ .kv_direct = kv_direct,
+ .has_mask = static_cast<bool>(has_mask),
+ .has_sinks = static_cast<bool>(has_sinks),
+ .uses_logit_softcap = logit_softcap != 0.0f,
+ .sg_mat_m = ctx->sg_mat_m,
+ .sg_mat_n = ctx->sg_mat_n,
+ .sg_mat_k = ctx->sg_mat_k,
+ .wg_mem_limit_bytes =
+ ctx->limits.maxComputeWorkgroupStorageSize,
+ .max_subgroup_size = ctx->max_subgroup_size };
+
+ ggml_webgpu_processed_shader processed =
+ ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx);
+ pipeline = ggml_webgpu_create_pipeline(ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
+ pipeline.context = new ggml_webgpu_flash_attn_shader_decisions(processed.decisions);
+ ctx->flash_attn_pipelines.emplace(key, pipeline);
+ decisions = processed.decisions;
+ }
+ }
+
+ uint32_t wg_per_head = CEIL_DIV(Q->ne[1], decisions.q_tile);
+ uint32_t wg_x = wg_per_head * Q->ne[2] * Q->ne[3]; // wg per head * number of heads * number of batches
+ return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
+}
+
static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
uint32_t ne = (uint32_t) ggml_nelements(dst);
ggml_unary_op unary_op = ggml_get_unary_op(dst);
return ggml_webgpu_get_rows(ctx, src0, src1, node);
case GGML_OP_MUL_MAT:
return ggml_webgpu_mul_mat(ctx, src0, src1, node);
+ case GGML_OP_FLASH_ATTN_EXT:
+ return ggml_webgpu_flash_attn(ctx, src0, src1, src2, node->src[3], node->src[4], node);
case GGML_OP_ADD:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
webgpu_submission_futures new_futures = ggml_backend_webgpu_submit(ctx, commands);
futures.push_back(new_futures);
}
+
ggml_backend_webgpu_wait(ctx, futures);
ctx->inflight_threads--;
WEBGPU_CPU_PROFILE_TOTAL_END(graph_compute, ctx);
#ifndef __EMSCRIPTEN__
if (webgpu_ctx->supports_subgroup_matrix) {
std::map<std::string, std::string> sg_matrix_repls;
- sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->subgroup_size);
+ sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->max_subgroup_size);
sg_matrix_repls["WEBGPU_TILE_K"] = std::to_string(WEBGPU_MUL_MAT_TILE_K);
sg_matrix_repls["WEBGPU_SUBGROUP_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_M);
sg_matrix_repls["WEBGPU_SUBGROUP_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_N);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N);
- sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.M);
- sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.N);
- sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.K);
+ sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->sg_mat_m);
+ sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->sg_mat_n);
+ sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->sg_mat_k);
proc_mul_mat_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32, sg_matrix_repls);
proc_mul_mat_f32_f32_vec =
webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_sink_inplace, "soft_max_f32_mask_f16_sink_inplace", constants);
}
+// TODO: move most initialization logic here
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
}
break;
}
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ if (!webgpu_ctx->supports_subgroup_matrix) {
+ break;
+ }
+ // Head dimensions must fit in workgroup memory with minimum tile sizes
+ size_t limit_bytes = webgpu_ctx->limits.maxComputeWorkgroupStorageSize;
+ const bool has_mask = op->src[3] != nullptr;
+ const bool kv_direct = src1->type == GGML_TYPE_F16 && (src0->ne[0] % webgpu_ctx->sg_mat_k) == 0 &&
+ (src1->ne[1] % GGML_WEBGPU_KV_SEQ_PAD) == 0;
+ const size_t min_bytes = ggml_webgpu_flash_attn_wg_mem_bytes(
+ webgpu_ctx->sg_mat_m, webgpu_ctx->sg_mat_n, (uint32_t) src0->ne[0], (uint32_t) src2->ne[0],
+ has_mask, kv_direct);
+ if (min_bytes > limit_bytes) {
+ break;
+ }
+
+ supports_op = src0->type == GGML_TYPE_F32 &&
+ (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 ||
+ src1->type == GGML_TYPE_Q4_0 || src1->type == GGML_TYPE_Q8_0) &&
+ src2->type == src1->type && op->type == GGML_TYPE_F32;
+ break;
+ }
case GGML_OP_RMS_NORM:
supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32;
break;
}
// TODO: Does this need to be thread safe? Is it only called once?
+// TODO: move most logic to device_init function so backend can be freed/initialized properly
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
if (config.M == config.N && config.N == config.K && (config.K == 8 || config.K == 16) &&
config.componentType == wgpu::SubgroupMatrixComponentType::F16 &&
config.resultComponentType == wgpu::SubgroupMatrixComponentType::F16) {
- ctx->subgroup_matrix_config = config;
+ ctx->sg_mat_m = config.M;
+ ctx->sg_mat_n = config.N;
+ ctx->sg_mat_k = config.K;
valid_subgroup_matrix_config = true;
break;
}
#endif
// For subgroup matrix code to be the most efficient, we would like the subgroup size to be consistent and accurate.
// Unfortunately, that is not possible, so we use the maximum subgroup size reported by the adapter.
