]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
scripts : Remove missed baichuan convert script (#4127)
authorGalunid <redacted>
Sat, 18 Nov 2023 20:08:33 +0000 (21:08 +0100)
committerGitHub <redacted>
Sat, 18 Nov 2023 20:08:33 +0000 (21:08 +0100)
convert-baichuan-hf-to-gguf.py [deleted file]

diff --git a/convert-baichuan-hf-to-gguf.py b/convert-baichuan-hf-to-gguf.py
deleted file mode 100755 (executable)
index 3785a7d..0000000
+++ /dev/null
@@ -1,315 +0,0 @@
-#!/usr/bin/env python3
-# HF baichuan --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import sys
-from pathlib import Path
-from typing import TYPE_CHECKING, Any
-import numpy as np
-import torch
-from sentencepiece import SentencePieceProcessor  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-
-if TYPE_CHECKING:
-    from typing import TypeAlias
-
-NDArray: TypeAlias = 'np.ndarray[Any, Any]'
-
-# reverse HF permute back to original pth layout
-
-
-def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
-    if n_kv_head is not None and n_head != n_kv_head:
-        n_head //= n_kv_head
-
-    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
-            .swapaxes(1, 2)
-            .reshape(weights.shape))
-
-def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
-        r = weights.shape[0] // 3
-        return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
-
-def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
-        r = weights.shape[0] // 3
-        return weights[r * n_part : r * n_part + r, ...]
-
-def count_model_parts(dir_model: str) -> int:
-    num_parts = 0
-
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-
-    return num_parts
-
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
-    parser.add_argument(
-        "--vocab-only", action="store_true",
-        help="extract only the vocab",
-    )
-    parser.add_argument(
-        "--outfile", type=Path,
-        help="path to write to; default: based on input",
-    )
-    parser.add_argument(
-        "model", type=Path,
-        help="directory containing model file, or model file itself (*.bin)",
-    )
-    parser.add_argument(
-        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
-        help="output format - use 0 for float32, 1 for float16",
-    )
-    parser.add_argument("--bigendian",   action="store_true",    help="model is executed on big endian machine")
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-endianess = gguf.GGUFEndian.LITTLE
-if args.bigendian:
-    endianess = gguf.GGUFEndian.BIG
-endianess_str = "Big Endian" if args.bigendian else "Little Endian"
-print(f"gguf: Conversion Endianess {endianess}")
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-print("hello print: ",hparams["architectures"][0])
-if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit()
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-print(f"num_parts:{num_parts}\n")
-ARCH=gguf.MODEL_ARCH.BAICHUAN
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
-
-print("gguf: get model metadata")
-
-block_count = hparams["num_hidden_layers"]
-head_count = hparams["num_attention_heads"]
-
-if "num_key_value_heads" in hparams:
-    head_count_kv = hparams["num_key_value_heads"]
-else:
-    head_count_kv = head_count
-
-if "_name_or_path" in hparams:
-    hf_repo = hparams["_name_or_path"]
-else:
-    hf_repo = ""
-
-if "max_sequence_length" in hparams:
-    ctx_length = hparams["max_sequence_length"]
-elif "max_position_embeddings" in hparams:
-    ctx_length = hparams["max_position_embeddings"]
-elif "model_max_length" in hparams:
-    ctx_length = hparams["model_max_length"]
-else:
-    print("gguf: can not find ctx length parameter.")
-
-    sys.exit()
-
-
-gguf_writer.add_name(dir_model.name)
-gguf_writer.add_source_hf_repo(hf_repo)
-gguf_writer.add_tensor_data_layout("Meta AI original pth")
-gguf_writer.add_context_length(ctx_length)
-gguf_writer.add_embedding_length(hparams["hidden_size"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
-gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
-gguf_writer.add_head_count(head_count)
-gguf_writer.add_head_count_kv(head_count_kv)
-gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
-
-if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
-    if "type" in hparams["rope_scaling"]:
-        if hparams["rope_scaling"]["type"] == "linear":
-            gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
-            gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
-
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytes] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-tokenizer_model_file = dir_model / 'tokenizer.model'
-if not tokenizer_model_file.is_file():
-    print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
-    sys.exit(1)
-
-# vocab type sentencepiece
-print("gguf: get sentencepiece tokenizer vocab, scores and token types")
-
-tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
-vocab_size = hparams.get('vocab_size')
-if vocab_size is None:
-    vocab_size = tokenizer.vocab_size()
-
-for i in range(vocab_size):
-    text: bytes
-    score: float
-
-    piece = tokenizer.id_to_piece(i)
-    text = piece.encode("utf-8")
-    score = tokenizer.get_score(i)
-
-    toktype = 1  # defualt to normal token type
-    if tokenizer.is_unknown(i):
-        toktype = 2
-    if tokenizer.is_control(i):
-        toktype = 3
-
-    # toktype = 4 is user-defined = tokens from added_tokens.json
-
-    if tokenizer.is_unused(i):
-        toktype = 5
-    if tokenizer.is_byte(i):
-        toktype = 6
-
-    tokens.append(text)
-    scores.append(score)
-    toktypes.append(toktype)
-
-added_tokens_file = dir_model / 'added_tokens.json'
-if added_tokens_file.is_file():
-    with open(added_tokens_file, "r", encoding="utf-8") as f:
-        addtokens_json = json.load(f)
-
-        print("gguf: get added tokens")
-
-        for key in addtokens_json:
-            tokens.append( key.encode("utf-8") )
-            scores.append(-1000.0)
-            toktypes.append(4) # user-defined token type
-
-
-gguf_writer.add_tokenizer_model("llama")
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
-
-    tmp=model_part
-    for i in range(block_count):
-        if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
-            print(f"Unpacking and permuting layer {i}")
-            tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
-            tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
-            tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
-            del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
-
-    for name in model_part.keys():
-        data = model_part[name]
-        # we don't need these
-        if name.endswith(".rotary_emb.inv_freq"):
-            continue
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(name + " -> " +  new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-        gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")