]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model : Minimax M2 (#16831)
authorPiotr Wilkin (ilintar) <redacted>
Fri, 31 Oct 2025 20:20:47 +0000 (21:20 +0100)
committerGitHub <redacted>
Fri, 31 Oct 2025 20:20:47 +0000 (21:20 +0100)
* Model: Minimax M2

* Cleanup

* Cleanup pt. 2

* Cleanup pt. 3

* Update convert_hf_to_gguf_update.py - merge catch blocks

Co-authored-by: Sigbjørn Skjæret <redacted>
* Remove vocab models and test

* Remove all redundant hparam settings covered by TextModel

* Move super to start, don't set block_count

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <redacted>
* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <redacted>
---------

Co-authored-by: Sigbjørn Skjæret <redacted>
convert_hf_to_gguf.py
convert_hf_to_gguf_update.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-model.cpp
src/llama-model.h
src/llama-vocab.cpp
src/llama-vocab.h

index 5abc177958852fbedc2e3d8895f65a443e906112..f186c2167d7d009a1b4d1ee38cf13c2c995c41fb 100755 (executable)
@@ -1054,6 +1054,9 @@ class TextModel(ModelBase):
         if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
             # ref: https://huggingface.co/ibm-granite/granite-docling-258M
             res = "granite-docling"
+        if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
+            # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
+            res = "minimax-m2"
 
         if res is None:
             logger.warning("\n")
@@ -7126,6 +7129,64 @@ class DeepseekV2Model(TextModel):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@ModelBase.register("MiniMaxM2ForCausalLM")
+class MiniMaxM2Model(TextModel):
+    model_arch = gguf.MODEL_ARCH.MINIMAXM2
+    _experts_cache: dict[int, dict[str, Tensor]] = {}
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.hparams["num_experts"] = self.hparams["num_local_experts"]
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        if self.hparams["scoring_func"] == "sigmoid":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+        elif self.hparams["scoring_func"] == "softmax":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
+        else:
+            raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
+
+        self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
+        self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
+        if name.endswith("e_score_correction_bias"):
+            name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+        # merge expert weights
+        if 'experts' in name:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            expert_cache = self._experts_cache.setdefault(bid, {})
+            expert_cache[name] = data_torch
+            expert_weights = ["w1", "w2", "w3"]
+
+            # not enough expert weights to merge
+            if len(expert_cache) < n_experts * len(expert_weights):
+                return []
+
+            tensors: list[tuple[str, Tensor]] = []
+            for w_name in expert_weights:
+                datas: list[Tensor] = []
+
+                for xid in range(n_experts):
+                    ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
+                    datas.append(expert_cache[ename])
+                    del expert_cache[ename]
+
+                data_torch = torch.stack(datas, dim=0)
+                merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
+                new_name = self.map_tensor_name(merged_name)
+                tensors.append((new_name, data_torch))
+
+            del self._experts_cache[bid]
+            return tensors
+
+        return super().modify_tensors(data_torch, name, bid)
+
+
 @ModelBase.register("Dots1ForCausalLM")
 class Dots1Model(Qwen2MoeModel):
     model_arch = gguf.MODEL_ARCH.DOTS1
index 0ebc1b160f603c354efaa1325c36ef318facfa95..7df96eb08392027544efba73dbce750744c5fd85 100755 (executable)
@@ -141,6 +141,7 @@ models = [
     {"name": "mellum",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
     {"name": "bailingmoe2",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
     {"name": "granite-docling",  "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
+    {"name": "minimax-m2",       "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
 ]
 
 # some models are known to be broken upstream, so we will skip them as exceptions
@@ -435,7 +436,7 @@ for model in models:
             tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
         else:
             tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
-    except OSError as e:
+    except (OSError, TypeError) as e:
         logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
         continue  # Skip this model and continue with the next one in the loop
 
index d75ac704fed9555b9ab2beb694f747405383d816..0d5afa01edf849604920325f9b48d436ba571f2d 100644 (file)
@@ -425,6 +425,7 @@ class MODEL_ARCH(IntEnum):
     GROVEMOE         = auto()
     APERTUS          = auto()
     COGVLM           = auto()
+    MINIMAXM2        = auto()
 
 
 class VISION_PROJECTOR_TYPE(IntEnum):
@@ -790,6 +791,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.SEED_OSS:         "seed_oss",
     MODEL_ARCH.GROVEMOE:         "grovemoe",
     MODEL_ARCH.APERTUS:          "apertus",
+    MODEL_ARCH.MINIMAXM2:        "minimax-m2",
     MODEL_ARCH.COGVLM:           "cogvlm",
 }
 
@@ -2921,6 +2923,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_CHEXP,
         MODEL_TENSOR.FFN_UP_CHEXP,
     ],
+    MODEL_ARCH.MINIMAXM2: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_EXP_PROBS_B,
+    ],
     MODEL_ARCH.COGVLM: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index 6fe6f22358ca8caa01bcc64817b2d8fa4b078ef2..cef5acec7581ff4be97e3f9cfcb3b7e5da23ff9e 100644 (file)
@@ -381,6 +381,7 @@ class TensorNameMap:
             "model.layers.{bid}.mlp.moe_statics.e_score_correction",        # ernie4.5-moe
             "model.layers.{bid}.mlp.gate.expert_bias",                      # bailingmoe2
             "model.layers.{bid}.feed_forward.expert_bias",                  # lfm2moe
+            "model.layers.{bid}.block_sparse_moe.e_score_correction",       # minimax-m2
         ),
 
