LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
+ LLM_ARCH_GRANITE,
LLM_ARCH_UNKNOWN,
};
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
+ { LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
+ LLM_KV_RESIDUAL_SCALE,
+ LLM_KV_EMBEDDING_SCALE,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
+ LLM_KV_ATTENTION_SCALE,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
{ LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
+ { LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
+ { LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
+ {
+ LLM_ARCH_GRANITE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
{
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
+ // Additional scale factors (Granite)
+ float f_residual_scale = 0.0f;
+ float f_embedding_scale = 0.0f;
+ float f_attention_scale = 0.0f;
+
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
+ if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
+ if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true;
+ if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true;
return false;
}
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_GRANITE:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
+ ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
+ ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
+ ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_3B; break;
+ // Add additional layer/vocab/etc checks here for other model sizes
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
default: (void)0;
}
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
+
+ if (model.arch == LLM_ARCH_GRANITE) {
+ LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
+ LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
+ LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
+ }
}
// Returns false if cancelled by progress_callback
case LLM_ARCH_LLAMA:
case LLM_ARCH_REFACT:
case LLM_ARCH_MINICPM:
+ case LLM_ARCH_GRANITE:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
ggml_set_input(lctx.inp_embd);
}
+ // For Granite architecture
+ if (hparams.f_embedding_scale != 0.0f) {
+ inpL = ggml_scale(ctx, inpL, hparams.f_embedding_scale);
+ }
+
cb(inpL, "inp_embd", -1);
return inpL;
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
}
if (il == n_layer - 1) {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
+ // For Granite architecture
+ if (hparams.f_residual_scale) {
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+ }
+
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cb(cur, "ffn_moe_out", il);
}
+ // For Granite architecture
+ if (hparams.f_residual_scale) {
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+ }
+
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ // For Granite architecture
+ if (hparams.f_logit_scale) {
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
+ }
+
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
switch (model.arch) {
case LLM_ARCH_LLAMA:
+ case LLM_ARCH_GRANITE:
{
result = llm.build_llama();
} break;
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
+ case LLM_ARCH_GRANITE:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2