- ctx->subgroup_size = info.subgroupMaxSize;
+ ctx->max_subgroup_size = info.subgroupMaxSize;
// Initialize device
std::vector<wgpu::FeatureName> required_features = { wgpu::FeatureName::ShaderF16 };
wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
- GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
- std::string(message).c_str());
+ GGML_UNUSED(reason);
+ GGML_UNUSED(message);
+ //TODO: uncomment once proper free logic is in place
+ //GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
+ //std::string(message).c_str());
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) {
--- /dev/null
+#ifndef PRE_WGSL_HPP
+#define PRE_WGSL_HPP
+
+#include <cctype>
+#include <fstream>
+#include <sstream>
+#include <stdexcept>
+#include <string>
+#include <string_view>
+#include <unordered_map>
+#include <unordered_set>
+#include <vector>
+
+namespace pre_wgsl {
+
+//==============================================================
+// Options
+//==============================================================
+struct Options {
+ std::string include_path = ".";
+ std::vector<std::string> macros;
+};
+
+//==============================================================
+// Utility: trim
+//==============================================================
+static std::string trim(const std::string & s) {
+ size_t a = 0;
+ while (a < s.size() && std::isspace((unsigned char) s[a])) {
+ a++;
+ }
+ size_t b = s.size();
+ while (b > a && std::isspace((unsigned char) s[b - 1])) {
+ b--;
+ }
+ return s.substr(a, b - a);
+}
+
+static std::string trim_value(std::istream & is) {
+ std::string str;
+ std::getline(is, str);
+ return trim(str);
+}
+
+static bool isIdentChar(char c) {
+ return std::isalnum(static_cast<unsigned char>(c)) || c == '_';
+}
+
+static std::string expandMacrosRecursiveInternal(const std::string & line,
+ const std::unordered_map<std::string, std::string> & macros,
+ std::unordered_set<std::string> & visiting);
+
+static std::string expandMacroValue(const std::string & name,
+ const std::unordered_map<std::string, std::string> & macros,
+ std::unordered_set<std::string> & visiting) {
+ if (visiting.count(name)) {
+ throw std::runtime_error("Recursive macro: " + name);
+ }
+ visiting.insert(name);
+
+ auto it = macros.find(name);
+ if (it == macros.end()) {
+ visiting.erase(name);
+ return name;
+ }
+
+ const std::string & value = it->second;
+ if (value.empty()) {
+ visiting.erase(name);
+ return "";
+ }
+
+ std::string expanded = expandMacrosRecursiveInternal(value, macros, visiting);
+ visiting.erase(name);
+ return expanded;
+}
+
+static std::string expandMacrosRecursiveInternal(const std::string & line,
+ const std::unordered_map<std::string, std::string> & macros,
+ std::unordered_set<std::string> & visiting) {
+ std::string result;
+ result.reserve(line.size());
+
+ size_t i = 0;
+ while (i < line.size()) {
+ if (isIdentChar(line[i])) {
+ size_t start = i;
+ while (i < line.size() && isIdentChar(line[i])) {
+ i++;
+ }
+ std::string token = line.substr(start, i - start);
+
+ auto it = macros.find(token);
+ if (it != macros.end()) {
+ result += expandMacroValue(token, macros, visiting);
+ } else {
+ result += token;
+ }
+ } else {
+ result += line[i];
+ i++;
+ }
+ }
+
+ return result;
+}
+
+static std::string expandMacrosRecursive(const std::string & line,
+ const std::unordered_map<std::string, std::string> & macros) {
+ std::unordered_set<std::string> visiting;
+ return expandMacrosRecursiveInternal(line, macros, visiting);
+}
+
+//==============================================================
+// Tokenizer for expressions in #if/#elif
+//==============================================================
+class ExprLexer {
+ public:
+ enum Kind { END, IDENT, NUMBER, OP, LPAREN, RPAREN };
+
+ struct Tok {
+ Kind kind;
+ std::string text;
+ };
+
+ explicit ExprLexer(std::string_view sv) : src(sv), pos(0) {}
+
+ Tok next() {
+ skipWS();
+ if (pos >= src.size()) {
+ return { END, "" };
+ }
+
+ char c = src[pos];
+
+ // number
+ if (std::isdigit((unsigned char) c)) {
+ size_t start = pos;
+ while (pos < src.size() && std::isdigit((unsigned char) src[pos])) {
+ pos++;
+ }
+ return { NUMBER, std::string(src.substr(start, pos - start)) };
+ }
+
+ // identifier
+ if (std::isalpha((unsigned char) c) || c == '_') {
+ size_t start = pos;
+ while (pos < src.size() && (std::isalnum((unsigned char) src[pos]) || src[pos] == '_')) {
+ pos++;
+ }
+ return { IDENT, std::string(src.substr(start, pos - start)) };
+ }
+
+ if (c == '(') {
+ pos++;
+ return { LPAREN, "(" };
+ }
+ if (c == ')') {
+ pos++;
+ return { RPAREN, ")" };
+ }
+
+ // multi-char operators
+ static const char * two_ops[] = { "==", "!=", "<=", ">=", "&&", "||", "<<", ">>" };
+ for (auto op : two_ops) {
+ if (src.substr(pos, 2) == op) {
+ pos += 2;
+ return { OP, std::string(op) };
+ }
+ }
+
+ // single-char operators
+ if (std::string("+-*/%<>!").find(c) != std::string::npos) {
+ pos++;
+ return { OP, std::string(1, c) };
+ }
+
+ // unexpected
+ pos++;
+ return { END, "" };
+ }
+
+ private:
+ std::string_view src;
+ size_t pos;
+
+ void skipWS() {
+ while (pos < src.size() && std::isspace((unsigned char) src[pos])) {
+ pos++;
+ }
+ }
+};
+
+//==============================================================
+// Expression Parser (recursive descent)
+//==============================================================
+class ExprParser {
+ public:
+ ExprParser(std::string_view expr,
+ const std::unordered_map<std::string, std::string> & macros,
+ std::unordered_set<std::string> & visiting) :
+ lex(expr),
+ macros(macros),
+ visiting(visiting) {
+ advance();
+ }
+
+ int parse() { return parseLogicalOr(); }
+
+ private:
