self.gguf_writer.add_tensor(new_name, data)
- # note: MPT output is tied to (same as) wte in original model;
- # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
- if new_name == "token_embd.weight":
- self.gguf_writer.add_tensor("output.weight", data)
-
class OrionModel(Model):
def set_vocab(self):
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ // same as tok_embd, duplicated to allow offloading
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ ml.n_created--; // artificial tensor
+ ml.size_data += ggml_nbytes(model.output);
}
for (int i = 0; i < n_layer; ++i) {