- name: Configure CMake
working-directory: ./build
- run: cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DGGML_TEST_COVERAGE=ON ..
+ run: cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DGGML_TEST_COVERAGE=ON -DGGML_METAL=OFF ..
- name: Build
working-directory: ./build
- name: Configure CMake
working-directory: ./build
- run: cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DGGML_TEST_COVERAGE=ON ..
+ run: cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DGGML_TEST_COVERAGE=ON -DGGML_METAL=OFF ..
- name: Build
working-directory: ./build
build/
+build-blas/
build-debug/
build-release/
build-sanitize-addr/
# options
+if (APPLE)
+ set(GGML_METAL_DEFAULT ON)
+ set(GGML_BLAS_DEFAULT ON)
+ set(GGML_BLAS_VENDOR_DEFAULT "Apple")
+else()
+ set(GGML_METAL_DEFAULT OFF)
+ set(GGML_BLAS_DEFAULT OFF)
+ set(GGML_BLAS_VENDOR_DEFAULT "Generic")
+endif()
+
option(BUILD_SHARED_LIBS "ggml: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
option(GGML_PERF "ggml: enable perf timings" OFF)
option(GGML_NO_ACCELERATE "ggml: disable Accelerate framework" OFF)
-option(GGML_OPENBLAS "ggml: use OpenBLAS" OFF)
+option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
+set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
+ "ggml: BLAS library vendor")
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_CUBLAS "ggml: use CUDA (deprecated)" OFF)
-option(GGML_METAL "ggml: use Metal" OFF)
+option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" OFF)
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
- int32_t n_batch = 8; // batch size for prompt processing
+ int32_t n_batch = 32; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
#include "ggml-metal.h"
#endif
+#ifdef GGML_USE_BLAS
+#include "ggml-blas.h"
+#endif
+
#include "common.h"
#include "common-ggml.h"
model.backends.push_back(gpu_backend);
}
+#ifdef GGML_USE_BLAS
+ ggml_backend_t blas_backend = ggml_backend_blas_init();
+ if (!blas_backend) {
+ fprintf(stderr, "%s: failed to initialize BLAS backend\n", __func__);
+ } else {
+ ggml_backend_blas_set_n_threads(blas_backend, params.n_threads);
+ model.backends.push_back(blas_backend);
+ }
+#endif
+
// always add the CPU backend as a fallback
ggml_backend_t cpu_backend = ggml_backend_cpu_init();
ggml_backend_cpu_set_n_threads(cpu_backend, params.n_threads);
+++ /dev/null
-#include "ggml-blas.h"
-#include "ggml-backend-impl.h"
-
-#include <future>
-#include <vector>
-
-#if defined(GGML_USE_ACCELERATE)
-# include <Accelerate/Accelerate.h>
-#elif defined(GGML_BLAS_USE_MKL)
-# include <mkl.h>
-#else
-# include <cblas.h>
-# ifdef BLIS_ENABLE_CBLAS
-# include <blis.h>
-# endif
-#endif
-
-struct ggml_backend_blas_context {
- int n_threads = GGML_DEFAULT_N_THREADS;
- std::unique_ptr<char[]> work_data;
- size_t work_size = 0;
-#ifndef GGML_USE_OPENMP
- std::vector<std::future<void>> tasks;
-#endif
-};
-
-// helper function to determine if it is better to use BLAS or not
-// for large matrices, BLAS is faster
-static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- const int64_t ne10 = src1->ne[0];
-
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
-
- // TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- src1->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
-
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
-
- return false;
-}
-
-static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
-
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
-
- const int64_t ne_plane = ne01*ne00;
- const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
-
- if (ctx->work_size < desired_wsize) {
- ctx->work_data.reset(new char[desired_wsize]);
- ctx->work_size = desired_wsize;
- }
- void * wdata = ctx->work_data.get();
-
- // convert src0 to float
- if (type != GGML_TYPE_F32) {
- ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
- ggml_to_float_t const to_float = type_traits.to_float;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
- float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
-
- const int min_cols_per_thread = 4096;
- const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
