]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add support for GLM-Edge and GLM-Edge-V series models (#10573)
authorpiDack <redacted>
Sun, 2 Feb 2025 07:48:46 +0000 (15:48 +0800)
committerGitHub <redacted>
Sun, 2 Feb 2025 07:48:46 +0000 (09:48 +0200)
* add glm edge chat model

* use config partial_rotary_factor as rope ratio

* support for glm edge model

* vision model support

* remove debug info

* fix format

* llava.cpp trailing whitespace

* remove unused AutoTokenizer

* Update src/llama.cpp for not contain <|end|> or </s>

Co-authored-by: Xuan Son Nguyen <redacted>
* add edge template

* fix chat template

* fix confict

* fix confict

* fix ci err

* fix format err

* fix template err

* 9b hf chat support

* format

* format clip.cpp

* fix format

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/llava/clip.cpp

* fix format

* minor : style

---------

Co-authored-by: liyuhang <redacted>
Co-authored-by: piDack <redacted>
Co-authored-by: Xuan Son Nguyen <redacted>
Co-authored-by: liyuhang <redacted>
Co-authored-by: Georgi Gerganov <redacted>
15 files changed:
README.md
convert_hf_to_gguf.py
examples/llava/README-glmedge.md [new file with mode: 0644]
examples/llava/clip.cpp
examples/llava/clip.h
examples/llava/glmedge-convert-image-encoder-to-gguf.py [new file with mode: 0644]
examples/llava/glmedge-surgery.py [new file with mode: 0644]
examples/llava/llava.cpp
gguf-py/gguf/constants.py
src/llama-arch.cpp
src/llama-chat.cpp
src/llama-chat.h
src/llama-model.cpp
src/llama.cpp
tests/test-chat-template.cpp

index d40309875e2efcb7f875d1db16fdde9c97a5d988..7f306d1991c5743285a3d634686d3055eb35006b 100644 (file)
--- a/README.md
+++ b/README.md
@@ -96,7 +96,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
 - [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM)
 - [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
 - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
-- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
+- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
 - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
 - [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
 - [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
@@ -117,6 +117,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
 - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
 - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
 - [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
+- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
 - [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
 
 </details>
index 63b54a9cf6b48844149102001b833118da287185..018a2a588ae9d4c94767114c3f25f63a9dff48db 100755 (executable)
@@ -648,7 +648,7 @@ class Model:
         if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
             res = "jina-v2-code"
-        if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
+        if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
             # ref: https://huggingface.co/THUDM/glm-4-9b-chat
             res = "chatglm-bpe"
         if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
@@ -4513,7 +4513,7 @@ class JaisModel(Model):
         self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
 
 
-@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
+@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
 class ChatGLMModel(Model):
     model_arch = gguf.MODEL_ARCH.CHATGLM
 
@@ -4619,47 +4619,15 @@ class ChatGLMModel(Model):
 
         from transformers import AutoTokenizer
         tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
-        vocab_size = hparams["padded_vocab_size"]
+        vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
         assert max(tokenizer.get_vocab().values()) < vocab_size
 