+ ExprLexer lex;
+ ExprLexer::Tok tok;
+ const std::unordered_map<std::string, std::string> & macros;
+ std::unordered_set<std::string> & visiting;
+
+ void advance() { tok = lex.next(); }
+
+ bool acceptOp(const std::string & s) {
+ if (tok.kind == ExprLexer::OP && tok.text == s) {
+ advance();
+ return true;
+ }
+ return false;
+ }
+
+ bool acceptKind(ExprLexer::Kind k) {
+ if (tok.kind == k) {
+ advance();
+ return true;
+ }
+ return false;
+ }
+
+ int parseLogicalOr() {
+ int v = parseLogicalAnd();
+ while (acceptOp("||")) {
+ int rhs = parseLogicalAnd();
+ v = (v || rhs);
+ }
+ return v;
+ }
+
+ int parseLogicalAnd() {
+ int v = parseEquality();
+ while (acceptOp("&&")) {
+ int rhs = parseEquality();
+ v = (v && rhs);
+ }
+ return v;
+ }
+
+ int parseEquality() {
+ int v = parseRelational();
+ for (;;) {
+ if (acceptOp("==")) {
+ int rhs = parseRelational();
+ v = (v == rhs);
+ } else if (acceptOp("!=")) {
+ int rhs = parseRelational();
+ v = (v != rhs);
+ } else {
+ break;
+ }
+ }
+ return v;
+ }
+
+ int parseRelational() {
+ int v = parseShift();
+ for (;;) {
+ if (acceptOp("<")) {
+ int rhs = parseShift();
+ v = (v < rhs);
+ } else if (acceptOp(">")) {
+ int rhs = parseShift();
+ v = (v > rhs);
+ } else if (acceptOp("<=")) {
+ int rhs = parseShift();
+ v = (v <= rhs);
+ } else if (acceptOp(">=")) {
+ int rhs = parseShift();
+ v = (v >= rhs);
+ } else {
+ break;
+ }
+ }
+ return v;
+ }
+
+ int parseShift() {
+ int v = parseAdd();
+ for (;;) {
+ if (acceptOp("<<")) {
+ int rhs = parseAdd();
+ v = (v << rhs);
+ } else if (acceptOp(">>")) {
+ int rhs = parseAdd();
+ v = (v >> rhs);
+ } else {
+ break;
+ }
+ }
+ return v;
+ }
+
+ int parseAdd() {
+ int v = parseMult();
+ for (;;) {
+ if (acceptOp("+")) {
+ int rhs = parseMult();
+ v = (v + rhs);
+ } else if (acceptOp("-")) {
+ int rhs = parseMult();
+ v = (v - rhs);
+ } else {
+ break;
+ }
+ }
+ return v;
+ }
+
+ int parseMult() {
+ int v = parseUnary();
+ for (;;) {
+ if (acceptOp("*")) {
+ int rhs = parseUnary();
+ v = (v * rhs);
+ } else if (acceptOp("/")) {
+ int rhs = parseUnary();
+ v = (rhs == 0 ? 0 : v / rhs);
+ } else if (acceptOp("%")) {
+ int rhs = parseUnary();
+ v = (rhs == 0 ? 0 : v % rhs);
+ } else {
+ break;
+ }
+ }
+ return v;
+ }
+
+ int parseUnary() {
+ if (acceptOp("!")) {
+ return !parseUnary();
+ }
+ if (acceptOp("-")) {
+ return -parseUnary();
+ }
+ if (acceptOp("+")) {
+ return +parseUnary();
+ }
+ return parsePrimary();
+ }
+
+ int parsePrimary() {
+ // '(' expr ')'
+ if (acceptKind(ExprLexer::LPAREN)) {
+ int v = parse();
+ if (!acceptKind(ExprLexer::RPAREN)) {
+ throw std::runtime_error("missing ')'");
+ }
+ return v;
+ }
+
+ // number
+ if (tok.kind == ExprLexer::NUMBER) {
+ int v = std::stoi(tok.text);
+ advance();
+ return v;
+ }
+
+ // defined(identifier)
+ if (tok.kind == ExprLexer::IDENT && tok.text == "defined") {
+ advance();
+ if (acceptKind(ExprLexer::LPAREN)) {
+ if (tok.kind != ExprLexer::IDENT) {
+ throw std::runtime_error("expected identifier in defined()");
+ }
+ std::string name = tok.text;
+ advance();
+ if (!acceptKind(ExprLexer::RPAREN)) {
+ throw std::runtime_error("missing ) in defined()");
+ }
+ return macros.count(name) ? 1 : 0;
+ } else {
+ // defined NAME
+ if (tok.kind != ExprLexer::IDENT) {
+ throw std::runtime_error("expected identifier in defined NAME");
+ }
+ std::string name = tok.text;
+ advance();
+ return macros.count(name) ? 1 : 0;
+ }
+ }
+
+ // identifier -> treat as integer, if defined use its value else 0
+ if (tok.kind == ExprLexer::IDENT) {
+ std::string name = tok.text;
+ advance();
+ auto it = macros.find(name);
+ if (it == macros.end()) {
+ return 0;
+ }
+ if (it->second.empty()) {
+ return 1;
+ }
+ return evalMacroExpression(name, it->second);
+ }
+
+ // unexpected
+ return 0;
+ }
+
+ int evalMacroExpression(const std::string & name, const std::string & value) {
+ if (visiting.count(name)) {
+ throw std::runtime_error("Recursive macro: " + name);
+ }
+
+ visiting.insert(name);
+ ExprParser ep(value, macros, visiting);
+ int v = ep.parse();
+ visiting.erase(name);
+ return v;
+ }
+};
+
+//==============================================================
+// Preprocessor
+//==============================================================
+class Preprocessor {
+ public:
+ explicit Preprocessor(Options opts = {}) : opts_(std::move(opts)) {
+ // Treat empty include path as current directory
+ if (opts_.include_path.empty()) {
+ opts_.include_path = ".";
+ }
+ parseMacroDefinitions(opts_.macros);
+ }
+
+ std::string preprocess_file(const std::string & filename, const std::vector<std::string> & additional_macros = {}) {
+ std::unordered_map<std::string, std::string> macros;
+ std::unordered_set<std::string> predefined;
+ std::unordered_set<std::string> include_stack;
+ buildMacros(additional_macros, macros, predefined);
+
+ std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::All);
+ return result;
+ }
+
+ std::string preprocess(const std::string & contents, const std::vector<std::string> & additional_macros = {}) {
+ std::unordered_map<std::string, std::string> macros;
+ std::unordered_set<std::string> predefined;
+ std::unordered_set<std::string> include_stack;
+ buildMacros(additional_macros, macros, predefined);
+
+ std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::All);
+ return result;
+ }
+
+ std::string preprocess_includes_file(const std::string & filename) {
+ std::unordered_map<std::string, std::string> macros;
+ std::unordered_set<std::string> predefined;
+ std::unordered_set<std::string> include_stack;
+ std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
+ return result;
+ }
+
+ std::string preprocess_includes(const std::string & contents) {
