return GGML_STATUS_SUCCESS;
}
-static int CreateAclTensorWeight(const void *hostData, const std::vector<int64_t> &shape, void **deviceAddr,
- aclDataType dataType, aclTensor **tensor)
-{
- uint64_t size = 1;
- for (auto i : shape) {
- size *= i;
+// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
+namespace {
+ void* g_nz_workspace = nullptr;
+ size_t g_nz_workspace_allocated = 0;
+
+ void release_nz_workspace() {
+ if (g_nz_workspace) {
+ aclrtFree(g_nz_workspace);
+ g_nz_workspace = nullptr;
+ g_nz_workspace_allocated = 0;
+ }
}
- const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
- ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size));
-
- size *= sizeof(int16_t);
-
- ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST));
- aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE);
-
- std::vector<int64_t> strides(shape.size(), 1);
- for (int64_t i = shape.size() - 2; i >= 0; i--) {
- strides[i] = shape[i + 1] * strides[i + 1];
+ void relloc_nz_workspace(size_t new_size) {
+ if (new_size > g_nz_workspace_allocated) {
+ if (g_nz_workspace) {
+ aclrtFree(g_nz_workspace);
+ g_nz_workspace = nullptr;
+ }
+ ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
+ g_nz_workspace_allocated = new_size;
+ }
}
-
- *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
- shape.data(), shape.size(), *deviceAddr);
- return 0;
}
+/**
+ * @brief Convert tensor weights to NZ format using Ascend CANN API.
+ *
+ * This function creates a transposed tensor descriptor and performs the
+ * TransMatmulWeight operation. Converting tensor formats can significantly
+ * improve performance on certain hardware.
+ *
+ * @param tensor Pointer to the input ggml_tensor containing the weights.
+ * @param data Pointer to the raw data buffer for the tensor weights.
+ * @param offset Byte offset within the tensor data buffer where weights start.
+ *
+ * @note The workspace buffer used in this function is managed globally and reused
+ * across calls. This reduces overhead from repeated memory allocation and deallocation.
+ */
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
- aclrtStream stream;
- ACL_CHECK(aclrtCreateStream(&stream));
-
- std::vector<int64_t> weightTransposedShape = {tensor->ne[1], tensor->ne[0]};
- void *weightTransposedDeviceAddr = nullptr;
- aclTensor *weightTransposed = nullptr;
- CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr,
- ggml_cann_type_mapping(tensor->type), &weightTransposed);
-
+ aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
+ tensor->nb, 2, ACL_FORMAT_ND, offset);
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
- void *workspaceAddr = nullptr;
// TransMatmulWeight
- ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
- std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
- if (workspaceSize > 0) {
- ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
- workspaceAddrPtrTrans.reset(workspaceAddr);
- }
- ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream));
+ ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
+ &workspaceSize, &executor));
+ // Avoid frequent malloc/free of the workspace.
+ relloc_nz_workspace(workspaceSize);
- size_t size = ggml_nelements(tensor) * ggml_element_size(tensor);
-
- aclrtMemcpy((char *)tensor->data + offset, size,
- weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE);
+ ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
ACL_CHECK(aclDestroyTensor(weightTransposed));
- aclrtFree(weightTransposedDeviceAddr);
}
// TODO: need handle tensor which has paddings.
// For acl, synchronous functions use this default stream.
// Why aclrtSynchronizeDevice?
- bool weightToNZ = false;
-#ifdef ASCEND_310P
- weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
-#endif
+ // Only check env once.
+ static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
ACL_MEMCPY_HOST_TO_DEVICE));
- if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) {
+ if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
+ GGML_ASSERT(tensor->ne[2] == 1);
+ GGML_ASSERT(tensor->ne[3] == 1);
weight_format_to_nz(tensor, data, offset);
}
} else {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
+ // Only check env once.
+ static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
+
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
// TODO: quantized type?
// int64_t line_size = ne0 * ggml_element_size(tensor);
// int64_t line_size_align_32 = (line_size + 31) & ~31;
// size += (line_size_align_32 - line_size);
-
- // TODO: not support quantized yet.
- // TODO: consider un-continue tensor.
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(
tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
+ } else if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
+ // NZ format weight are not support quantized yet.
+ // If ND tensor transform to NZ, size may changed.
+ int64_t shape[] = {tensor->ne[1], tensor->ne[0]};
+ GGML_ASSERT(tensor->ne[2] == 1);
+ GGML_ASSERT(tensor->ne[3] == 1);
+ const aclIntArray *acl_shape = aclCreateIntArray(shape, 2);
+ size_t new_size;
+ ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(acl_shape,
+ ggml_cann_type_mapping(tensor->type), &new_size));
+ ACL_CHECK(aclDestroyIntArray(acl_shape));
+ size = std::max(size, new_size);
}
return size;
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
+ //release temp buffer create by set tensor.
+ release_nz_workspace();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor* node = cgraph->nodes[i];