#!/bin/bash
cp -rpv ../ggml/src/ggml.c ./ggml.c
-cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
+cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
+cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
+cp -rpv ../ggml/src/ggml-opencl.c ./ggml-opencl.c
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/examples/common.h ./examples/common.h
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
+#include <cstddef>
+#include <cstdint>
#include <stdint.h>
#include <stdio.h>
-#include <cuda_fp16.h>
#include <atomic>
-#include "ggml-cuda.h"
-typedef uint16_t ggml_fp16_t;
-static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
+#include <cuda_runtime.h>
+#include <cublas_v2.h>
+#include <cuda_fp16.h>
+
+#include "ggml-cuda.h"
+#include "ggml.h"
+
+static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
+
+#define CUDA_CHECK(err) \
+ do { \
+ cudaError_t err_ = (err); \
+ if (err_ != cudaSuccess) { \
+ fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
+ cudaGetErrorString(err_)); \
+ exit(1); \
+ } \
+ } while (0)
+
+#define CUBLAS_CHECK(err) \
+ do { \
+ cublasStatus_t err_ = (err); \
+ if (err_ != CUBLAS_STATUS_SUCCESS) { \
+ fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
+ exit(1); \
+ } \
+ } while (0)
+
+typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
#define QK4_0 32
typedef struct {
#define QK4_2 16
typedef struct {
- __half d; // delta
+ half d; // delta
uint8_t qs[QK4_2 / 2]; // nibbles / quants
} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
#define QK5_0 32
typedef struct {
- __half d; // delta
+ half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
#define QK5_1 32
typedef struct {
- __half d; // delta
- __half m; // min
- uint32_t qh; // 5-th bit of quants
+ half d; // delta
+ half m; // min
+ uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
const uint8_t * pp = x[i].qs;
- const uint32_t qh = x[i].qh;
+ uint32_t qh;
+ memcpy(&qh, x[i].qh, sizeof(qh));
for (int l = 0; l < QK5_1; l += 2) {
const uint8_t vi = pp[l/2];
}
}
-void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_2;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_1;
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK8_0;
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
}
-dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
+// TODO: optimize
+static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
+ const half * x = (const half *) vx;
+
+ const int i = blockIdx.x;
+
+ y[i] = __half2float(x[i]);
+}
+
+static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
+ convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
+}
+
+static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda;
return dequantize_row_q5_1_cuda;
case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda;
+ case GGML_TYPE_F16:
+ return convert_fp16_to_fp32_cuda;
default:
return nullptr;
}
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
-void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
+static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
return ptr;
}
-void ggml_cuda_pool_free(void * ptr, size_t size) {
+static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
CUDA_CHECK(cudaFree(ptr));
}
-cublasHandle_t g_cublasH = nullptr;
-cudaStream_t g_cudaStream = nullptr;
-cudaStream_t g_cudaStream2 = nullptr;
-cudaEvent_t g_cudaEvent = nullptr;
+#define GGML_CUDA_MAX_STREAMS 8
+#define GGML_CUDA_MAX_EVENTS 64
+static cublasHandle_t g_cublasH = nullptr;
+static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
+static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
+static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
void ggml_init_cublas() {
if (g_cublasH == nullptr) {
- // create cublas handle, bind a stream
- CUBLAS_CHECK(cublasCreate(&g_cublasH));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
- CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
+ // create streams
+ for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
+ CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
+ CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
+ }
+ // create events
+ for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
+ CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
+ }
- // create additional stream and event for synchronization
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
+ // create cublas handle
+ CUBLAS_CHECK(cublasCreate(&g_cublasH));
+ CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
// configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
+ // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
}
}
-cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
+void * ggml_cuda_host_malloc(size_t size) {
+ if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
+ return nullptr;
+ }
+
+ void * ptr = nullptr;
+ cudaError_t err = cudaMallocHost((void **) &ptr, size);
+ if (err != cudaSuccess) {
+ fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
+ size/1024.0/1024.0, cudaGetErrorString(err));
+ return nullptr;
+ }
+
+ return ptr;
+}
+
+void ggml_cuda_host_free(void * ptr) {
+ CUDA_CHECK(cudaFreeHost(ptr));
+}
+
+static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
}
}
-void * ggml_cuda_host_malloc(size_t size) {
- void * ptr;
- CUDA_CHECK(cudaMallocHost((void **) &ptr, size));
- return ptr;
+static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+
+ size_t x_size, y_size, d_size;
+ float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
+ float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+
+ float * c_X = d_X + i * x_ne;
+ float * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+
+ // copy data to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, ne00,
+ c_Y, ne10,
+ &beta, c_D, ne01));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
}
-void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
+static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+
+ size_t x_size, y_size, d_size;
+ half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
+ half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+
+ bool src1_cont_rows = nb10 == sizeof(float);
+ bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+
+ half * c_X = d_X + i * x_ne;
+ half * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+
+ // copy src0 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
+
+ // convert src1 to fp16
+ // TODO: use multiple threads
+ ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
+ char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
+ if (src1_cont_rows) {
+ if (src1_cont_cols) {
+ ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
+ }
+ else {
+ for (int64_t i01 = 0; i01 < ne11; i01++) {
+ ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
+ }
+ }
+ }
+ else {
+ for (int64_t i01 = 0; i01 < ne11; i01++) {
+ for (int64_t i00 = 0; i00 < ne10; i00++) {
+ // very slow due to no inlining
+ tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
+ }
+ }
+ }
+
+ // copy src1 to device
+ CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, CUDA_R_16F, ne00,
+ c_Y, CUDA_R_16F, ne10,
+ &beta, c_D, CUDA_R_32F, ne01,
+ CUBLAS_COMPUTE_32F_FAST_16F,
+ CUBLAS_GEMM_DEFAULT));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
+}
+
+static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+ const ggml_type type = src0->type;
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+ const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
+
+ size_t x_size, y_size, d_size, q_size;
+ float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
+ float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+ char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
+
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
+ GGML_ASSERT(to_fp32_cuda != nullptr);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+ cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
+ cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
+
+ float * c_X = d_X + i * x_ne;
+ float * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+ char * c_Q = d_Q + i * q_sz;
+
+ // copy src0 and convert to fp32 on device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
+ to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
+ CUDA_CHECK(cudaGetLastError());
+ CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
+
+ // copy src1 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
+
+ // wait for conversion
+ CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, ne00,
+ c_Y, ne10,
+ &beta, c_D, ne01));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
+ ggml_cuda_pool_free(d_Q, q_size);
+}
+
+bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ const int64_t ne10 = src1->ne[0];
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+
+ // TODO: find the optimal values for these
+ if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+ src1->type == GGML_TYPE_F32 &&
+ dst->type == GGML_TYPE_F32 &&
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
+
+ return true;
+ }
+
+ return false;
+}
+
+bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
+ size_t src0_sz = ggml_nbytes(src0);
+ size_t src1_sz = ggml_nbytes(src1);
+
+ // mul_mat_q: src0 is converted to fp32 on device
+ size_t mul_mat_q_transfer = src0_sz + src1_sz;
+
+ // mul_mat_f16: src1 is converted to fp16 on cpu
+ size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
+
+ // choose the smaller one to transfer to the device
+ // TODO: this is not always the best choice due to the overhead of converting to fp16
+ return mul_mat_f16_transfer < mul_mat_q_transfer;
+}
+
+void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
+ GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
+
+ if (src0->type == GGML_TYPE_F32) {
+ ggml_cuda_mul_mat_f32(src0, src1, dst);
+ }