- const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
-
-#ifdef GGML_USE_OPENMP
- #pragma omp parallel for num_threads(n_threads)
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
-#else
- for (int i = 1; i < n_threads; i++) {
- const int64_t start = i*ne01/n_threads;
- const int64_t end = (i + 1)*ne01/n_threads;
- if (start < end) {
- ctx->tasks.push_back(std::async(std::launch::async, [=]() {
- for (int64_t i01 = start; i01 < end; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
- }));
- }
- }
- {
- // reuse the current thread for the first task
- const int64_t start = 0;
- const int64_t end = ne01/n_threads;
- for (int64_t i01 = start; i01 < end; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
- }
-#endif
- }
- }
-
-#ifndef GGML_USE_OPENMP
- // wait for all tasks to finish
- for (auto & task : ctx->tasks) {
- task.get();
- }
- ctx->tasks.clear();
-#endif
- }
-
-#if defined(OPENBLAS_VERSION)
- openblas_set_num_threads(ctx->n_threads);
-#endif
-
-#if defined(BLIS_ENABLE_CBLAS)
- bli_thread_set_num_threads(ctx->n_threads);
-#endif
-
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
-
- const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
- const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
- float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
-
- if (type != GGML_TYPE_F32) {
- x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
- }
-
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne1, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
-}
-
-static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne3 == ne13);
- GGML_ASSERT(ne03 == ne13);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
-
- // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
- // src0: (k,n)
- // src1: (k,m)
- // dst: (m,n)
- //
- // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
- // Also expressed as (major,minor)
- // a: (m,k): so src1 transposed
- // b: (k,n): so src0
- // c: (m,n)
- //
- // However, if ggml_is_transposed(src1) is true, then
- // src1->data already contains a transposed version, so sgemm mustn't
- // transpose it further.
-
- int n = src0->ne[0];
- int k = src0->ne[1];
- int m = src1->ne[0];
-
- CBLAS_TRANSPOSE transposeA;
- int lda;
-
- if (!ggml_is_transposed(src1)) {
- transposeA = CblasTrans;
- lda = m;
- } else {
- transposeA = CblasNoTrans;
- lda = k;
- }
-
- float * a = (float *) ((char *) src1->data);
- float * b = (float *) ((char *) src0->data);
- float * c = (float *) ((char *) dst->data);
-
- cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
-
- GGML_UNUSED(ctx);
-}
-
-// backend interface
-
-GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
- return "BLAS";
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
- delete ctx;
- delete backend;
-}
-
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
- return ggml_backend_cpu_buffer_type();
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
-
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
-
- switch (node->op) {
- case GGML_OP_MUL_MAT:
- ggml_backend_blas_mul_mat(ctx, node);
- break;
-
- case GGML_OP_OUT_PROD:
- ggml_backend_blas_out_prod(ctx, node);
- break;
-
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- break;
-
- default:
- fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
- GGML_ASSERT(false);
- }
- }
-
- return GGML_STATUS_SUCCESS;
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- const struct ggml_tensor * src0 = op->src[0];
- const struct ggml_tensor * src1 = op->src[1];
-
- return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
- (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
- op->src[1]->type == GGML_TYPE_F32 &&
- ggml_is_matrix(src0) &&
- ggml_is_matrix(src1) &&
- ggml_is_contiguous(src0) &&
- (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- return ggml_backend_buft_is_host(buft);
-
- GGML_UNUSED(backend);
-}
-
-static struct ggml_backend_i blas_backend_i = {
- /* .get_name = */ ggml_backend_blas_name,
- /* .free = */ ggml_backend_blas_free,
- /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_blas_graph_compute,
- /* .supports_op = */ ggml_backend_blas_supports_op,