+ std::unordered_map<std::string, std::string> macros;
+ std::unordered_set<std::string> predefined;
+ std::unordered_set<std::string> include_stack;
+ std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
+ return result;
+ }
+
+ private:
+ Options opts_;
+ std::unordered_map<std::string, std::string> global_macros;
+
+ enum class DirectiveMode { All, IncludesOnly };
+
+ struct Cond {
+ bool parent_active;
+ bool active;
+ bool taken;
+ };
+
+ //----------------------------------------------------------
+ // Parse macro definitions into global_macros
+ //----------------------------------------------------------
+ void parseMacroDefinitions(const std::vector<std::string> & macro_defs) {
+ for (const auto & def : macro_defs) {
+ size_t eq_pos = def.find('=');
+ if (eq_pos != std::string::npos) {
+ // Format: NAME=VALUE
+ std::string name = trim(def.substr(0, eq_pos));
+ std::string value = trim(def.substr(eq_pos + 1));
+ global_macros[name] = value;
+ } else {
+ // Format: NAME
+ std::string name = trim(def);
+ global_macros[name] = "";
+ }
+ }
+ }
+
+ //----------------------------------------------------------
+ // Build combined macro map and predefined set for a preprocessing operation
+ //----------------------------------------------------------
+ void buildMacros(const std::vector<std::string> & additional_macros,
+ std::unordered_map<std::string, std::string> & macros,
+ std::unordered_set<std::string> & predefined) {
+ macros = global_macros;
+ predefined.clear();
+
+ for (const auto & [name, value] : global_macros) {
+ predefined.insert(name);
+ }
+
+ for (const auto & def : additional_macros) {
+ size_t eq_pos = def.find('=');
+ std::string name, value;
+ if (eq_pos != std::string::npos) {
+ name = trim(def.substr(0, eq_pos));
+ value = trim(def.substr(eq_pos + 1));
+ } else {
+ name = trim(def);
+ value = "";
+ }
+
+ // Add to macros map (will override global if same name)
+ macros[name] = value;
+ predefined.insert(name);
+ }
+ }
+
+ //----------------------------------------------------------
+ // Helpers
+ //----------------------------------------------------------
+ std::string loadFile(const std::string & fname) {
+ std::ifstream f(fname);
+ if (!f.is_open()) {
+ throw std::runtime_error("Could not open file: " + fname);
+ }
+ std::stringstream ss;
+ ss << f.rdbuf();
+ return ss.str();
+ }
+
+ bool condActive(const std::vector<Cond> & cond) const {
+ if (cond.empty()) {
+ return true;
+ }
+ return cond.back().active;
+ }
+
+ //----------------------------------------------------------
+ // Process a file
+ //----------------------------------------------------------
+ std::string processFile(const std::string & name,
+ std::unordered_map<std::string, std::string> & macros,
+ const std::unordered_set<std::string> & predefined_macros,
+ std::unordered_set<std::string> & include_stack,
+ DirectiveMode mode) {
+ if (include_stack.count(name)) {
+ throw std::runtime_error("Recursive include: " + name);
+ }
+
+ include_stack.insert(name);
+ std::string shader_code = loadFile(name);
+ std::string out = processString(shader_code, macros, predefined_macros, include_stack, mode);
+ include_stack.erase(name);
+ return out;
+ }
+
+ std::string processIncludeFile(const std::string & fname,
+ std::unordered_map<std::string, std::string> & macros,
+ const std::unordered_set<std::string> & predefined_macros,
+ std::unordered_set<std::string> & include_stack,
+ DirectiveMode mode) {
+ std::string full_path = opts_.include_path + "/" + fname;
+ return processFile(full_path, macros, predefined_macros, include_stack, mode);
+ }
+
+ //----------------------------------------------------------
+ // Process text
+ //----------------------------------------------------------
+ std::string processString(const std::string & shader_code,
+ std::unordered_map<std::string, std::string> & macros,
+ const std::unordered_set<std::string> & predefined_macros,
+ std::unordered_set<std::string> & include_stack,
+ DirectiveMode mode) {
+ std::vector<Cond> cond; // Conditional stack for this shader
+ std::stringstream out;
+ std::istringstream in(shader_code);
+ std::string line;
+
+ while (std::getline(in, line)) {
+ std::string t = trim(line);
+
+ if (!t.empty() && t[0] == '#') {
+ bool handled = handleDirective(t, out, macros, predefined_macros, cond, include_stack, mode);
+ if (mode == DirectiveMode::IncludesOnly && !handled) {
+ out << line << "\n";
+ }
+ } else {
+ if (mode == DirectiveMode::IncludesOnly) {
+ out << line << "\n";
+ } else if (condActive(cond)) {
+ // Expand macros in the line before outputting
+ std::string expanded = expandMacrosRecursive(line, macros);
+ out << expanded << "\n";
+ }
+ }
+ }
+
+ if (mode == DirectiveMode::All && !cond.empty()) {
+ throw std::runtime_error("Unclosed #if directive");
+ }
+
+ return out.str();
+ }
+
+ //----------------------------------------------------------
+ // Directive handler
+ //----------------------------------------------------------
+ bool handleDirective(const std::string & t,
+ std::stringstream & out,
+ std::unordered_map<std::string, std::string> & macros,
+ const std::unordered_set<std::string> & predefined_macros,
+ std::vector<Cond> & cond,
+ std::unordered_set<std::string> & include_stack,
+ DirectiveMode mode) {
+ // split into tokens
+ std::string body = t.substr(1);
+ std::istringstream iss(body);
+ std::string cmd;
+ iss >> cmd;
+
+ if (cmd == "include") {
+ if (mode == DirectiveMode::All && !condActive(cond)) {
+ return true;
+ }
+ std::string file;
+ iss >> file;
+ if (file.size() >= 2 && file.front() == '"' && file.back() == '"') {
+ file = file.substr(1, file.size() - 2);
+ }