-        tokpre = self.get_vocab_base_pre(tokenizer)
-
-        merges = []
-        vocab = {}
-        mergeable_ranks = tokenizer.mergeable_ranks
-        for token, rank in mergeable_ranks.items():
-            vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
-            if len(token) == 1:
-                continue
-            merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
-            assert len(merged) >= 2 and len(merged) <= 7
-            merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
-
-        # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
-        added_vocab = tokenizer.get_added_vocab()
-        reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
-
-        for i in range(vocab_size):
-            if i not in reverse_vocab:
-                tokens.append(f"[PAD{i}]")
-                toktypes.append(gguf.TokenType.UNUSED)
-            elif reverse_vocab[i] in added_vocab:
-                tokens.append(reverse_vocab[i])
-                if tokenizer.added_tokens_decoder[i].special:
-                    toktypes.append(gguf.TokenType.CONTROL)
-                else:
-                    toktypes.append(gguf.TokenType.USER_DEFINED)
-            else:
-                tokens.append(reverse_vocab[i])
-                toktypes.append(gguf.TokenType.NORMAL)
-
+        tokens, toktypes, tokpre = self.get_vocab_base()
         self.gguf_writer.add_tokenizer_model("gpt2")
         self.gguf_writer.add_tokenizer_pre(tokpre)
         self.gguf_writer.add_token_list(tokens)
         self.gguf_writer.add_token_types(toktypes)
-
-        special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
-        special_vocab.merges = merges
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
         # only add special tokens when they were not already loaded from config.json
         special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
         special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
@@ -4670,16 +4638,20 @@ class ChatGLMModel(Model):
     def set_gguf_parameters(self):
         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
-        n_head_kv = self.hparams.get("multi_query_group_num", n_head)
+        n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
         self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
         self.gguf_writer.add_embedding_length(n_embed)
-        self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
-        self.gguf_writer.add_block_count(self.hparams["num_layers"])
+        self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
+        self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
         self.gguf_writer.add_head_count(n_head)
         self.gguf_writer.add_head_count_kv(n_head_kv)
-        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
         self.gguf_writer.add_file_type(self.ftype)
-        self.gguf_writer.add_rope_dimension_count(64)
+        if "attention_dim" in self.hparams:
+            rope_dim = self.hparams["attention_dim"]
+        else:
+            rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
         self.gguf_writer.add_add_bos_token(False)
         rope_freq = 10000
         if "rope_ratio" in self.hparams:
@@ -4689,7 +4661,7 @@ class ChatGLMModel(Model):
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         del bid  # unused
 
-        if name.endswith(".rotary_pos_emb.inv_freq"):
+        if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
             return []
 
         name = name.removeprefix("transformer.")
diff --git a/examples/llava/README-glmedge.md b/examples/llava/README-glmedge.md
new file mode 100644 (file)
index 0000000..603d014
--- /dev/null
@@ -0,0 +1,43 @@
+# GLMV-EDGE
+
+Currently this implementation supports [glm-edge-v-2b](https://huggingface.co/THUDM/glm-edge-v-2b) and [glm-edge-v-5b](https://huggingface.co/THUDM/glm-edge-v-5b).
+
+## Usage
+Build with cmake or run `make llama-llava-cli` to build it.
+
+After building, run: `./llama-llava-cli` to see the usage. For example:
+
+```sh
+./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "<|system|>\n system prompt <image><|user|>\n prompt <|assistant|>\n"
+```
+
+**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
+**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
+
+## GGUF conversion
+
+1. Clone a GLMV-EDGE model ([2B](https://huggingface.co/THUDM/glm-edge-v-2b) or [5B](https://huggingface.co/THUDM/glm-edge-v-5b)). For example:
+
+```sh
+git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
+```
+
+2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
+
+```sh
+python ./examples/llava/glmedge-surgery.py -m ../model_path
+```
+
+4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
+
+```sh
+python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
+```
+
+5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
+
+```sh
+python convert_hf_to_gguf.py ../model_path
+```
+
+Now both the LLM part and the image encoder are in the `model_path` directory.
index 24073c5a9b15fd1c2748f7b7ada3baf665f5ef44..7367d44cbd5f36ce1ebb70cdfd3fd6184b55436f 100644 (file)
@@ -102,6 +102,7 @@ static std::string format(const char * fmt, ...) {
 #define KEY_HAS_VIS_ENC         "clip.has_vision_encoder"
 #define KEY_HAS_LLAVA_PROJ      "clip.has_llava_projector"
 #define KEY_HAS_MINICPMV_PROJ   "clip.has_minicpmv_projector"
+#define KEY_HAS_GLM_PROJ        "clip.has_glm_projector"
 #define KEY_MINICPMV_VERSION    "clip.minicpmv_version"
 #define KEY_HAS_QWEN2VL_MERGER  "clip.has_qwen2vl_merger"
 #define KEY_USE_GELU            "clip.use_gelu"
@@ -160,6 +161,15 @@ static std::string format(const char * fmt, ...) {
 #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
 #define TN_MINICPMV_LN "resampler.ln_%s.%s"
 
