]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert : support rope_scaling type and rope_type (#13349)
authorSigbjørn Skjæret <redacted>
Thu, 8 May 2025 13:34:29 +0000 (15:34 +0200)
committerGitHub <redacted>
Thu, 8 May 2025 13:34:29 +0000 (15:34 +0200)
convert_hf_to_gguf.py

index a6aaf883464b2198e454b835c55be46820891f3c..bf6bc68380b19a5c70ede7fb0f2730b021b5f21d 100755 (executable)
@@ -1388,10 +1388,10 @@ class BaichuanModel(TextModel):
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
         self.gguf_writer.add_file_type(self.ftype)
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         head_count = self.hparams["num_attention_heads"]
@@ -1512,10 +1512,10 @@ class XverseModel(TextModel):
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
         self.gguf_writer.add_file_type(self.ftype)
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         del bid  # unused
@@ -1828,10 +1828,10 @@ class LlamaModel(TextModel):
             rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
         self.gguf_writer.add_rope_dimension_count(rope_dim)
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     @staticmethod
     def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
@@ -2206,10 +2206,10 @@ class DeciModel(TextModel):
             rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
         self.gguf_writer.add_rope_dimension_count(rope_dim)
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     @staticmethod
     def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
@@ -2449,10 +2449,10 @@ class MiniCPMModel(TextModel):
         logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
         self.gguf_writer.add_logit_scale(logit_scale)
         logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
-        if self.hparams.get("rope_scaling") is not None:
-            if self.hparams["rope_scaling"].get("type") == "longrope":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
-                logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
+            logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
 
     def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
         rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
@@ -2597,11 +2597,11 @@ class Qwen2Model(TextModel):
     def set_gguf_parameters(self):
         super().set_gguf_parameters()
         self._try_set_pooling_type()
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "yarn":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         if self.hf_arch == "Qwen2Model":
@@ -2763,11 +2763,11 @@ class Qwen2MoeModel(TextModel):
             logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
         # YaRN is not enabled by default
         # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "yarn":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
 
     _experts: list[dict[str, Tensor]] | None = None
 
@@ -3035,7 +3035,7 @@ class Phi3MiniModel(TextModel):
 
         scale = max_pos_embds / orig_max_pos_embds
 
-        rope_scaling_type = rope_scaling.get('type', '').lower()
+        rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
         if len(rope_scaling_type) == 0:
             raise KeyError('Missing the required key rope_scaling.type')
 
@@ -3347,10 +3347,10 @@ class InternLM2Model(TextModel):
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
         self.gguf_writer.add_file_type(self.ftype)
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         num_heads = self.hparams["num_attention_heads"]
@@ -3425,10 +3425,10 @@ class InternLM3Model(TextModel):
             rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
         self.gguf_writer.add_rope_dimension_count(rope_dim)
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         n_head = self.hparams["num_attention_heads"]
@@ -4866,12 +4866,12 @@ class DeepseekV2Model(TextModel):
 
         self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
 
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "yarn":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
-                self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
+            self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
 
     _experts: list[dict[str, Tensor]] | None = None
 
@@ -5363,11 +5363,11 @@ class Glm4Model(TextModel):
         super().set_gguf_parameters()
         rope_dim = self.hparams["head_dim"]
         self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
-        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
-            if self.hparams["rope_scaling"].get("type") == "yarn":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
-                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
 
 
 @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
@@ -5600,10 +5600,10 @@ class ExaoneModel(TextModel):
         rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
         rotary_factor = rotary_factor if rotary_factor is not None else 1.0
         self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
-        if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
-            if hparams["rope_scaling"].get("type") == "linear":
-                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-                self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
 
     def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
         if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
@@ -5706,10 +5706,11 @@ class BailingMoeModel(TextModel):
         rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
 
         self.gguf_writer.add_rope_dimension_count(rope_dim)
-        if (self.hparams.get("rope_scaling") or {}).get("type") == "yarn" and "factor" in self.hparams["rope_scaling"]:
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
             self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
-            self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
-            self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
         else:
             self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
         self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])