+ else if (src0->type == GGML_TYPE_F16) {
+ if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
+ ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
+ }
+ else {
+ ggml_cuda_mul_mat_q_f32(src0, src1, dst);
+ }
+ }
+ else if (ggml_is_quantized(src0->type)) {
+ ggml_cuda_mul_mat_q_f32(src0, src1, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+}
+
+size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
+ return ggml_nelements(src1) * sizeof(ggml_fp16_t);
+ }
+ else {
+ return 0;
+ }
}
-#include <cublas_v2.h>
-#include <cuda_runtime.h>
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
-#define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
-
-#define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
+void ggml_init_cublas(void);
-extern cublasHandle_t g_cublasH;
-extern cudaStream_t g_cudaStream;
-extern cudaStream_t g_cudaStream2;
-extern cudaEvent_t g_cudaEvent;
+bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
+size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
+void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
-void ggml_init_cublas(void);
+// TODO: export these with GGML_API
void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr);
-void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);
-void ggml_cuda_pool_free(void * ptr, size_t size);
-
-void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
-
-cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream);
-
-typedef void (*dequantize_row_q_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
-dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(enum ggml_type type);
-
#ifdef __cplusplus
}
#endif
--- /dev/null
+#include "ggml-opencl.h"
+
+#define CL_TARGET_OPENCL_VERSION 110
+#include <clblast_c.h>
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "ggml.h"
+
+#define MULTILINE_QUOTE(...) #__VA_ARGS__
+const char * clblast_dequant = MULTILINE_QUOTE(
+
+struct block_q4_0
+{
+ float d;
+ uchar qs[16];
+};
+
+__kernel void dequantize_row_q4_0(__global struct block_q4_0* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 32;
+ const uint l = get_local_id(0);
+
+ const float d = blocks[i].d;
+
+ const uchar vi = blocks[i].qs[l];
+
+ const uint index = i*32 + l*2;
+ result[index + 0] = ((vi & 0xf) - 8)*d;
+ result[index + 1] = ((vi >> 4) - 8)*d;
+}
+
+struct block_q4_1
+{
+ float d;
+ float m;
+ uchar qs[16];
+};
+
+__kernel void dequantize_row_q4_1(__global struct block_q4_1* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 32;
+ const uint l = get_local_id(0);
+
+ const float d = blocks[i].d;
+ const float m = blocks[i].m;
+
+ const uchar vi = blocks[i].qs[l];
+
+ const uint index = i*32 + l*2;
+ result[index + 0] = (vi & 0xf) * d + m;
+ result[index + 1] = (vi >> 4) * d + m;
+}
+
+struct block_q4_2
+{
+ ushort d;
+ uchar qs[8];
+};
+
+__kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 16;
+ const uint l = get_local_id(0);
+
+ const float d = vload_half(0, (__global half*) &blocks[i].d);
+
+ const uchar vi = blocks[i].qs[l];
+
+ const uint index = i*16 + l*2;
+ result[index + 0] = ((vi & 0xf) - 8)*d;
+ result[index + 1] = ((vi >> 4) - 8)*d;
+}
+
+
+struct block_q5_0
+{
+ float d;
+ uint qh;
+ uchar qs[16];
+};
+
+__kernel void dequantize_row_q5_0(__global struct block_q5_0* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 32;
+ const uint l = get_local_id(0);
+
+ const float d = blocks[i].d;
+
+ const uchar vi = blocks[i].qs[l];
+
+ const uint l2 = l * 2;
+
+ const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4;
+ const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4;
+
+ const uint index = i*32 + l2;
+ result[index + 0] = (((vi & 0xf) | vh0) - 16)*d;
+ result[index + 1] = (((vi >> 4) | vh1) - 16)*d;
+}
+
+struct block_q5_1
+{
+ ushort d;
+ ushort m;
+ uint qh;
+ uchar qs[16];
+};
+
+__kernel void dequantize_row_q5_1(__global struct block_q5_1* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 32;
+ const uint l = get_local_id(0);
+
+ const float d = vload_half(0, (__global half*) &blocks[i].d);
+ const float m = vload_half(0, (__global half*) &blocks[i].m);
+
+ const uchar vi = blocks[i].qs[l];
+
+ const uint l2 = l * 2;
+
+ const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4;
+ const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4;
+
+ const uint index = i*32 + l2;
+ result[index + 0] = ((vi & 0xf) | vh0)*d + m;
+ result[index + 1] = ((vi >> 4) | vh1)*d + m;
+}
+
+struct block_q8_0
+{
+ float d;
+ char qs[32];
+};
+
+__kernel void dequantize_row_q8_0(__global struct block_q8_0* blocks, __global float* result) {
+ const uint i = get_global_id(0) / 32;
+ const uint l = get_local_id(0);
+
+ result[i*32 + l] = blocks[i].qs[l] * blocks[i].d;
+}
+
+);
+
+#define CL_CHECK(err, name) \
+ do { \
+ cl_int err_ = (err); \
+ if (err_ != CL_SUCCESS) { \
+ fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
+ exit(1); \
+ } \
+ } while (0)