+#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
+#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
+#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
+#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
+#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
+#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
+#define TN_GLM_BOI_W "adapter.boi"
+#define TN_GLM_EOI_W "adapter.eoi"
+
 
 enum projector_type {
     PROJECTOR_TYPE_MLP,
@@ -167,6 +177,7 @@ enum projector_type {
     PROJECTOR_TYPE_LDP,
     PROJECTOR_TYPE_LDPV2,
     PROJECTOR_TYPE_RESAMPLER,
+    PROJECTOR_TYPE_GLM_EDGE,
     PROJECTOR_TYPE_MERGER,
     PROJECTOR_TYPE_UNKNOWN,
 };
@@ -176,6 +187,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
     { PROJECTOR_TYPE_LDP, "ldp" },
     { PROJECTOR_TYPE_LDPV2, "ldpv2"},
     { PROJECTOR_TYPE_RESAMPLER, "resampler"},
+    { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
     { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
 };
 
@@ -500,6 +512,12 @@ struct clip_vision_model {
     struct ggml_tensor * mm_4_w = NULL;
     struct ggml_tensor * mm_4_b = NULL;
 
+    //GLMV-Edge projection
+    struct ggml_tensor * mm_model_adapter_conv_w;
+    struct ggml_tensor * mm_model_adapter_conv_b;
+    struct ggml_tensor * boi_w;
+    struct ggml_tensor * eoi_w;
+
     // MobileVLM projection
     struct ggml_tensor * mm_model_mlp_1_w;
     struct ggml_tensor * mm_model_mlp_1_b;
@@ -560,6 +578,7 @@ struct clip_ctx {
     bool has_vision_encoder  = false;
     bool has_llava_projector = false;
     bool has_minicpmv_projector = false;
+    bool has_glm_projector = false;
     bool has_qwen2vl_merger = false;
     int minicpmv_version = 2;
 
@@ -638,7 +657,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
 
     const int batch_size = imgs->size;
 
-    if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
+    if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
         GGML_ASSERT(batch_size == 1);
     }
 
@@ -734,8 +753,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
     }
 
     // loop over layers
-    if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
-        // TODO: figure out why we doing thing in this way ???
+    if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
         n_layer += 1;
     }
     for (int il = 0; il < n_layer - 1; il++) {
@@ -1095,7 +1113,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
             GGML_ASSERT(false);
         }
     }
-    else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
+    // glm projector
+    else if (ctx->has_glm_projector) {
+        if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
+            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
+            embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
+            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
+            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
+            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
+            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
+            //GLU
+            {
+                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
+                embeddings = ggml_norm(ctx0, embeddings, eps);
+                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
+                embeddings = ggml_gelu_inplace(ctx0, embeddings);
+                struct ggml_tensor * x = embeddings;
+                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
+                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
+                embeddings = ggml_silu_inplace(ctx0, embeddings);
+                embeddings = ggml_mul(ctx0, embeddings,x);
+                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
+            }
+        } else {
+            GGML_ABORT("fatel error");
+        }
+    } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
         embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
 
         embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -1284,6 +1328,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
             new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
         }
 
+        idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
+        if (idx != -1) {
+            new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
+        }
+
         idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
         if (idx != -1) {
             new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
@@ -1308,6 +1357,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
             LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
             LOG_INF("%s: llava_projector:  %d\n", __func__, new_clip->has_llava_projector);
             LOG_INF("%s: minicpmv_projector:  %d\n", __func__, new_clip->has_minicpmv_projector);
+            LOG_INF("%s: glm_projector:  %d\n", __func__, new_clip->has_glm_projector);
             LOG_INF("%s: model size:     %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
             LOG_INF("%s: metadata size:  %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
         }
@@ -1575,6 +1625,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
             vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
             vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
         }
+        else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
+            vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
+            vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
+            vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
+            vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
+            vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
+            vision_model.mm_model_mlp_1_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
+            vision_model.mm_model_mlp_2_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
+            vision_model.mm_model_mlp_3_w =  get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
+            vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
+            vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
+        }
         else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
             vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
             vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
@@ -2115,6 +2177,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
         return true;
     }
 
