[](gpt_params & params) {
params.ctx_shift = false;
}
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
+ ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"--chunks"}, "N",
format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
| -------- | ----------- |
| `-h, --help, --usage` | print usage and exit |
| `--version` | show version and build info |
-| `-v, --verbose` | print verbose information |
-| `--verbosity N` | set specific verbosity level (default: 0) |
| `-t, --threads N` | number of threads to use during generation (default: -1)<br/>(env: LLAMA_ARG_THREADS) |
| `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) |
| `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
| `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) |
+| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled) |
| `-fa, --flash-attn` | enable Flash Attention (default: disabled)<br/>(env: LLAMA_ARG_FLASH_ATTN) |
| `-p, --prompt PROMPT` | prompt to start generation with |
+| `--no-perf` | disable internal libllama performance timings (default: false)<br/>(env: LLAMA_ARG_NO_PERF) |
| `-f, --file FNAME` | a file containing the prompt (default: none) |
| `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) |
| `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
| `--no-escape` | do not process escape sequences |
+| `-sp, --special` | special tokens output enabled (default: false) |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) |
-| `-s, --seed SEED` | RNG seed (default: -1, use random seed for < 0) |
+| `-s, --seed SEED` | RNG seed (default: 4294967295, use random seed for 4294967295) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
| `--penalize-nl` | penalize newline tokens (default: false) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
-| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
+| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing |
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
-| `--log-test` | Log test |
| `--log-disable` | Log disable |
-| `--log-enable` | Log enable |
-| `--log-new` | Log new |
-| `--log-append` | Log append |
-| `--log-file FNAME` | Log file |
+| `--log-file FNAME` | Log to file |
+| `--log-colors` | Enable colored logging<br/>(env: LLAMA_LOG_COLORS) |
+| `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) |
+| `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored.<br/>(env: LLAMA_LOG_VERBOSITY) |
+| `--log-prefix` | Enable prefx in log messages<br/>(env: LLAMA_LOG_PREFIX) |
+| `--log-timestamps` | Enable timestamps in log messages<br/>(env: LLAMA_LOG_TIMESTAMPS) |
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
}
+ // if context shift is disabled, we stop when it reaches the context limit
+ if (slot.n_decoded >= slot.n_ctx) {
+ slot.truncated = true;
+ slot.stopped_limit = true;
+ slot.has_next_token = false;
+
+ SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx);
+ }
+
if (llama_token_is_eog(model, result.tok)) {
slot.stopped_eos = true;
slot.has_next_token = false;
if (result.error) {
error_handler(result.data);
cancel_tasks(id_tasks);
- break;
+ return;
}
size_t idx = result.data["index"];
for (server_slot & slot : slots) {
if (slot.ga_n == 1) {
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
+ if (!params.ctx_shift) {
+ // this check is redundant (for good)
+ // we should never get here, because generation should already stopped in process_token()
+ slot.release();
+ send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
+ continue;
+ }
+
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
continue;
}
} else {
+ if (!params.ctx_shift) {
+ // if context shift is disabled, we make sure prompt size is smaller than KV size
+ if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) {
+ slot.release();
+ send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
+ continue;
+ }
+ }
if (slot.params.n_keep < 0) {
slot.params.n_keep = slot.n_prompt_tokens;
}
--- /dev/null
+@llama.cpp
+@ctx_shift
+Feature: llama.cpp server
+
+ Background: Server startup
+ Given a server listening on localhost:8080
+ And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
+ And a model file test-model.gguf
+ And a model alias tinyllama-2
+ And BOS token is 1
+ And 42 as server seed
+ And 256 KV cache size
+ And 32 as batch size
+ And 2 slots
+
+ Scenario: Inference with context shift
+ And 64 server max tokens to predict
+ Then the server is starting
+ Then the server is healthy
+ Given a prompt:
+ """
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
+ Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
+ Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
+ Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+ """
+ And a completion request with no api error
+ Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
+ And the completion is truncated
+ And 109 prompt tokens are processed