+
+#define QK5_0 32
+typedef struct {
+ ggml_fp16_t d; // delta
+ uint8_t qh[4]; // 5-th bit of quants
+ uint8_t qs[QK5_0 / 2]; // nibbles / quants
+} block_q5_0;
+
+
+typedef struct {
+ float d; // delta
+ uint32_t qh; // 5-th bit of quants
+ uint8_t qs[QK5_0 / 2]; // nibbles / quants
+} cl_block_q5_0;
+
+static cl_platform_id platform;
+static cl_device_id device;
+static cl_context context;
+static cl_command_queue queue;
+static cl_program program;
+static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q5_0, kernel_q5_1, kernel_q8_0;
+static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
+static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
+
+static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
+ cl_program p;
+ char *program_log;
+ size_t program_size, log_size;
+ int err;
+
+ program_size = strlen(program_buffer);
+
+ p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
+ if(err < 0) {
+ fprintf(stderr, "OpenCL error creating program");
+ exit(1);
+ }
+
+ err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL);
+ if(err < 0) {
+
+ clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
+ program_log = (char*) malloc(log_size + 1);
+ program_log[log_size] = '\0';
+ clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
+ printf("%s\n", program_log);
+ free(program_log);
+ exit(1);
+ }
+
+ return p;
+}
+
+void ggml_cl_init(void) {
+ cl_int err = 0;
+ char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM");
+ char * GGML_CLBLAST_DEVICE = getenv("GGML_CLBLAST_DEVICE");
+ int plat_num = (GGML_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_CLBLAST_PLATFORM));
+ int dev_num = (GGML_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_CLBLAST_DEVICE));
+ printf("\nInitializing CLBlast (First Run)...");
+ printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
+ cl_uint num_platforms;
+ clGetPlatformIDs(0, NULL, &num_platforms);
+ cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
+ clGetPlatformIDs(num_platforms, platforms, NULL);
+ platform = platforms[plat_num];
+ char platform_buffer[1024];
+ clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
+ cl_uint num_devices;
+ clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
+ cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
+ clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
+ device = devices[dev_num];
+ char device_buffer[1024];
+ clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
+ printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
+ context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
+ CL_CHECK(err, "clCreateContext");
+ queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
+ CL_CHECK(err, "clCreateCommandQueue");
+
+ free(platforms);
+ free(devices);
+
+ program = build_program_from_source(context, device, clblast_dequant);
+
+ // Prepare dequantize kernels
+ kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
+ CL_CHECK(err, "clCreateKernel");
+ kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
+ CL_CHECK(err, "clCreateKernel");
+ kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err);
+ CL_CHECK(err, "clCreateKernel");
+ kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err);
+ CL_CHECK(err, "clCreateKernel");
+ kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err);
+ CL_CHECK(err, "clCreateKernel");
+ kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err);
+ CL_CHECK(err, "clCreateKernel");
+}
+
+static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
+ if (req_size <= *cur_size) {
+ return;
+ }
+
+ // Reallocate buffer with enough space
+ if (*cur_size > 0) {
+ clReleaseMemObject(*buf);
+ }
+ cl_int err;
+ *buf = clCreateBuffer(context, flags, req_size, NULL, &err);
+ *cur_size = req_size;
+ CL_CHECK(err, "clCreateBuffer");
+}
+
+void ggml_cl_sgemm_wrapper(
+ const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b,
+ const int m, const int n, const int k,
+ const float alpha, const void *host_a, const int lda,
+ const float *host_b, const int ldb, const float beta,
+ float *host_c, const int ldc, const int btype) {
+ cl_int err = 0;
+
+ cl_kernel kernel;
+ size_t global = n * k, local, size_qb;
+ bool dequant;
+ cl_block_q5_0* cl_host_b;
+
+ switch (btype) {
+ case GGML_TYPE_F32:
+ dequant = false;
+ break;
+ case GGML_TYPE_Q4_0:
+ dequant = true;
+ kernel = kernel_q4_0;
+ local = 16;
+ size_qb = global * (sizeof(float) + local) / 32;
+ break;
+ case GGML_TYPE_Q4_1:
+ dequant = true;
+ kernel = kernel_q4_1;
+ local = 16;
+ size_qb = global * (sizeof(float) * 2 + local) / 32;
+ break;
+ case GGML_TYPE_Q4_2:
+ dequant = true;
+ kernel = kernel_q4_2;
+ local = 8;
+ size_qb = global * (sizeof(ggml_fp16_t) + local) / 16;
+ break;
+ case GGML_TYPE_Q5_0:
+ dequant = true;
+ kernel = kernel_q5_0;
+ local = 16;
+ // For some reason OpenCL seems to be incapable of working with structs of size 22.