+    if (ctx->has_glm_projector) {
+        res_imgs->size = 1;
+        res_imgs->data = new clip_image_f32[res_imgs->size];
+        clip_image_u8 resized_image;
+        int32_t sz=ctx->vision_model.hparams.image_size;
+        bicubic_resize(*img, resized_image,sz,sz);
+        clip_image_f32 * res = clip_image_f32_init();
+        //clip_image_save_to_bmp(resized_image, "resized.bmp");
+        normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
+        res_imgs->data[0] = *res;
+        clip_image_f32_free(res);
+        return true;
+    }
+
     bool pad_to_square = true;
     if (!ctx->has_vision_encoder) {
         LOG_ERR("This gguf file seems to have no vision encoder\n");
@@ -2300,7 +2376,8 @@ void clip_free(clip_ctx * ctx) {
 }
 
 size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
-    return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
+    int extra_tokens = ctx->has_glm_projector ? 2 : 0;
+    return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
 }
 
 size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
@@ -2342,7 +2419,7 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
 
     int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
 
-    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
+    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
         n_patches /= 4;
     } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
         if (ctx->minicpmv_version == 2) {
@@ -2475,6 +2552,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
     if (ctx->has_minicpmv_projector) {
         GGML_ASSERT(batch_size == 1);
     }
+    if (ctx->has_glm_projector) {
+        GGML_ASSERT(batch_size == 1);
+        ggml_tensor * boi = ctx->vision_model.boi_w;
+        ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
+        vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
+    }
 
     // build the inference graph
     ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
@@ -2627,7 +2710,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
             ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
             free(positions_data);
 
-            {
+            if (!ctx->has_glm_projector) {
                 struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
                 int* patches_data = (int*)malloc(ggml_nbytes(patches));
                 for (int i = 0; i < num_patches; i++) {
@@ -2651,6 +2734,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
     // copy the embeddings to the location passed by the user
     ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
 
+    if (ctx->has_glm_projector) {
+        //eoi
+        ggml_tensor * eoi = ctx->vision_model.eoi_w;
+        int offset = ggml_nelements(embeddings);
+        ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
+    }
+
     return true;
 }
 
@@ -2812,6 +2902,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
             return 3584;
         }
     }
+    if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
+        return ctx->vision_model.mm_model_mlp_3_w->ne[1];
+    }
     if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
         return ctx->vision_model.mm_1_b->ne[0];
     }
@@ -2827,6 +2920,9 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
     return 0;
 }
 
+bool clip_is_glm(const struct clip_ctx * ctx) {
+    return ctx->has_glm_projector;
+}
 bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
     return ctx->has_qwen2vl_merger;
 }
index 1603edd265e6c3cd0321810f9fd8a506fa76466e..841b4f6f9098f5f9d9bdd90a01c2f012168aa8e3 100644 (file)
@@ -93,6 +93,8 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
 
 CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
 
+CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
+
 #ifdef __cplusplus
 }
 #endif
diff --git a/examples/llava/glmedge-convert-image-encoder-to-gguf.py b/examples/llava/glmedge-convert-image-encoder-to-gguf.py
new file mode 100644 (file)
index 0000000..848ef1c
--- /dev/null
@@ -0,0 +1,280 @@
+import argparse
+import os
+import json
+import re
+
+import torch
+import numpy as np
+from gguf import *
+
+TEXT = "clip.text"
+VISION = "clip.vision"
+from transformers import SiglipVisionModel, SiglipVisionConfig
+
+def k(raw_key: str, arch: str) -> str:
+    return raw_key.format(arch=arch)
+
+
+def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
+    if name in (
+        "logit_scale",
+        "text_model.embeddings.position_ids",
+        "vision_model.embeddings.position_ids",
+    ):
+        return True
+
+    if name in (
+        "vision_model.head.probe",
+        "vision_model.head.attention.in_proj_weight",
+        "vision_model.head.attention.in_proj_bias",
+        "vision_model.head.attention.out_proj.weight",
+        "vision_model.head.attention.out_proj.bias",
+        "vision_model.head.layernorm.weight",
+        "vision_model.head.layernorm.bias",
+        "vision_model.head.mlp.fc1.weight",
+        "vision_model.head.mlp.fc1.bias",
+        "vision_model.head.mlp.fc2.weight",
+        "vision_model.head.mlp.fc2.bias"
+    ):
+        return True
+
+    if name.startswith("v") and not has_vision:
+        return True
+
+    if name.startswith("t") and not has_text:
+        return True
+
+    return False
+
+
+def get_tensor_name(name: str) -> str:
+    if "projection" in name:
+        return name
+    if "mm_projector" in name:
+        name = name.replace("model.mm_projector", "mm")
+        name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
+        name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
+        return name
+
+    return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
+
+
+def bytes_to_unicode():
+    """
+    Returns list of utf-8 byte and a corresponding list of unicode strings.
+    The reversible bpe codes work on unicode strings.
+    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+    This is a significant percentage of your normal, say, 32K bpe vocab.
+    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+    And avoids mapping to whitespace/control characters the bpe code barfs on.
+    """
+    bs = (
+        list(range(ord("!"), ord("~") + 1))
+        + list(range(ord("¡"), ord("¬") + 1))
+        + list(range(ord("®"), ord("ÿ") + 1))
+    )
+    cs = bs[:]
+    n = 0
+    for b in range(2**8):
+        if b not in bs:
+            bs.append(b)
+            cs.append(2**8 + n)
+            n += 1
+    cs = [chr(n) for n in cs]
+    return dict(zip(bs, cs))
+
+
+ap = argparse.ArgumentParser()
+ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
+ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
+ap.add_argument("--text-only", action="store_true", required=False,
+                help="Save a text-only model. It can't be used to encode images")
+ap.add_argument("--vision-only", action="store_true", required=False,
+                help="Save a vision-only model. It can't be used to encode texts")
+ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
+                help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
+ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
+                help="The clip model is from openclip (for ViT-SO400M type))")
+ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
+ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2","adapter"], default="adapter")
+ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
+# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
+# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
+default_image_mean = [0.5, 0.5, 0.5]
+default_image_std = [0.5, 0.5, 0.5]
+ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
+ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
+
+# with proper
+args = ap.parse_args()
+
+
+if args.text_only and args.vision_only:
+    print("--text-only and --image-only arguments cannot be specified at the same time.")
+    exit(1)
+
+if args.use_f32:
+    print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
+
+# output in the same directory as the model if output_dir is None
+dir_model = args.model_dir
+
+if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
+    vocab = None
+    tokens = None
+else:
+    with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
+        vocab = json.load(f)
+        tokens = [key for key in vocab]
+
+with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+    config = json.load(f)
+    if args.clip_model_is_vision:
+        v_hparams = config
+        t_hparams = None
+    else:
+        v_hparams = config["vision_config"]
+        t_hparams = None
+
+# possible data types
+#   ftype == 0 -> float32
+#   ftype == 1 -> float16
+#
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+ftype = 1
+if args.use_f32:
+    ftype = 0
+
+vision_config = SiglipVisionConfig(**v_hparams)
+model = SiglipVisionModel(vision_config)
+model.load_state_dict(torch.load(os.path.join(dir_model, "glm.clip")))
+
+fname_middle = None
+has_text_encoder = False
+has_vision_encoder = True
+has_glm_projector = True
+if args.text_only:
+    fname_middle = "text-"
+    has_vision_encoder = False
+elif args.llava_projector is not None:
+    fname_middle = "mmproj-"
+    has_text_encoder = False