- /* .supports_buft = */ ggml_backend_blas_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
-};
-
-static ggml_guid_t ggml_backend_blas_guid(void) {
- static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
- return &guid;
-}
-
-ggml_backend_t ggml_backend_blas_init(void) {
- ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
-
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_blas_guid(),
- /* .interface = */ blas_backend_i,
- /* .context = */ ctx,
- };
-
-#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
- if (openblas_get_parallel() != OPENBLAS_OPENMP) {
- fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
- }
-#endif
-
-#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
- fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
-#endif
-
- return backend;
-}
-
-GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
-}
-
-void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
- GGML_ASSERT(ggml_backend_is_blas(backend_blas));
-
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
- ctx->n_threads = n_threads;
-}
+++ /dev/null
-#pragma once
-
-#include "ggml.h"
-#include "ggml-backend.h"
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
-
-GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
-
-// number of threads used for conversion to float
-// for openblas and blis, this will also set the number of threads used for blas operations
-GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
-
-
-#ifdef __cplusplus
-}
-#endif
endif()
endif()
-if (GGML_OPENBLAS)
- set(OPENBLAS_INCLUDE_SEARCH_PATHS
- /usr/include
- /usr/include/openblas
- /usr/include/openblas-base
- /usr/local/include
- /usr/local/include/openblas
- /usr/local/include/openblas-base
- /opt/OpenBLAS/include
- $ENV{OpenBLAS_HOME}
- $ENV{OpenBLAS_HOME}/include
- )
- find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
- find_library(OPENBLAS_LIB NAMES openblas libopenblas)
- if (OPENBLAS_LIB)
- message(STATUS "OpenBLAS found")
-
- set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${OPENBLAS_LIB})
- set(GGML_EXTRA_INCS ${GGML_EXTRA_INCS} ${OPENBLAS_INC})
- set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
+if (GGML_BLAS)
+ if (GGML_STATIC)
+ set(BLA_STATIC ON)
+ endif()
+ #if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
+ # set(BLA_SIZEOF_INTEGER 8)
+ #endif()
+
+ set(BLA_VENDOR ${GGML_BLAS_VENDOR})
+ find_package(BLAS)
+
+ if (BLAS_FOUND)
+ message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
+
+ if (("${BLAS_INCLUDE_DIRS}" STREQUAL "") AND NOT (${GGML_BLAS_VENDOR} MATCHES "Apple"))
+ # BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
+ # see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
+ find_package(PkgConfig REQUIRED)
+ if (${GGML_BLAS_VENDOR} MATCHES "Generic")
+ pkg_check_modules(DepBLAS REQUIRED blas)
+ elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
+ # As of openblas v0.3.22, the 64-bit is named openblas64.pc
+ pkg_check_modules(DepBLAS openblas64)
+ if (NOT DepBLAS_FOUND)
+ pkg_check_modules(DepBLAS REQUIRED openblas)
+ endif()
+ elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
+ pkg_check_modules(DepBLAS REQUIRED blis)
+ elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
+ pkg_check_modules(DepBLAS REQUIRED blas-atlas)
+ elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
+ pkg_check_modules(DepBLAS REQUIRED flexiblas_api)
+ elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
+ # all Intel* libraries share the same include path
+ pkg_check_modules(DepBLAS REQUIRED mkl-sdl)
+ elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
+ # this doesn't provide pkg-config
+ # suggest to assign BLAS_INCLUDE_DIRS on your own
+ if ("${NVHPC_VERSION}" STREQUAL "")
+ message(WARNING "Better to set NVHPC_VERSION")
+ else()
+ set(DepBLAS_FOUND ON)
+ set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
+ endif()
+ endif()
+ if (DepBLAS_FOUND)
+ set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
+ else()
+ message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
+ " detected by pkgconfig, trying to find cblas.h from possible paths...")