+ // 20 and 24 bytes are fine. Workaround to do the fp16 to fp32 step on CPU...
+ // TODO Find the reason, fix and remove workaround.
+ const block_q5_0* b = (const block_q5_0*) host_b;
+ cl_host_b = (cl_block_q5_0*) malloc(sizeof(cl_block_q5_0) * global / 32);
+ for (size_t i = 0; i < global / 32; i++) {
+ cl_host_b[i].d = ggml_fp16_to_fp32(b[i].d);
+ memcpy(&cl_host_b[i].qh, b[i].qh, sizeof(uint32_t));
+ memcpy(&cl_host_b[i].qs, b[i].qs, QK5_0 / 2);
+ }
+ host_b = (const float*) cl_host_b;
+ size_qb = global * (sizeof(float) + sizeof(uint32_t) + local) / 32;
+ break;
+ case GGML_TYPE_Q5_1:
+ dequant = true;
+ kernel = kernel_q5_1;
+ local = 16;
+ size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32;
+ break;
+ case GGML_TYPE_Q8_0:
+ dequant = true;
+ kernel = kernel_q8_0;
+ local = 32;
+ size_qb = global * (sizeof(float) + local) / 32;
+ break;
+ default:
+ fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
+ abort();
+ }
+
+ const size_t size_a = m * k * sizeof(float);
+ const size_t size_b = n * k * sizeof(float);
+ const size_t size_c = m * n * sizeof(float);
+
+ // Prepare buffers
+ ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a);
+ if (dequant) {
+ ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb);
+ }
+ ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b);
+ ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c);
+
+ cl_event ev_a, ev_qb, ev_b;
+
+ if (dequant) {
+ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
+ err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
+ CL_CHECK(err, "clSetKernelArg");
+ err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
+ CL_CHECK(err, "clEnqueueWriteBuffer qb");
+ } else {
+ err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
+ CL_CHECK(err, "clEnqueueWriteBuffer b");
+ }
+
+ err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
+ CL_CHECK(err, "clEnqueueWriteBuffer a");
+ if (dequant) {
+ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b);
+ CL_CHECK(err, "clEnqueueNDRangeKernel");
+ clReleaseEvent(ev_qb);
+ }
+ clWaitForEvents(1, &ev_a);
+ clWaitForEvents(1, &ev_b);
+ clReleaseEvent(ev_a);
+ clReleaseEvent(ev_b);
+
+ cl_event ev_sgemm;
+ CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order,
+ (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
+ m, n, k,
+ alpha,
+ cl_buffer_a, 0, lda,
+ cl_buffer_b, 0, ldb,
+ beta,
+ cl_buffer_c, 0, ldc,
+ &queue, &ev_sgemm);
+
+ if (status != CLBlastSuccess) {
+ fprintf(stderr, "Error: CLBlast SGEMM %d\n", status);
+ abort();
+ }
+
+ cl_event ev_c;
+ clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c);
+
+ // Wait for completion
+ clWaitForEvents(1, &ev_c);
+ clReleaseEvent(ev_sgemm);
+ clReleaseEvent(ev_c);
+ if (btype == GGML_TYPE_Q5_0) {
+ free((void*) cl_host_b);
+ }
+}
--- /dev/null
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void ggml_cl_init(void);
+
+enum ggml_blas_order {
+ GGML_BLAS_ORDER_ROW_MAJOR = 101,
+ GGML_BLAS_ORDER_COLUMN_MAJOR = 102,
+};
+
+enum ggml_blas_op {
+ GGML_BLAS_OP_N = 111,
+ GGML_BLAS_OP_T = 112,
+ GGML_BLAS_OP_C = 113,
+};
+
+void ggml_cl_sgemm_wrapper(const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype);
+
+#ifdef __cplusplus
+}
+#endif
#define UNUSED(x) (void)(x)
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
-#define GGML_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
-
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
#elif defined(GGML_USE_OPENBLAS)
return GGML_FP32_TO_FP16(x);
}
+void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
+ for (size_t i = 0; i < n; i++) {
+ y[i] = GGML_FP16_TO_FP32(x[i]);
+ }
+}
+
+void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
+ size_t i = 0;
+#if defined(__F16C__)
+ for (; i + 7 < n; i += 8) {
+ __m256 x_vec = _mm256_loadu_ps(x + i);
+ __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
+ _mm_storeu_si128((__m128i *)(y + i), y_vec);
+ }
+ for(; i + 3 < n; i += 4) {
+ __m128 x_vec = _mm_loadu_ps(x + i);
+ __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
+ _mm_storel_epi64((__m128i *)(y + i), y_vec);
+ }
+#endif
+ for (; i < n; i++) {
+ y[i] = GGML_FP32_TO_FP16(x[i]);
+ }
+}
+
+
//
// timing
//
float max = 0.0f;
float min = 0.0f;
+ vector float asrcv [8];
vector float srcv [8];
vector float maxv[8];
vector float minv[8];
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
- // initialize cuBLAS
- #if defined(GGML_USE_CUBLAS)
+#if defined(GGML_USE_CUBLAS)
ggml_init_cublas();
- #elif defined(GGML_USE_CLBLAST)
+#elif defined(GGML_USE_CLBLAST)
ggml_cl_init();
- #endif
+#endif
is_first_call = false;
}
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end->offs + ctx->objects_end->size;