+    has_glm_projector = True
+elif args.vision_only:
+    fname_middle = "vision-"
+    has_text_encoder = False
+else:
+    fname_middle = ""
+
+output_dir = args.output_dir if args.output_dir is not None else dir_model
+os.makedirs(output_dir, exist_ok=True)
+output_prefix = os.path.basename(output_dir).replace("ggml_", "")
+fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
+fout = GGUFWriter(path=fname_out, arch="clip")
+
+fout.add_bool("clip.has_text_encoder", has_text_encoder)
+fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
+fout.add_bool("clip.has_glm_projector", has_glm_projector)
+fout.add_file_type(ftype)
+model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
+fout.add_name(model_name)
+if has_glm_projector:
+    fout.add_description("image encoder for glm4v")
+    fout.add_string("clip.projector_type", "adapter")
+else:
+    fout.add_description("two-tower CLIP model")
+
+if has_text_encoder:
+    assert t_hparams is not None
+    assert tokens is not None
+    # text_model hparams
+    fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
+    fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
+    fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
+    fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
+    fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
+    fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
+    fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
+    fout.add_token_list(tokens)
+
+if has_vision_encoder:
+    # vision_model hparams
+    fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
+    fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
+    fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
+    fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
+    fout.add_uint32("clip.vision.projection_dim", 0)
+    fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
+    fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
+    fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), v_hparams["num_hidden_layers"])
+
+    image_mean = args.image_mean if args.image_mean is not None else default_image_mean
+    image_std = args.image_std if args.image_std is not None else default_image_std
+    fout.add_array("clip.vision.image_mean", image_mean)
+    fout.add_array("clip.vision.image_std", image_std)
+
+fout.add_bool("clip.use_gelu", True)
+
+
+if has_glm_projector:
+    # model.vision_model.encoder.layers.pop(-1)  # pyright: ignore[reportAttributeAccessIssue]
+    projector = torch.load(args.llava_projector)
+    for name, data in projector.items():
+        name = get_tensor_name(name)
+        # pw and dw conv ndim==4
+        if data.ndim == 2 or data.ndim == 4:
+            data = data.squeeze().numpy().astype(np.float16)
+        else:
+            data = data.squeeze().numpy().astype(np.float32)
+        if name.startswith("vision."):
+            name=name.replace("vision.","")
+        fout.add_tensor(name, data)
+        print(f"Projector {name} - {data.dtype} - shape = {data.shape}")
+        # print(f"Projector {name} tensors added\n")
+
+state_dict = model.state_dict()  # pyright: ignore[reportAttributeAccessIssue]
+for name, data in state_dict.items():
+    if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_glm_projector):
+        # we don't need this
+        print(f"skipping parameter: {name}")
+        continue
+
+    name = get_tensor_name(name)
+    data = data.squeeze().numpy()
+
+    n_dims = len(data.shape)
+
+    # ftype == 0 -> float32, ftype == 1 -> float16
+    ftype_cur = 0
+    if n_dims == 4:
+        print(f"tensor {name} is always saved in f16")
+        data = data.astype(np.float16)
+        ftype_cur = 1
+    elif ftype == 1:
+        if name[-7:] == ".weight" and n_dims == 2:
+            # print("  Converting to float16")
+            data = data.astype(np.float16)
+            ftype_cur = 1
+        else:
+            # print("  Converting to float32")
+            data = data.astype(np.float32)
+            ftype_cur = 0
+    else:
+        if data.dtype != np.float32:
+            # print("  Converting to float32")
+            data = data.astype(np.float32)
+            ftype_cur = 0
+    print(f"siglip {name} - {data.dtype} - shape = {data.shape}")
+    # print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
+    fout.add_tensor(name, data)
+
+
+fout.write_header_to_file()
+fout.write_kv_data_to_file()
+fout.write_tensors_to_file()
+fout.close()
+
+print("Done. Output file: " + fname_out)
diff --git a/examples/llava/glmedge-surgery.py b/examples/llava/glmedge-surgery.py
new file mode 100644 (file)
index 0000000..16bb915
--- /dev/null
@@ -0,0 +1,33 @@
+import argparse
+import os
+import torch
+from transformers import AutoModel
+
+ap = argparse.ArgumentParser()
+ap.add_argument("-m", "--model", help="Path to GLM model")
+args = ap.parse_args()
+
+# find the model part that includes the the multimodal projector weights
+model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
+checkpoint = model.state_dict()
+
+# get a list of mm tensor names
+mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
+
+# store these tensors in a new dictionary and torch.save them
+projector = {name: checkpoint[name].float() for name in mm_tensors}
+torch.save(projector, f"{args.model}/glm.projector")
+
+clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
+if len(clip_tensors) > 0:
+    clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
+    torch.save(clip, f"{args.model}/glm.clip")
+