+ find_path(BLAS_INCLUDE_DIRS
+ NAMES cblas.h
+ HINTS
+ /usr/include
+ /usr/local/include
+ /usr/include/openblas
+ /opt/homebrew/opt/openblas/include
+ /usr/local/opt/openblas/include
+ /usr/include/x86_64-linux-gnu/openblas/include
+ )
+ endif()
+ endif()
+
+ message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
+
+ add_compile_options(${BLAS_LINKER_FLAGS})
+
+ add_compile_definitions(GGML_USE_BLAS)
+
+ if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
+ add_compile_definitions(GGML_BLAS_USE_MKL)
+ endif()
+
+ set(GGML_HEADERS_BLAS ggml-blas.h)
+ set(GGML_SOURCES_BLAS ggml-blas.cpp)
+
+ set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${BLAS_LIBRARIES})
+ set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
+ set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_BLAS)
else()
- message(WARNING "OpenBLAS not found")
+ message(WARNING "BLAS not found, please refer to "
+ "https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
+ " to set correct GGML_BLAS_VENDOR")
endif()
endif()
../include/ggml/ggml.h
../include/ggml/ggml-alloc.h
../include/ggml/ggml-backend.h
- ${GGML_SOURCES_CUDA}
- ${GGML_SOURCES_METAL}
- ${GGML_SOURCES_RPC}
+ ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
+ ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
+ ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
+ ${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS}
)
target_include_directories(${TARGET} PUBLIC
--- /dev/null
+#include "ggml-blas.h"
+#include "ggml-backend-impl.h"
+
+#include <future>
+#include <vector>
+
+#if defined(GGML_USE_ACCELERATE)
+# include <Accelerate/Accelerate.h>
+#elif defined(GGML_BLAS_USE_MKL)
+# include <mkl.h>
+#else
+# include <cblas.h>
+# ifdef BLIS_ENABLE_CBLAS
+# include <blis.h>
+# endif
+#endif
+
+struct ggml_backend_blas_context {
+ int n_threads = GGML_DEFAULT_N_THREADS;
+ std::unique_ptr<char[]> work_data;
+ size_t work_size = 0;
+#ifndef GGML_USE_OPENMP
+ std::vector<std::future<void>> tasks;
+#endif
+};
+
+// helper function to determine if it is better to use BLAS or not
+// for large matrices, BLAS is faster
+static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ const int64_t ne10 = src1->ne[0];
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+
+ // TODO: find the optimal values for these
+ if (ggml_is_contiguous(src0) &&
+ ggml_is_contiguous(src1) &&
+ src1->type == GGML_TYPE_F32 &&
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
+
+ /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
+ return true;
+ }
+
+ return false;
+}
+
+static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const enum ggml_type type = src0->type;
+
+ GGML_ASSERT(ne0 == ne01);
+ GGML_ASSERT(ne1 == ne11);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ // broadcast factors
+ const int64_t r2 = ne12/ne02;
+ const int64_t r3 = ne13/ne03;
+
+ const int64_t ne_plane = ne01*ne00;
+ const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
+
+ if (ctx->work_size < desired_wsize) {
+ ctx->work_data.reset(new char[desired_wsize]);
+ ctx->work_size = desired_wsize;
+ }
+ void * wdata = ctx->work_data.get();
+
+ // convert src0 to float
+ if (type != GGML_TYPE_F32) {
+ ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
+ ggml_to_float_t const to_float = type_traits.to_float;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
+ float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
+
+ const int min_cols_per_thread = 4096;
+ const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
+ const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
+
+#ifdef GGML_USE_OPENMP
+ #pragma omp parallel for num_threads(n_threads)
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
+ }
+#else
+ for (int i = 1; i < n_threads; i++) {
+ const int64_t start = i*ne01/n_threads;
+ const int64_t end = (i + 1)*ne01/n_threads;
+ if (start < end) {
+ ctx->tasks.push_back(std::async(std::launch::async, [=]() {
+ for (int64_t i01 = start; i01 < end; i01++) {
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
+ }
+ }));
+ }
+ }
+ {
+ // reuse the current thread for the first task
+ const int64_t start = 0;
+ const int64_t end = ne01/n_threads;
+ for (int64_t i01 = start; i01 < end; i01++) {
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
+ }
+ }
+#endif
+ }
+ }
+
+#ifndef GGML_USE_OPENMP
+ // wait for all tasks to finish
+ for (auto & task : ctx->tasks) {
+ task.get();
+ }
+ ctx->tasks.clear();
+#endif
+ }
+
+#if defined(OPENBLAS_VERSION)
+ openblas_set_num_threads(ctx->n_threads);
+#endif
+
+#if defined(BLIS_ENABLE_CBLAS)
+ bli_thread_set_num_threads(ctx->n_threads);
+#endif
+
+ for (int64_t i13 = 0; i13 < ne13; i13++) {
+ for (int64_t i12 = 0; i12 < ne12; i12++) {
+ const int64_t i03 = i13/r3;
+ const int64_t i02 = i12/r2;
+
+ const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
+ const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
+ float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
+
+ if (type != GGML_TYPE_F32) {
+ x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
+ }
+
+ cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
+ ne1, ne01, ne10,
+ 1.0f, y, ne10,
+ x, ne00,
+ 0.0f, d, ne01);
+ }
+ }
+}
+
+static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne02 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+ GGML_ASSERT(ne03 == ne13);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
+ // src0: (k,n)
+ // src1: (k,m)
+ // dst: (m,n)
+ //
+ // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
+ // Also expressed as (major,minor)
+ // a: (m,k): so src1 transposed
+ // b: (k,n): so src0
+ // c: (m,n)
+ //
+ // However, if ggml_is_transposed(src1) is true, then
+ // src1->data already contains a transposed version, so sgemm mustn't
+ // transpose it further.