+ out << processIncludeFile(file, macros, predefined_macros, include_stack, mode);
+ return true;
+ }
+
+ if (mode == DirectiveMode::IncludesOnly) {
+ return false;
+ }
+
+ if (cmd == "define") {
+ if (!condActive(cond)) {
+ return true;
+ }
+ std::string name;
+ iss >> name;
+ // Don't override predefined macros from options
+ if (predefined_macros.count(name)) {
+ return true;
+ }
+ std::string value = trim_value(iss);
+ macros[name] = value;
+ return true;
+ }
+
+ if (cmd == "undef") {
+ if (!condActive(cond)) {
+ return true;
+ }
+ std::string name;
+ iss >> name;
+ // Don't undef predefined macros from options
+ if (predefined_macros.count(name)) {
+ return true;
+ }
+ macros.erase(name);
+ return true;
+ }
+
+ if (cmd == "ifdef") {
+ std::string name;
+ iss >> name;
+ bool p = condActive(cond);
+ bool v = macros.count(name);
+ cond.push_back({ p, p && v, p && v });
+ return true;
+ }
+
+ if (cmd == "ifndef") {
+ std::string name;
+ iss >> name;
+ bool p = condActive(cond);
+ bool v = !macros.count(name);
+ cond.push_back({ p, p && v, p && v });
+ return true;
+ }
+
+ if (cmd == "if") {
+ std::string expr = trim_value(iss);
+ bool p = condActive(cond);
+ bool v = false;
+ if (p) {
+ std::unordered_set<std::string> visiting;
+ ExprParser ep(expr, macros, visiting);
+ v = ep.parse() != 0;
+ }
+ cond.push_back({ p, p && v, p && v });
+ return true;
+ }
+
+ if (cmd == "elif") {
+ std::string expr = trim_value(iss);
+
+ if (cond.empty()) {
+ throw std::runtime_error("#elif without #if");
+ }
+
+ Cond & c = cond.back();
+ if (!c.parent_active) {
+ c.active = false;
+ return true;
+ }
+
+ if (c.taken) {
+ c.active = false;
+ return true;
+ }
+
+ std::unordered_set<std::string> visiting;
+ ExprParser ep(expr, macros, visiting);
+ bool v = ep.parse() != 0;
+ c.active = v;
+ if (v) {
+ c.taken = true;
+ }
+ return true;
+ }
+
+ if (cmd == "else") {
+ if (cond.empty()) {
+ throw std::runtime_error("#else without #if");
+ }
+
+ Cond & c = cond.back();
+ if (!c.parent_active) {
+ c.active = false;
+ return true;
+ }
+ if (c.taken) {
+ c.active = false;
+ } else {
+ c.active = true;
+ c.taken = true;
+ }
+ return true;
+ }
+
+ if (cmd == "endif") {
+ if (cond.empty()) {
+ throw std::runtime_error("#endif without #if");
+ }
+ cond.pop_back();
+ return true;
+ }
+
+ // Unknown directive
+ throw std::runtime_error("Unknown directive: #" + cmd);
+ }
+};
+
+} // namespace pre_wgsl
+
+#endif // PRE_WGSL_HPP
--- /dev/null
+diagnostic(off, chromium.subgroup_matrix_uniformity);
+diagnostic(off, subgroup_uniformity);
+enable f16;
+enable subgroups;
+enable chromium_experimental_subgroup_matrix;
+
+#ifdef KV_F32
+#define KV_TYPE f32
+#else
+#define KV_TYPE f16
+#endif
+
+// Default values
+#define HEAD_DIM_QK 64
+#define HEAD_DIM_V 64
+
+// The number of rows/columns/k in a subgroup matrix. MxK * KxN = MxN
+// Note that the "K" here does not correspond to the K in attention's Q/K/V, it's just the common dimension.
+#define SG_MAT_M 8
+#define SG_MAT_N 8
+#define SG_MAT_K 8
+
+// Each workgroup processes one subgroup matrix of Q rows
+#define Q_TILE SG_MAT_M
+#define KV_TILE 16
+#define WG_SIZE 64
+
+// Number of subgroup-matrix-width blocks that span the KV tile. SG_MAT_N must divide KV_TILE.
+#define KV_BLOCKS (KV_TILE / SG_MAT_N)
+
+// Quantization constants/helpers
+#define BLOCK_SIZE 32
+#define BLOCKS_K ((HEAD_DIM_QK + BLOCK_SIZE - 1) / BLOCK_SIZE)
+#define BLOCKS_V ((HEAD_DIM_V + BLOCK_SIZE - 1) / BLOCK_SIZE)
+// number of quantized elements processed per thread
+#if defined(KV_Q4_0)
+#define NQ 16
+// Q4_0 has 32 elements, 1 f16 for scale, 8 f16 for 4-bit weights
+#define F16_PER_BLOCK 9
+#define WEIGHTS_PER_F16 4
+#elif defined(KV_Q8_0)
+#define NQ 8
+// Q8_0 has 32 elements, 1 f16 for scale, 16 f16 for 8-bit weights
+#define F16_PER_BLOCK 17
+#define WEIGHTS_PER_F16 2
+#endif
+#define F16_PER_THREAD (NQ / WEIGHTS_PER_F16)
+
+// Ok not to put these in a define block, compiler will remove if unused
+fn get_byte(value: u32, index: u32) -> u32 {
+ return (value >> (index * 8)) & 0xFF;
+}
+
+fn get_byte_i32(value: u32, index: u32) -> i32 {
+ return bitcast<i32>(((value >> (index * 8)) & 0xFF) << 24) >> 24;
+}
+
+struct Params {
+ offset_q: u32,
+ offset_k: u32,
+ offset_v: u32,
+ offset_mask: u32,
+ offset_sinks: u32,
+ offset_dst: u32,
+
+ // shapes of Q/K/V
+ n_heads: u32,
+ seq_len_q: u32,
+ seq_len_kv: u32,
+
+ // strides (in elements)
+ stride_q1: u32,
+ stride_q2: u32,
+ stride_q3: u32,
+ stride_k1: u32,
+ stride_k2: u32,
+ stride_k3: u32,
+ stride_v1: u32,
+ stride_v2: u32,
+ stride_v3: u32,
+ stride_mask3: u32,
+
+ // repeat factors for K/V, e.g., MHA vs. MQA vs. GQA
+ q_per_kv: u32,
+
+ // softmax params
+ scale: f32,
+ max_bias: f32,
+ logit_softcap: f32,
+ n_head_log2: f32,
+ m0: f32,
+ m1: f32,
+};
+
+@group(0) @binding(0) var<storage, read_write> Q: array<f32>;
+@group(0) @binding(1) var<storage, read_write> K: array<KV_TYPE>;
+@group(0) @binding(2) var<storage, read_write> V: array<KV_TYPE>;
+
+#if defined(MASK) && defined(SINKS)
+@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
+@group(0) @binding(4) var<storage, read_write> sinks: array<f32>;
+#define DST_BINDING 5
+#define PARAMS_BINDING 6
+#elif defined(MASK)
+@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
+#define DST_BINDING 4
+#define PARAMS_BINDING 5
+#elif defined(SINKS)
+@group(0) @binding(3) var<storage, read_write> sinks: array<f32>;
+#define DST_BINDING 4
+#define PARAMS_BINDING 5
+#else
+#define DST_BINDING 3
+#define PARAMS_BINDING 4
+#endif
+
+@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<f32>;
+@group(0) @binding(PARAMS_BINDING) var<uniform> params: Params;
+
+// Just a very small float value.