+    # added tokens should be removed to be able to convert Mistral models
+    if os.path.exists(f"{args.model}/added_tokens.json"):
+        with open(f"{args.model}/added_tokens.json", "w") as f:
+            f.write("{}\n")
+
+print("Done!")
+print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
+print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")
index 2cac7933d2f2ae054f8648f3599ded4c2b240486..3007140459e4ee5518b3ce610bc4d3b4e3e498f8 100644 (file)
@@ -311,6 +311,20 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
         img_res_v.size = 0;
         img_res_v.data = nullptr;
     }
+    else if (clip_is_glm(ctx_clip)){
+        struct clip_image_size * load_image_size = clip_image_size_init();
+        load_image_size->width = img_res_v.data[0].nx;
+        load_image_size->height = img_res_v.data[0].ny;
+        clip_add_load_image_size(ctx_clip, load_image_size);
+
+        bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
+        int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
+        *n_img_pos = (pos * pos + 2);
+        if (!encoded){
+            LOG_ERR("Unable to encode image \n");
+            return false;
+        }
+    }
     else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
         // flat / default llava-1.5 type embedding
         *n_img_pos = clip_n_patches(ctx_clip);
@@ -395,6 +409,9 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
     if (clip_is_minicpmv(ctx_clip)) {
         num_max_patches = 10;
     }
+    if (clip_is_glm(ctx_clip)) {
+        num_max_patches = 1;
+    }
     float * image_embd;
     if (clip_is_qwen2vl(ctx_clip)) {
         // qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
index 8fe84df21ea2093dfdbd304e5abdecbd2d69b1f1..ecac5b4bb7f59cfc91f0d6b1b2956521198d3e3f 100644 (file)
@@ -1357,6 +1357,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.OUTPUT,
         MODEL_TENSOR.ATTN_NORM,
         MODEL_TENSOR.ATTN_QKV,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
         MODEL_TENSOR.ATTN_OUT,
         MODEL_TENSOR.FFN_NORM,
         MODEL_TENSOR.FFN_DOWN,
index a7260f495d945b567beb7f518bd4f5dd485bc69f..97a1e7e5e01ef67c75bd63d7ddad39ade99e7ec5 100644 (file)
@@ -1024,6 +1024,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_OUTPUT,          "output" },
             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
index 5c19bab249f5abb9b8231f900a6609b380d0b77b..028a64794846471f3a14e976e8b11adb48865bdf 100644 (file)
@@ -51,6 +51,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "llama3",            LLM_CHAT_TEMPLATE_LLAMA_3           },
     { "chatglm3",          LLM_CHAT_TEMPLATE_CHATGML_3         },
     { "chatglm4",          LLM_CHAT_TEMPLATE_CHATGML_4         },
+    { "glmedge",           LLM_CHAT_TEMPLATE_GLMEDGE           },
     { "minicpm",           LLM_CHAT_TEMPLATE_MINICPM           },
     { "exaone3",           LLM_CHAT_TEMPLATE_EXAONE_3          },
     { "rwkv-world",        LLM_CHAT_TEMPLATE_RWKV_WORLD        },
@@ -115,7 +116,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
     } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
         return LLM_CHAT_TEMPLATE_PHI_3;
     } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
-        return LLM_CHAT_TEMPLATE_FALCON_3;
+        return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
     } else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
         return LLM_CHAT_TEMPLATE_ZEPHYR;
     } else if (tmpl_contains("bos_token + message['role']")) {
@@ -440,6 +441,14 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << "<|assistant|>";
         }
+    } else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
+        for (auto message : chat) {
+            std::string role(message->role);
+            ss << "<|" << role << "|>" << "\n" << message->content;
+        }
+        if (add_ass) {
+            ss << "<|assistant|>";
+        }
     } else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
         // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
         for (auto message : chat) {
index 3a4d07ce3de8a2cd904653aae4dcf674ea66fcc8..2f6a0e3e2826638be2af9c59047c4ff071741d64 100644 (file)
@@ -31,6 +31,7 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_LLAMA_3,
     LLM_CHAT_TEMPLATE_CHATGML_3,
     LLM_CHAT_TEMPLATE_CHATGML_4,
+    LLM_CHAT_TEMPLATE_GLMEDGE,
     LLM_CHAT_TEMPLATE_MINICPM,
     LLM_CHAT_TEMPLATE_EXAONE_3,
     LLM_CHAT_TEMPLATE_RWKV_WORLD,
index 18bd0b071bb9085fbf4fb0aa90ae06b87df0f5ef..0487c978b5e77312a7e4e08322ba343a8b630302 100644 (file)
@@ -1093,8 +1093,20 @@ void llama_model::load_hparams(llama_model_loader & ml) {
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                 switch (hparams.n_layer) {
-                    case 28: type = LLM_TYPE_6B; break;
-                    case 40: type = LLM_TYPE_9B; break;
+                    case 28: {
+                        if (hparams.n_head(0) == 16) {
+                            type = LLM_TYPE_1_5B;
+                        } else {
+                            type = LLM_TYPE_6B;
+                        }
+                    } break;
+                    case 40: {
+                        if (hparams.n_head(0) == 24) {
+                            type = LLM_TYPE_4B;
+                        } else {
+                            type = LLM_TYPE_9B;
+                        }
+                    } break;
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
@@ -3068,9 +3080,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         auto & layer = layers[i];
 