+
+ Scenario Outline: Inference without context shift
+ And <n_predict> server max tokens to predict
+ And disable context shifting
+ Then the server is starting
+ Then the server is healthy
+ Given a prompt:
+ """
+ Hi how are you
+ """
+ And a completion request with no api error
+ Then <n_token_output> tokens are predicted matching twind|Anna
+ And the completion is <truncated> truncated
+ And 8 prompt tokens are processed
+ Examples:
+ | n_predict | n_token_output | truncated |
+ | 64 | 64 | not |
+ | -1 | 120 | |
+
+ Scenario: Inference without context shift (expected error: prompt too long)
+ And disable context shifting
+ Then the server is starting
+ Then the server is healthy
+ Given a prompt:
+ """
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
+ Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
+ Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
+ Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+ """
+ And a completion request with 400 api error
+
And 42 as server seed
And 2 slots
# the bert-bge-small model has context size of 512
- # since the generated prompts are as big as the batch size, we need to set the batch size to 512
+ # since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
- And 512 as batch size
- And 512 as ubatch size
- And 2048 KV cache size
+ And 128 as batch size
+ And 128 as ubatch size
+ And 512 KV cache size
And embeddings extraction
Then the server is starting
Then the server is healthy
"""
Then embeddings are generated
+ Scenario: Embedding (error: prompt too long)
+ When embeddings are computed for:
+ """
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
+ Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
+ Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
+ Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
+ Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
+ Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
+ Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
+ """
+ And embeddings request with 500 api error
+
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
context.response_format = None
context.temperature = None
context.lora_file = None
+ context.disable_ctx_shift = False
context.tasks_result = []
context.concurrent_tasks = []
@step('{n_predict:d} server max tokens to predict')
def step_server_n_predict(context, n_predict: int):
- context.n_server_predict = n_predict
+ context.n_server_predict = n_predict if n_predict > 0 else None
@step('{slot_save_path} as slot save path')
def step_server_metrics(context):
context.server_metrics = True
+@step('disable context shifting')
+def step_server_disable_ctx_shift(context):
+ context.disable_ctx_shift = True
@step("the server is starting")
def step_start_server(context):
@step('a completion request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error: Literal['raised'] | str):
- expect_api_error = api_error == 'raised'
+ expect_api_error = api_error == 'raised' or api_error != 'no'
seeds = await completions_seed(context, num_seeds=1)
completion = await request_completion(context.prompts.pop(),
seeds[0] if seeds is not None else seeds,
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
- if expect_api_error:
+ if api_error == 'raised':
assert completion == 401, f"completion must be an 401 status code: {completion}"
+ elif api_error.isdigit():
+ api_error_code = int(api_error)
+ assert completion == api_error_code, f"completion must be an {api_error_code} status code: {completion}"
@step('{predicted_n:d} tokens are predicted matching {re_content}')
for embedding in context.embeddings:
assert_embeddings(embedding)
+@step('embeddings request with {api_error_code:d} api error')
+def step_assert_embeddings(context, api_error_code: int):
+ assert context.embeddings == api_error_code, f"embeddings request must return code {api_error_code}, but got {context.embeddings}"
@step('an OAI compatible embeddings computation request for')
@async_run_until_complete
return completion_response
-async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
+async def request_embedding(content, seed, base_url=None) -> list[list[float]] | int:
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
async with session.post(f'{base_url}/embedding',
json={
"content": content,
}) as response:
- assert response.status == 200
- response_json = await response.json()
- return [response_json['embedding']]
+ if response.status == 200:
+ response_json = await response.json()
+ return [response_json['embedding']]
+ else:
+ return response.status
async def request_oai_embeddings(input, seed,
server_args.append('--verbose')
if context.lora_file:
server_args.extend(['--lora', context.lora_file])
+ if context.disable_ctx_shift:
+ server_args.extend(['--no-context-shift'])
args = [str(arg) for arg in [context.server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")