cl_program program_gemv_noshuffle_general;
cl_program program_gemv_noshuffle;
cl_program program_get_rows;
+ cl_program program_set_rows;
cl_program program_glu;
cl_program program_im2col_f16;
cl_program program_im2col_f32;
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
+ cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
fclose(ftrace);
}
+ size_t get_kernel_workgroup_size(cl_kernel kernel) const {
+ size_t workgroup_size = 0;
+ size_t ret_size = 0;
+ CL_CHECK(
+ clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
+ sizeof(size_t), &workgroup_size, &ret_size));
+ GGML_ASSERT(sizeof(size_t) == ret_size);
+ return workgroup_size;
+ }
+
void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
}
}
+ // set_rows
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "set_rows.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("set_rows.cl");
+#endif
+ backend_ctx->program_set_rows =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
- return false;
- } break;
+ if (op->src[0]->type != GGML_TYPE_F32) {
+ return false;
+ }
+ switch (op->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ return true;
+ default:
+ return false;
+ }
+ }
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
+static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(src1);
+ GGML_ASSERT(src1->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ // ne0 = ne00
+ // ne2 = ne02
+ // ne3 = ne03
+
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb01 = src0->nb[1];
+ const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
+
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+
+ const cl_ulong nb10 = src1->nb[0];
+ const cl_ulong nb11 = src1->nb[1];
+ const cl_ulong nb12 = src1->nb[2];
+
+ const int ne0 = dst->ne[0];
+
+ const cl_ulong nb1 = dst->nb[1];
+ const cl_ulong nb2 = dst->nb[2];
+ const cl_ulong nb3 = dst->nb[3];
+
+ const int nblk0 = ne0/ggml_blck_size(dst->type);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ cl_kernel kernel;
+
+ switch (dst->type) {
+ case GGML_TYPE_F32:
+ kernel = backend_ctx->kernel_set_rows_f32;
+ break;
+ case GGML_TYPE_F16:
+ kernel = backend_ctx->kernel_set_rows_f16;
+ break;
+ default:
+ GGML_ABORT("not implemented");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
+
+ int nth0 = 64;
+ if (backend_ctx->gpu_family == INTEL) {
+ nth0 = 32;
+ } else if (backend_ctx->gpu_family == ADRENO) {
+ nth0 = 64;
+ }
+
+ int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
+ while (nth0 < nblk0 && nth0 < max_workgroup_size) {
+ nth0 *= 2;
+ }
+
+ int rows_per_workgroup = 1;
+ if (nth0 > nblk0) {
+ rows_per_workgroup = nth0 / nblk0;
+ nth0 = nblk0;
+ }
+
+ size_t global_work_size[] = {
+ (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
+ (size_t)ne02*rows_per_workgroup,
+ (size_t)ne03};
+ size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
+}
+
static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
}
func = ggml_cl_get_rows;
break;
+ case GGML_OP_SET_ROWS:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_set_rows;
+ break;
case GGML_OP_CPY:
if (!any_on_device) {
return false;