+const FLOAT_MIN: f32 = -1.0e9;
+
+// The number of Q rows processed per workgroup
+var<workgroup> q_shmem: array<f16, Q_TILE * HEAD_DIM_QK>;
+
+#ifndef KV_DIRECT
+const kv_shmem_size = KV_TILE * max(HEAD_DIM_QK, HEAD_DIM_V);
+// we can reuse the same shmem for K and V since we only need one at a time
+var<workgroup> kv_shmem: array<f16, kv_shmem_size>;
+#endif
+
+var<workgroup> o_shmem: array<f16, Q_TILE * HEAD_DIM_V>; // output shmem
+
+#ifdef MASK
+// storage for mask values
+var<workgroup> mask_shmem: array<f16, Q_TILE * KV_TILE>;
+#endif
+
+// storage for output of Q*K^T scores for online softmax (S matrix from paper)
+// also storage for diagonal matrix during online softmax (P matrix from paper)
+// note that we reuse the same storage for both since we only need one at a time
+var<workgroup> inter_shmem: array<f16, Q_TILE * KV_TILE>;
+
+// Storage for row max and exp sum during online softmax
+var<workgroup> row_max_shmem: array<f32, Q_TILE>;
+var<workgroup> exp_sum_shmem: array<f32, Q_TILE>;
+
+fn calc_softmax_term(kv_idx: u32, q_tile_row: u32, slope: f32) -> f32 {
+ var v = select(FLOAT_MIN,
+ f32(inter_shmem[kv_idx + q_tile_row * KV_TILE]) * params.scale,
+ kv_idx < KV_TILE);
+#ifdef LOGIT_SOFTCAP
+ v = params.logit_softcap * tanh(v);
+#endif
+#ifdef MASK
+ let mask_val = select(0.0, f32(mask_shmem[q_tile_row * KV_TILE + kv_idx]), kv_idx < KV_TILE);
+ let mask_term = slope * mask_val;
+ v += mask_term;
+#endif
+ return v;
+}
+
+
+@compute @workgroup_size(WG_SIZE)
+fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
+ @builtin(local_invocation_id) local_id: vec3<u32>,
+ @builtin(subgroup_id) subgroup_id: u32,
+ @builtin(subgroup_size) subgroup_size: u32,
+ @builtin(num_subgroups) num_subgroups: u32,
+ @builtin(subgroup_invocation_id) sg_inv_id: u32) {
+
+ // initialize row max for online softmax
+ for (var i = local_id.x; i < Q_TILE; i += WG_SIZE) {
+ row_max_shmem[i] = FLOAT_MIN;
+ exp_sum_shmem[i] = 0.0;
+ }
+
+ for (var i = local_id.x; i < Q_TILE * HEAD_DIM_V; i += WG_SIZE) {
+ o_shmem[i] = 0.0;
+ }
+
+ // workgroups per head/batch
+ let wg_per_head = (params.seq_len_q + Q_TILE - 1u) / Q_TILE;
+ let wg_per_batch = wg_per_head * params.n_heads;
+
+ let dst2_stride = HEAD_DIM_V * params.n_heads;
+ let dst3_stride = dst2_stride * params.seq_len_q;
+
+ // batch index
+ let batch_idx = wg_id.x / wg_per_batch;
+ let q_batch_offset = params.offset_q + batch_idx * params.stride_q3;
+ let k_batch_offset = params.offset_k + batch_idx * params.stride_k3;
+ let v_batch_offset = params.offset_v + batch_idx * params.stride_v3;
+ let dst_batch_offset = params.offset_dst + batch_idx * dst3_stride;
+ let wg_in_batch = wg_id.x % wg_per_batch;
+
+ // head index
+ let head_idx = wg_in_batch / wg_per_head;
+ let q_head_offset = q_batch_offset + head_idx * params.stride_q2;
+ let k_head_idx = head_idx / params.q_per_kv;
+ let v_head_idx = k_head_idx;
+ let k_head_offset = k_batch_offset + k_head_idx * params.stride_k2;
+ let v_head_offset = v_batch_offset + v_head_idx * params.stride_v2;
+
+ // starting Q row for this workgroup
+ let wg_in_head = wg_in_batch % wg_per_head;
+ let q_row_start = wg_in_head * Q_TILE;
+
+#ifdef MASK
+ // mask offset
+ let mask_global_offset = params.offset_mask + batch_idx * params.stride_mask3 + q_row_start * params.seq_len_kv;
+#endif
+
+ // note that the output is permuted, the layout is [head_dim_v, n_heads, seq_len_q, batch_size]
+ let dst_global_offset = dst_batch_offset + q_row_start * dst2_stride + head_idx * HEAD_DIM_V;
+
+ let head = f32(head_idx);
+ let slope = select(1.0, select(pow(params.m1, 2.0 * (head - params.n_head_log2) + 1.0), pow(params.m0, head + 1.0), head < params.n_head_log2), params.max_bias > 0);
+
+ // load q tile into shared memory
+ for (var elem_idx = local_id.x; elem_idx < Q_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
+ let q_row = elem_idx / HEAD_DIM_QK;
+ let q_col = elem_idx % HEAD_DIM_QK;
+ let head_q_row = q_row_start + q_row;
+ let global_q_row_offset = q_head_offset + head_q_row * params.stride_q1;
+ q_shmem[elem_idx] = f16(select(
+ 0.0,
+ Q[global_q_row_offset + q_col],
+ head_q_row < params.seq_len_q && q_col < HEAD_DIM_QK));
+ }
+
+ for (var kv_tile = 0u; kv_tile < params.seq_len_kv; kv_tile += KV_TILE) {
+ // clear inter_shmem to ensure zero-initialized accumulators
+ for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
+ inter_shmem[elem_idx] = 0.0;
+ }
+
+ // load k tile into shared memory
+#if defined(KV_Q4_0)
+ for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
+ let blck_idx = elem_idx / BLOCK_SIZE;
+ let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
+ let k_row = blck_idx / BLOCKS_K;
+ let global_k_row = kv_tile + k_row;
+ let block_k = blck_idx % BLOCKS_K;
+ let row_offset = k_row * HEAD_DIM_QK;
+
+ if (global_k_row < params.seq_len_kv) {
+ let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
+ let base_idx = global_block_idx * F16_PER_BLOCK;
+ let d = K[base_idx]; // scale
+ for (var j = 0u; j < F16_PER_THREAD; j += 2) {
+ let q_0 = K[base_idx + 1u + block_offset + j];
+ let q_1 = K[base_idx + 1u + block_offset + j + 1];
+ let q_packed = bitcast<u32>(vec2(q_0, q_1));
+ for (var k = 0u; k < 4u; k++) {
+ let q_byte = get_byte(q_packed, k);
+ let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
+ let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