+ return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
}
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
+ /*.name =*/ { 0 },
/*.pad =*/ { 0 },
};
return (float *)(tensor->data);
}
+const char * ggml_get_name(const struct ggml_tensor * tensor) {
+ return tensor->name;
+}
+
+void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
+ strncpy(tensor->name, name, sizeof(tensor->name));
+ tensor->name[sizeof(tensor->name) - 1] = '\0';
+}
+
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
const struct ggml_tensor * src) {
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
+ ggml_set_name(b, "n_past");
result->op = GGML_OP_DIAG_MASK_INF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
((int32_t *) b->data)[0] = n_past;
((int32_t *) b->data)[1] = n_dims;
((int32_t *) b->data)[2] = mode;
+ ggml_set_name(b, "n_past, n_dims, mode");
result->op = GGML_OP_ROPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
// ggml_compute_forward_mul_mat
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
- if (
-#if !defined(GGML_USE_CUBLAS)
- ggml_is_contiguous(src0) &&
+ if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
-#endif
- ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
return false;
}
-
#endif
static void ggml_compute_forward_mul_mat_f32(
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
const int64_t ne10 = src1->ne[0];
#endif
const int64_t ne11 = src1->ne[1];
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CUBLAS)
+ if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
+ if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
+ ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
+ }
+ return;
+ }
+#endif
+
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
return;
}
-#if defined(GGML_USE_CUBLAS)
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
-
- size_t x_size, y_size, d_size;
- float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
-#endif
-
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
-#if !defined(GGML_USE_CUBLAS)
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-#if defined(GGML_USE_CUBLAS)
- // copy data to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
-
- // compute
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, d_X, ne00,
- d_Y, ne10,
- &beta, d_D, ne01));
-
- // copy data to host
- CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
-#elif defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CLBLAST)
// zT = y * xT
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
ne11, ne01, ne10,
#endif
}
}
-#if defined(GGML_USE_CUBLAS)
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
-#endif
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CUBLAS)
+ if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
+ if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
+ ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
+ }
+ return;
+ }
+#endif
+
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float));
return;
}
-#if defined(GGML_USE_CUBLAS)
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
-
- size_t x_size, y_size, d_size;
- ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
-#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
-#if defined(GGML_USE_CUBLAS)
- // copy src0 while converting src1
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
-
- // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne11; ++i01) {
- for (int64_t i00 = 0; i00 < ne10; ++i00) {
- wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
- }
- }
-
- assert(id*sizeof(ggml_fp16_t) <= params->wsize);
- }
-#else
float * const wdata = params->wdata;
{
size_t id = 0;
assert(id*sizeof(float) <= params->wsize);
}
-#endif
-#if defined(GGML_USE_CUBLAS)
- const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-
- // copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
-
- // compute
- CUBLAS_CHECK(
- cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, d_X, CUDA_R_16F, ne00,
- d_Y, CUDA_R_16F, ne10,
- &beta, d_D, CUDA_R_32F, ne01,
- CUBLAS_COMPUTE_32F,
- CUBLAS_GEMM_DEFAULT));
-
- // copy data to host
- CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
-#elif defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CLBLAST)
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
}
}
-#if defined(GGML_USE_CUBLAS)
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
-#endif
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
return;
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CUBLAS)
+ if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
+ if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
+ ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
+ }
+ return;
+ }
+#endif
+