+
+ int n = src0->ne[0];
+ int k = src0->ne[1];
+ int m = src1->ne[0];
+
+ CBLAS_TRANSPOSE transposeA;
+ int lda;
+
+ if (!ggml_is_transposed(src1)) {
+ transposeA = CblasTrans;
+ lda = m;
+ } else {
+ transposeA = CblasNoTrans;
+ lda = k;
+ }
+
+ float * a = (float *) ((char *) src1->data);
+ float * b = (float *) ((char *) src0->data);
+ float * c = (float *) ((char *) dst->data);
+
+ cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
+
+ GGML_UNUSED(ctx);
+}
+
+// backend interface
+
+GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
+ return "BLAS";
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
+ delete ctx;
+ delete backend;
+}
+
+GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
+ return ggml_backend_cpu_buffer_type();
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ switch (node->op) {
+ case GGML_OP_MUL_MAT:
+ ggml_backend_blas_mul_mat(ctx, node);
+ break;
+
+ case GGML_OP_OUT_PROD:
+ ggml_backend_blas_out_prod(ctx, node);
+ break;
+
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ break;
+
+ default:
+ fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
+ GGML_ASSERT(false);
+ }
+ }
+
+ return GGML_STATUS_SUCCESS;
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ const struct ggml_tensor * src0 = op->src[0];
+ const struct ggml_tensor * src1 = op->src[1];
+
+ return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
+ (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
+ op->src[1]->type == GGML_TYPE_F32 &&
+ ggml_is_matrix(src0) &&
+ ggml_is_matrix(src1) &&
+ ggml_is_contiguous(src0) &&
+ (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
+
+ GGML_UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ return ggml_backend_buft_is_host(buft);
+
+ GGML_UNUSED(backend);
+}
+
+static struct ggml_backend_i blas_backend_i = {
+ /* .get_name = */ ggml_backend_blas_name,
+ /* .free = */ ggml_backend_blas_free,
+ /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
+ /* .set_tensor_async = */ NULL,
+ /* .get_tensor_async = */ NULL,
+ /* .cpy_tensor_async = */ NULL,
+ /* .synchronize = */ NULL,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_blas_graph_compute,
+ /* .supports_op = */ ggml_backend_blas_supports_op,
+ /* .supports_buft = */ ggml_backend_blas_supports_buft,
+ /* .offload_op = */ NULL,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_record = */ NULL,
+ /* .event_wait = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+static ggml_guid_t ggml_backend_blas_guid(void) {
+ static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
+ return &guid;
+}
+
+ggml_backend_t ggml_backend_blas_init(void) {
+ ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
+
+ ggml_backend_t backend = new ggml_backend {
+ /* .guid = */ ggml_backend_blas_guid(),
+ /* .interface = */ blas_backend_i,
+ /* .context = */ ctx,
+ };
+
+#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
+ if (openblas_get_parallel() != OPENBLAS_OPENMP) {
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
+ }
+#endif
+
+#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
+#endif
+
+ return backend;
+}
+
+GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
+}
+
+void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
+ GGML_ASSERT(ggml_backend_is_blas(backend_blas));
+
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
+ ctx->n_threads = n_threads;
+}
--- /dev/null
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// backend API
+GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
+
+GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
+
+// number of threads used for conversion to float
+// for openblas and blis, this will also set the number of threads used for blas operations
+GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
+
+
+#ifdef __cplusplus
+}
+#endif