+ let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
+ kv_shmem[row_offset + idx] = q_lo;
+ kv_shmem[row_offset + idx + 16u] = q_hi;
+ }
+ }
+ }
+ }
+#elif defined(KV_Q8_0)
+ for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
+ let blck_idx = elem_idx / BLOCK_SIZE;
+ let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
+ let k_row = blck_idx / BLOCKS_K;
+ let global_k_row = kv_tile + k_row;
+ let block_k = blck_idx % BLOCKS_K;
+ let row_offset = k_row * HEAD_DIM_QK;
+
+ if (global_k_row < params.seq_len_kv) {
+ let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
+ let base_idx = global_block_idx * F16_PER_BLOCK;
+ let d = K[base_idx]; // scale
+ for (var j = 0u; j < F16_PER_THREAD; j += 2) {
+ let q_0 = K[base_idx + 1u + block_offset + j];
+ let q_1 = K[base_idx + 1u + block_offset + j + 1];
+ let q_packed = bitcast<u32>(vec2(q_0, q_1));
+ for (var k = 0u; k < 4u; k++) {
+ let q_byte = get_byte_i32(q_packed, k);
+ let q_val = f16(q_byte) * d;
+ let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
+ kv_shmem[row_offset + idx] = q_val;
+ }
+ }
+ }
+ }
+#elif defined(KV_DIRECT)
+ // Direct global loads for KV
+#else
+ for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
+ let k_row = elem_idx / HEAD_DIM_QK;
+ let k_col = elem_idx % HEAD_DIM_QK;
+ let global_k_row = kv_tile + k_row;
+ let global_k_row_offset = k_head_offset + global_k_row * params.stride_k1;
+ kv_shmem[elem_idx] = f16(select(
+ 0.0,
+ K[global_k_row_offset + k_col],
+ global_k_row < params.seq_len_kv && k_col < HEAD_DIM_QK));
+ }
+#endif
+
+ workgroupBarrier();
+
+ // accumulate q block * k block into registers across the entire KV tile
+ // TODO: this loop seems to be the current largest bottleneck
+ for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
+ let inter_offset = kv_block * SG_MAT_N;
+ var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<
+ subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
+#ifdef KV_DIRECT
+ let k_block_row = kv_tile + kv_block * SG_MAT_N;
+ let k_global_offset = k_head_offset + k_block_row * params.stride_k1;
+#else
+ let k_block_offset = kv_block * SG_MAT_N * HEAD_DIM_QK;
+#endif
+ for (var head_dim_block = 0u; head_dim_block < HEAD_DIM_QK; head_dim_block += SG_MAT_K) {
+ // load q submatrix from shared memory
+ var q_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
+ &q_shmem,
+ head_dim_block,
+ false,
+ HEAD_DIM_QK
+ );
+
+ // load k submatrix from device or shared memory
+#ifdef KV_DIRECT
+ var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
+ &K,
+ k_global_offset + head_dim_block,
+ true,
+ params.stride_k1
+ );
+#else
+ var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
+ &kv_shmem,
+ k_block_offset + head_dim_block,
+ true,
+ HEAD_DIM_QK
+ );
+#endif
+ acc = subgroupMatrixMultiplyAccumulate(q_sg_mat, k_sg_mat, acc);
+ }
+
+ // store acc to shared memory for softmax (S matrix from paper)
+ subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
+ }
+
+#ifdef MASK
+ // load mask tile into shared memory for this KV block
+ // TODO: optimize and skip if mask is -INF for the entire tile
+ for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
+ let mask_row = elem_idx / KV_TILE;
+ let mask_col = elem_idx % KV_TILE;
+ let global_q_row = q_row_start + mask_row;
+ let global_k_col = kv_tile + mask_col;
+ let mask_in_bounds = global_q_row < params.seq_len_q && global_k_col < params.seq_len_kv;
+ let mask_idx = mask_global_offset + mask_row * params.seq_len_kv + global_k_col;
+ mask_shmem[elem_idx] = select(0.0, mask[mask_idx], mask_in_bounds);
+ }
+#endif
+
+ workgroupBarrier();
+
+ // online softmax
+ for (var q_tile_row = subgroup_id; q_tile_row < Q_TILE; q_tile_row += num_subgroups) {
+ let global_q_row = q_row_start + q_tile_row;
+ if (global_q_row >= params.seq_len_q) {
+ break;
+ }
+
+ // initialize running max for this row
+ var prev_max = row_max_shmem[q_tile_row];
+ var final_max = prev_max;
+ // pass 1: compute final max across the full KV tile in chunks
+ for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
+ let kv_idx = kv_offset + sg_inv_id;
+ let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
+ final_max = subgroupMax(max(final_max, softmax_term));
+ }
+
+ var total_exp_term: f32 = 0.0;
+ // pass 2: compute exp sum and write P using final_max
+ for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
+ let kv_idx = kv_offset + sg_inv_id;
+ let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
+ let cur_p = select(0.0,
+ exp(softmax_term - final_max),
+ kv_tile + kv_idx < params.seq_len_kv && kv_idx < KV_TILE);
+ total_exp_term += subgroupAdd(cur_p);
+ if (kv_idx < KV_TILE) {
+ inter_shmem[kv_idx + q_tile_row * KV_TILE] = f16(cur_p);
+ }
+ }
+
+ let cur_exp = exp(prev_max - final_max);
+
+ if (sg_inv_id == 0) {
+ row_max_shmem[q_tile_row] = final_max;
+ exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * cur_exp + total_exp_term;
+ }
+
+ for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
+ let idx = q_tile_row * HEAD_DIM_V + elem_idx;
+ o_shmem[idx] = f16(f32(o_shmem[idx]) * cur_exp);
+ }
+ }
+
+ // load v tile into shared memory
+#if defined(KV_Q4_0)
+ for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
+ let blck_idx = elem_idx / BLOCK_SIZE;
+ let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
+ let v_row = blck_idx / BLOCKS_V;