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
return;
}
-#if defined(GGML_USE_CUBLAS)
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
-
- size_t x_size, y_size, d_size, q_size;
- float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
- void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
-
- const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
- GGML_ASSERT(dequantize_row_q_cuda != NULL);
-#else
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
-#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-#if defined(GGML_USE_CUBLAS)
- // copy and dequantize on device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
-
- dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
- CUDA_CHECK(cudaGetLastError());
- CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
-#elif defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CLBLAST)
const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
#else
{
const float * x = wdata;
#endif
-#if defined(GGML_USE_CUBLAS)
- // copy data to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
-
- // wait for dequantization
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
-
- // compute
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, d_X, ne00,
- d_Y, ne10,
- &beta, d_D, ne01));
-
- // copy data to host
- CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
-#elif defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_CLBLAST)
// zT = y * xT
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
ne11, ne01, ne10,
}
}
-#if defined(GGML_USE_CUBLAS)
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- ggml_cuda_pool_free(d_Q, q_size);
-#endif
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
size_t cur = 0;
+#if defined(GGML_USE_CUBLAS)
+ if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
+ node->n_tasks = 1; // TODO: this actually is doing nothing
+ // the threads are still spinning
+ cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
+ }
+ else
+#endif
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
-#if defined(GGML_USE_CUBLAS)
- // with cuBLAS, we need memory for the full 3D / 4D data of src1
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
-#else
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
-#endif
} else {
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
}
#endif
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
cur = 0;
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1;
}
#endif
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1;
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
snprintf(color, sizeof(color), "white");
}
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
- (void *) node, color,
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s |", node->name);
+ }
+
+ fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
i, node->ne[0], node->ne[1],
GGML_OP_SYMBOL[node->op]);
snprintf(color, sizeof(color), "pink");
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"<x>",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s | ", node->name);
+ }
if (ggml_nelements(node) == 1) {
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"<x>%.1e\"; ]\n",
- (void *) node, color, (double)ggml_get_f32_1d(node, 0));
- } else {
- fprintf(fp, " \"%p\" [ \
-style = filled; fillcolor = %s; shape = record; \
-label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
- (void *) node, color,
- i, node->ne[0], node->ne[1]);
+ if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
+ fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
+ }
+ else {
+ fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
+ }
+ }
+ else {
+ fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
}
+ fprintf(fp, "\"; ]\n");
}
for (int i = 0; i < gb->n_nodes; i++) {
#define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4
+#define GGML_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+ abort(); \
+ } \
+ } while (0)
+
#ifdef __cplusplus
extern "C" {
#endif
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
+ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
+
struct ggml_object;
struct ggml_context;
int64_t perf_time_us;
void * data;
- char padding[8];
+
+ char name[32];
+
+ char padding[8]; // TODO: remove and add padding to name?
};
// computation graph
GGML_API bool ggml_is_quantized(enum ggml_type type);
+ // TODO: temporary until model loading of ggml examples is refactored
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
// main
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
+ GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
+ GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
+
//
// operations on tensors with backpropagation
//