                         layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
 
-                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
-                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, 0);
+                        if (layer.wqkv == nullptr) {
+                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        }
 
                         layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
 
index 192b20a27e5cab43a81d612b6f811f0f99524783..5760017e0d9cbad9411f0c12ccb15c24315e8988 100644 (file)
@@ -7215,17 +7215,30 @@ struct llm_build_context {
                 struct ggml_tensor * Qcur = nullptr;
                 struct ggml_tensor * Kcur = nullptr;
                 struct ggml_tensor * Vcur = nullptr;
-
-                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
-                cb(cur, "wqkv", il);
-
-                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
-                cb(cur, "bqkv", il);
-
-                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
-                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
-                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
-
+                if (model.type == LLM_TYPE_1_5B || model.type == LLM_TYPE_4B || model.type == LLM_TYPE_9B) {
+                    Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                    if (model.layers[il].bq) {
+                        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    }
+                    Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                    if (model.layers[il].bk) {
+                        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    }
+                    Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                    if (model.layers[il].bv) {
+                        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    }
+                } else {
+                    cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                    cb(cur, "wqkv", il);
+                    if (model.layers[il].bqkv) {
+                        cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                        cb(cur, "bqkv", il);
+                    }
+                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+                }
                 cb(Qcur, "Qcur", il);
                 cb(Kcur, "Kcur", il);
                 cb(Vcur, "Vcur", il);
index 4563f9dcb0af10e2777986ef7097817913e43aa0..e0314ae1d62966e541ff8f2d063452822471a65f 100644 (file)
@@ -175,6 +175,14 @@ int main(void) {
             /* .bos_token= */ "",
             /* .eos_token= */ "",
         },
+        {
+            /* .name= */ "GLMEdge",
+            /* .template_str= */ "{% for item in messages %}{% if item['role'] == 'system' %}<|system|>\n{{ item['content'] }}{% elif item['role'] == 'user' %}<|user|>\n{{ item['content'] }}{% elif item['role'] == 'assistant' %}<|assistant|>\n{{ item['content'] }}{% endif %}{% endfor %}<|assistant|>",
+            /* .expected_output= */ "<|system|>\nYou are a helpful assistant<|user|>\nHello<|assistant|>\nHi there<|user|>\nWho are you<|assistant|>\n   I am an assistant   <|user|>\nAnother question<|assistant|>",
+            /* .expected_output_jinja= */ "<|system|>\nYou are a helpful assistant<|user|>\nHello<|assistant|>\nHi there<|user|>\nWho are you<|assistant|>\n   I am an assistant   <|user|>\nAnother question<|assistant|>",
+            /* .bos_token= */ "",
+            /* .eos_token= */ "",
+        },
         {
             /* .name= */ "MiniCPM-3B-OpenHermes-2.5-v2-GGUF",
             /* .template_str= */ u8"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",