         # Feed-forward up
index ad2880034c22480de2209e101ad1b635b928553e..7c7953b83dda8d20b8b38962b0eda87338288ad6 100644 (file)
@@ -105,6 +105,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_SEED_OSS,         "seed_oss"         },
     { LLM_ARCH_GROVEMOE,         "grovemoe"         },
     { LLM_ARCH_APERTUS,          "apertus"          },
+    { LLM_ARCH_MINIMAX_M2,       "minimax-m2"       },
     { LLM_ARCH_COGVLM,           "cogvlm"           },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
 };
@@ -2355,6 +2356,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP_CHEXPS,      "blk.%d.ffn_up_chexps" },
         },
     },
+    {
+        LLM_ARCH_MINIMAX_M2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B,    "blk.%d.exp_probs_b" },
+        },
+    },
     {
         LLM_ARCH_COGVLM,
         {
index 4dae35e2923081cee56734404feb58c42ff1d737..3f893a2dc6916b97db9269b55ce520b680553113 100644 (file)
@@ -109,6 +109,7 @@ enum llm_arch {
     LLM_ARCH_SEED_OSS,
     LLM_ARCH_GROVEMOE,
     LLM_ARCH_APERTUS,
+    LLM_ARCH_MINIMAX_M2,
     LLM_ARCH_COGVLM,
     LLM_ARCH_UNKNOWN,
 };
index 89a6a51b2cc5efc0554eb1e0cc2bed8c648dad33..db5365257527874cae9e57cf45258e6ffc2dd3c9 100644 (file)
@@ -120,6 +120,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_30B_A3B:       return "30B.A3B";
         case LLM_TYPE_100B_A6B:      return "100B.A6B";
         case LLM_TYPE_106B_A12B:     return "106B.A12B";
+        case LLM_TYPE_230B_A10B:     return "230B.A10B";
         case LLM_TYPE_235B_A22B:     return "235B.A22B";
         case LLM_TYPE_300B_A47B:     return "300B.A47B";
         case LLM_TYPE_355B_A32B:     return "355B.A32B";
@@ -2155,6 +2156,17 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_MINIMAX_M2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,  hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,   hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,           hparams.expert_gating_func, false);
+
+                switch (hparams.n_layer) {
+                    case 62: type = LLM_TYPE_230B_A10B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_COGVLM:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6185,6 +6197,35 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
                     }
                 } break;
+            case LLM_ARCH_MINIMAX_M2:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert}, 0);
+                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert}, 0);
+                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert}, 0);
+                        layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
+                    }
+                } break;
             case LLM_ARCH_COGVLM:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -20024,6 +20065,130 @@ struct llm_build_apertus : public llm_graph_context {
     }
 };
 
+struct llm_build_minimax_m2 : public llm_graph_context {
+    llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        // GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        ggml_tensor * inp_pos = build_inp_pos();
+        auto inp_attn = build_attn_inp_kv();
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            cur = inpL;
+
+            // self_attention
+            {
+                cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
+                cb(cur, "attn_norm", il);
+
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                    );
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                    );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn,
+                        model.layers[il].wo, NULL,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_layer - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // MoE branch
+            cur = build_norm(ffn_inp,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    model.layers[il].ffn_exp_probs_b,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, true,
+                    false, 0.0,
+                    (llama_expert_gating_func_type) hparams.expert_gating_func,
+                    il);
+            cb(cur, "ffn_moe_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_cogvlm : public llm_graph_context {
     llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -20654,6 +20819,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_apertus>(*this, params);
             } break;
+        case LLM_ARCH_MINIMAX_M2:
+            {
+                llm = std::make_unique<llm_build_minimax_m2>(*this, params);
+            } break;
         case LLM_ARCH_COGVLM:
             {
                 llm = std::make_unique<llm_build_cogvlm>(*this, params);
@@ -20875,6 +21044,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_SEED_OSS:
         case LLM_ARCH_GROVEMOE:
         case LLM_ARCH_APERTUS:
+        case LLM_ARCH_MINIMAX_M2:
         case LLM_ARCH_COGVLM:
             return LLAMA_ROPE_TYPE_NEOX;
 
index a5affda1c999d8e3aaad4e09df1be58785d4bdd0..71ff148e07daea14a771f736e356d63adfb1474f 100644 (file)
@@ -114,6 +114,7 @@ enum llm_type {
     LLM_TYPE_30B_A3B,
     LLM_TYPE_100B_A6B,
     LLM_TYPE_106B_A12B, // GLM-4.5-Air
+    LLM_TYPE_230B_A10B, // Minimax M2
     LLM_TYPE_235B_A22B,
     LLM_TYPE_300B_A47B, // Ernie MoE big
     LLM_TYPE_355B_A32B, // GLM-4.5
index 639fecbd31745801b8be2939bd1395b60a533699..735c5d547f9e4097a9c09255f93b692d4088d834 100644 (file)
@@ -401,6 +401,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
                 };
                 break;
             case LLAMA_VOCAB_PRE_TYPE_GPT4O:
+            case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
                 regex_exprs = {
                     // original regex from tokenizer.json
                     // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@@ -1992,6 +1993,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 tokenizer_pre == "grok-2") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
                 clean_spaces = false;
+            } else if (
+                tokenizer_pre == "minimax-m2") {
+                pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
+                clean_spaces = false;
             } else {
                 throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
             }
index 5e468675e4447b959c6369d411bc1d876b6c6fd5..1194ec473d03a7b9aa374fc90bcb132226c43c89 100644 (file)
@@ -49,6 +49,7 @@ enum llama_vocab_pre_type {
     LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE   = 38,
     LLAMA_VOCAB_PRE_TYPE_GROK_2          = 39,
     LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
+    LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2      = 41,
 };
 
 struct LLM_KV;