+ let global_v_row = kv_tile + v_row;
+ let block_k = blck_idx % BLOCKS_V;
+ let row_offset = v_row * HEAD_DIM_V;
+
+ if (global_v_row < params.seq_len_kv) {
+ let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
+ let base_idx = global_block_idx * F16_PER_BLOCK;
+ let d = V[base_idx]; // scale
+ for (var j = 0u; j < F16_PER_THREAD; j += 2) {
+ let q_0 = V[base_idx + 1u + block_offset + j];
+ let q_1 = V[base_idx + 1u + block_offset + j + 1];
+ let q_packed = bitcast<u32>(vec2(q_0, q_1));
+ for (var k = 0u; k < 4u; k++) {
+ let q_byte = get_byte(q_packed, k);
+ let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
+ let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
+ let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
+ kv_shmem[row_offset + idx] = q_lo;
+ kv_shmem[row_offset + idx + 16u] = q_hi;
+ }
+ }
+ }
+ }
+#elif defined(KV_Q8_0)
+ for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
+ let blck_idx = elem_idx / BLOCK_SIZE;
+ let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
+ let v_row = blck_idx / BLOCKS_V;
+ let global_v_row = kv_tile + v_row;
+ let block_k = blck_idx % BLOCKS_V;
+ let row_offset = v_row * HEAD_DIM_V;
+
+ if (global_v_row < params.seq_len_kv) {
+ let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
+ let base_idx = global_block_idx * F16_PER_BLOCK;
+ let d = V[base_idx]; // scale
+ for (var j = 0u; j < F16_PER_THREAD; j += 2) {
+ let q_0 = V[base_idx + 1u + block_offset + j];
+ let q_1 = V[base_idx + 1u + block_offset + j + 1];
+ let q_packed = bitcast<u32>(vec2(q_0, q_1));
+ for (var k = 0u; k < 4u; k++) {
+ let q_byte = get_byte_i32(q_packed, k);
+ let q_val = f16(q_byte) * d;
+ let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
+ kv_shmem[row_offset + idx] = q_val;
+ }
+ }
+ }
+ }
+#elif defined(KV_DIRECT)
+ // Direct global loads for KV
+#else
+ for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE) {
+ let v_row = elem_idx / HEAD_DIM_V;
+ let v_col = elem_idx % HEAD_DIM_V;
+ let global_v_row = kv_tile + v_row;
+ let global_v_row_offset = v_head_offset + global_v_row * params.stride_v1;
+ kv_shmem[elem_idx] = f16(select(
+ 0.0,
+ V[global_v_row_offset + v_col],
+ global_v_row < params.seq_len_kv && v_col < HEAD_DIM_V));
+ }
+#endif
+
+ workgroupBarrier();
+
+ // we have P (Q_TILE x KV_TILE) in inter_shmem and V (KV_TILE x head_dim_v) in kv_shmem
+ // we want to compute O += P * V across the full KV tile
+ for (var head_dim_block = subgroup_id * SG_MAT_N;
+ head_dim_block < HEAD_DIM_V;
+ head_dim_block += num_subgroups * SG_MAT_N) {
+ // load O submatrix from shared memory
+ var o_sg_mat: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(
+ &o_shmem,
+ head_dim_block,
+ false,
+ HEAD_DIM_V
+ );
+
+ for (var kv_block = 0u; kv_block < KV_BLOCKS; kv_block++) {
+ let p_offset = kv_block * SG_MAT_N;
+ var p_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
+ &inter_shmem,
+ p_offset,
+ false,
+ KV_TILE
+ );
+
+ // load V submatrix from global or shared memory
+#ifdef KV_DIRECT
+ let v_block_row = kv_tile + kv_block * SG_MAT_N;
+ let v_global_offset = v_head_offset + v_block_row * params.stride_v1 + head_dim_block;
+ var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
+ &V,
+ v_global_offset,
+ false,
+ params.stride_v1
+ );
+#else
+ let v_block_offset = kv_block * SG_MAT_N * HEAD_DIM_V;
+ var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
+ &kv_shmem,
+ v_block_offset + head_dim_block,
+ false,
+ HEAD_DIM_V
+ );
+#endif
+ // O += P * V
+ o_sg_mat = subgroupMatrixMultiplyAccumulate(p_sg_mat, v_sg_mat, o_sg_mat);
+ }
+
+ // store O back to shared memory
+ subgroupMatrixStore(&o_shmem, head_dim_block, o_sg_mat, false, HEAD_DIM_V);
+ }
+
+ workgroupBarrier();
+ }
+
+#ifdef SINKS
+ // add sinks (applied once after processing all KV tiles)
+ for (var q_tile_row = subgroup_id;
+ q_tile_row < Q_TILE;
+ q_tile_row += num_subgroups) {
+ // no need to process rows beyond seq_len_q
+ let global_q_row = q_row_start + q_tile_row;
+ if (global_q_row >= params.seq_len_q) {
+ break;
+ }
+
+ var prev_max = row_max_shmem[q_tile_row];
+
+ // for non-sink threads, exp(FLOAT_MIN) effectively zeroes out their contribution to the sum
+ let sink_val = select(FLOAT_MIN, sinks[params.offset_sinks + head_idx], sg_inv_id == 0);
+ let new_max = subgroupMax(max(prev_max, sink_val));
+ let max_exp = exp(prev_max - new_max);
+ let sink_exp = exp(sink_val - new_max);
+
+ let sink_exp_sum = subgroupAdd(sink_exp);
+
+ if (sg_inv_id == 0) {
+ exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * max_exp + sink_exp_sum;
+ }
+
+ for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
+ let idx = q_tile_row * HEAD_DIM_V + elem_idx;
+ let val = f32(o_shmem[idx]) * max_exp;
+ o_shmem[idx] = f16(val);
+ }
+ }
+
+ workgroupBarrier();
+#endif
+
+ // write output back to global memory
+ for (var q_tile_row = subgroup_id;
+ q_tile_row < Q_TILE;
+ q_tile_row += num_subgroups) {
+ let global_q_row = q_row_start + q_tile_row;
+ if (global_q_row >= params.seq_len_q) {
+ break;
+ }
+
+ let exp_sum = exp_sum_shmem[q_tile_row];
+ let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0);
+
+ for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
+ let o_val = o_shmem[q_tile_row * HEAD_DIM_V + elem_idx];
+ let scaled = f32(o_val) * scale;
+ dst[dst_global_offset + q_tile_row * dst2_stride + elem_idx] = scaled;
+ }
+ }
+}